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Space-Variant Image Restoration 
 with Running Sinusoidal Transforms 

Vitaly Kober 
Computer Science Department, CICESE, 

 Mexico 

1. Introduction 

Various restoration methods (linear, nonlinear, iterative, noniterative, deterministic, 

stochastic, etc.) optimized with respect to different criteria have been introduced (Bertero & 

Boccacci, 1998; Biemond et al., 1990; Kundur, & Hatzinakos, 1996; Banham & Katsaggelos, 

1997; Jain, 1989; Bovik, 2005; Gonzalez & Woods, 2008). These techniques may be broadly 

divided in two classes: (i) fundamental algorithms and (ii) specialized algorithms. One of 

the most popular fundamental techniques is a linear minimum mean square error (LMMSE) 

method. It finds the linear estimate of the ideal image for which the mean square error 

between the estimate and the ideal image is minimum. The linear operator acting on the 

observed image to determine the estimate is obtained on the basis of a priori second-order 

statistical information about the image and noise processes. In the case of stationary 

processes and space-invariant blurs, the LMMSE estimator takes the form of the Wiener 

filter (Jain, 1989). The Kalman filter determines the causal LMMSE estimate recursively. 

Specialized algorithms can be viewed as extensions of the fundamental algorithms to 

specific restoration problems. It is based on a state-space representation of the imaging 

system, and image data are used to define the state vectors. Specialized algorithms can be 

viewed as extensions of the fundamental algorithms to specific restoration problems. In this 

paper we deal with restoration of images degraded by space-variant blurs. Basically, all 

fundamental algorithms apply to the restoration of images degraded by space-variant blurs. 

However, because Fourier transforms cannot be utilized when the blur is space-variant, 

space-domain implementations of these algorithms may be computationally formidable due 

to large matrix operations. Several specialized methods were developed to attack the space-

variant restoration problem. The first class referred to as sectioning is based on assumption 

that the blur is approximately space-invariant within local regions of the image. Therefore, 

the entire image can be restored by applying well-known space-invariant techniques to the 

local image regions. A drawback of sectioning methods is the generation of artifacts at the 

region boundaries. The second class is based on a coordinate transformation (Sawchuk, 

1974), which is applied to the observed image so that the blur in the transformed 

coordinates becomes space-invariant. Therefore, the transformed image can be restored by a 

space-invariant filter and then transformed back to obtain the final restored image. However, 

the statistical properties of the image and noise processes are affected by the  
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coordinate transformation. In particular, the stationarity in the original spatial coordinates is 

not preserved in the transform coordinate system. 

In this chapter, we carry out the space-variant restoration using running discrete sinusoidal 

transform coefficients. The running transform is based on the concept of short-time signal 

processing (Oppenheim & Shafer 1989). A short-time orthogonal transform of a signal xk is 

defined as 

  ,k
s k n n

n

X x w n s





  , (1) 

where wn is a window sequence, (n,s) represents the basis functions of an orthogonal 

transform. We use one-dimensional notation for simplicity. Equation (1) can be 

interpreted as the orthogonal transform of xk+n as viewed through the window wn. k
sX  

displays the orthogonal transform characteristics of the signal around time k. Note that 

while increased window length and resolution are typically beneficial in the spectral 

analysis of stationary data, for time-varying data it is preferable to keep the window 

length sufficiently short so that the signal is approximately stationary over the window 

duration. Assume that the window has finite length around n=0, and it is unity for all 

n-N1, N2. Here N1 and N2 are integer values. This leads to signal processing in a 

running window (Vitkus & Yaroslavsky, 1987; Yaroslavsky & Eden, 1996). In other words, 

local filters in the domain of an orthogonal transform at each position of a moving 

window modify the orthogonal transform coefficients of a signal to obtain only an 

estimate of the pixel xk of the window. The choice of orthogonal transform for running 

signal processing depends on many factors. 

We carry out the space-variant restoration using running discrete transform coefficients. The 

discrete cosine transforms (DCT) and discrete sine transforms (DST) are widely used. This is 

because the DCT and DST perform close to the optimum Karhunen-Loeve transform (KLT) 

for the first-order Markov stationary data (Jain, 1989). For signals with the correlation 

coefficient near to unity, the DCT provides a better approximation of the KLT than the DST. 

On the other hand, the DST is closer to the KLT, when the correlation coefficient lies in the 

interval (-0.5, 0.5). Since the KLT is constructed from the eigenvectors of the covariance 

matrix of data, there are neither single unique transform for all random processes nor fast 

algorithms. Unlike the KLT, the DCT and DST are not data dependent, and many fast 

algorithms were proposed. To provide image processing in real time, fast recursive 

algorithms for computing the running sinusoidal transforms are utilized (Kober, 2004, 2007). 

We introduce local adaptive restoration of nonuniform degraded images using several 

running sinusoidal transforms. Computer simulation results using a real image are 

provided and compared with those of common restoration techniques. 

2. Fast algorithms of running discrete sinusoidal transforms 

The discrete cosine and sine transforms are widely used in signal processing applications. 
Recently, forward and inverse algorithms for fast computing of various DCTs ({DCT-I, DCT-II, 
DCT-III, DCT-IV) and DSTs (DST-I, DST-II, DST-III, DST-IV) were proposed (Kober, 2004). 

www.intechopen.com



 
Space-Variant Image Restoration with Running Sinusoidal Transforms 

 

5 

2.1 Discrete sinusoidal transforms 

First, we recall the definitions for various discrete sinusoidal transforms. Notation {.} 

denotes a matrix, the order of which is represented by a subscript. For clarity, the 

normalization factor 2 N  for all forward transforms is neglected until the inverse 

transforms. The kernel of the orthogonal DCT-I for the order N+1 is defined as 

 1 cos ,N s n

ns
DCT I k k

N


      
  

 (2) 

where n, s=0,…, N;     

1 2    0  ,

1               .
m m n or m s

if m or m N
k

otherwise
 

   


 

The kernels of the DCT-II, DCT-III, and DCT-IV for the order N are given as 

 
 1 / 2

cosN s

s n
DCT II k

N


        
   

, (3) 

 
 1 / 2

cosN n

n s
DCT III k

N


        
   

, (4) 

 
  1 / 2 1 /2

cosN

n s
DCT IV

N


         
   

, (5) 

where n, s=0, 1,…, N-1. The kernel of the DST-I for the order N-1 is defined as 

 1 sinN

ns
DST I

N


      
  

, (6) 

where n, s=1, 2,…, N-1. The kernels of the DST-II, DST-III, and DST-IV for the order N are 

given as follows: 

 
 1 / 2

sinN s

s n
DST II k

N


        
   

, (7) 

 
 1 / 2

sinN n

n s
DST III k

N


        
   

, (8) 

 
  1 / 2 1 / 2

sinN

n s
DST IV

N


         
   

, (9) 

where n, s=1, 2,…, N.  
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2.2 Fast forward algorithms for computing running discrete sinusoidal transforms 

The fast forward algorithms are based on recursive relationships between three subsequent 
local running spectra. These algorithms for running DCTs (SDCTs) and running DSTs 
(SDSTs) are based on the second–order recursive equations summarized in Table I. 
 

N Transforms Recursive equations

1 SDCT-I 
   

  
1

2

2

1

1

1
1 1

2 1 cos

                 1

sk k
s s k N k N

sk
s k N k N

s
X X x x

N

X x x


 


   

      
 

  
 

2 SDCT-II 

    1 1 2 2

1 1

1 1

               2 cos

cos 1
2

k k k
s s s

s
k N k N k N k N

s
X X X

N

s
x x x x

N





 

     

    
 

      
 

 

3 SDCT-III 

   

   

1

1 2

1 1

1 1

1 / 2
2 cos  

1 / 2
              1 sin

k k k
s s k N s

s
k N k N

s
X X x X

N

s
x x

N





 


   

  
    

 
  

   
 

 

4 SDCT-IV 

   
       

1 1

2 2

1 1
1

1

1 / 2
2 cos x

1 / 2 1 / 2
cos 1 sin

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

5 SDST-I 

  1 2

1 1

1 1

2 cos

  1 sin

k k k
s s s

s
k N k N

s
X X X

N

s
x x

N





 

   

    
 

    
 

 

6 SDST-II 

    1 1 2 2

1 1

1 1

            2 cos

1 sin
2

k k k
s s s

s
k N k N k N k N

s
X X X

N

s
x x x x

N





 

     

    
 

      
 

 

7 SDST-III 

   

     

2

1 2

1 1
1

1

1 / 2
2 cos 1

1 / 2 1 / 2
   sin 1 cos

sk k k
s s s k N

s
k N k N

s
X X X x

N

s s
x x

N N



 

 
 

  

  
     

 
     

    
   

 

8 SDST-IV 

   
       

1

2 2

1

1 1
1

1

1 / 2
2 cos x

1 / 2 1 / 2
sin  1 cos

2 2

k k k
s s s k N k N

s
k N k N

s
X X X x x

N

s s
x x

N N



 

 
  

  

  
    

 
     

     
   

 

Table 1. Recursive equations for the computation of forward running sinusoidal transforms. 
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The number of arithmetic operations required for computing the running discrete cosine 
transforms at a given window position is evaluated as follows. The SDCT-I for the order 
N+1 with N=N1+N2 requires N-1 multiplication operations and 4(N+2) addition operations. 
The SDCT-II for the order N with N= N1+ N2+1 requires 2(N-1) multiplication operations 
and 2N+5 addition operations. A fast algorithm for the SDCT-III for the order N with N=N1+ 
N2+1 is based on the recursive equation given in line 3 of Table 1. Next it is useful to 
represent the equation as  

        
2

1 1
1

1 / 2 1 / 2
cos 1 sin

sk k k k
s s s s k N

s s
X X X X x

N N

  
 

     
       

   
  , (10) 

where the array  
1
; 0 1 . 1k k

s s k NX X x s , ,.. N     is stored in a memory buffer of N 

elements. From the property of symmetry of the sine function,   sin 1 / 2s N    

  sin 1 / 2 , 0,1,...[ / 2]N s N s N     (here [x/y] is the integer quotient) and Eq. (10), the 

number of operations required to compute the DSCT-III can be evaluated as [3/2N] 
multiplication operations and 4N addition operations. An additional memory buffer of N 
elements is also required. Finally, the SDCT-IV for the order N with N=N1+ N2+1 requires 
3N multiplication operations and 3N+2 addition operations.  

The number of arithmetic operations required for computing the running discrete sine 
transforms at a given window position can be evaluated as follows. The SDST-I for the order 
N-1 with N=N1+ N2+1 requires 2(N-1) multiplication operations and 2N addition operations. 

However, if N is even,       
1 21 11 sin

s
k N k Nf s x x s N       in line 5 of Table I is 

symmetric on the interval [1, N-1]; that is, f(s)=f(N-s), s=1,..N/2-1. Therefore, only N/2-1 
multiplication operations are required to compute this term. The total number of 
multiplications is reduced to 3N/2-2. The SDST-II for the order N with N=N1+ N2+1 requires 
2(N-1) multiplication operations and 2N+5 addition operations. Taking into account the 
property of symmetry of the sine and cosine functions, the SDST-III for the order N with 
N=N1+ N2+1 requires 2N multiplications and 4N addition operations. However, if N is even, 

the sum        
1 21( ) sin 1 / 2 1 cos 1 / 2

s
k N k Ng s x s N x s N         in line 7 of Table I 

is symmetric on the interval [1, N]; that is, g(s)=g(N-s+1), s=1,..N/2. Therefore, only N/2 
addition operations are required to compute the sum. If N is odd, the sum 

      
1 21 1sin 1 / 2 1

s
k N k Np s x s N x        in line 7 of Table I is symmetric on the 

interval [1, N]; that is, p(s)=p(N-s+1), s=1,..[N/2]. Hence, [N/2] addition operations are 
required to compute this sum. So, the total number of additions can be reduced to [7N/2]. 
Finally, the SDST-IV for the order N with N=N1+ N2+1 requires 3N multiplication operations 
and 3N+2 addition operations. The length of a moving window for the proposed algorithms 
may be an arbitrary integer. 

2.3 Fast inverse algorithms for running signal processing with sinusoidal transforms 

The inverse discrete cosine and sine transforms for signal processing in a running window 
are performed for computing only the pixel xk of the window. The running signal 
processing can be performed with the use of the SDCT and SDST algorithms.  
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The inverse algorithms for the running DCTs can be written as follows. 

IDCT-I: 

   1

1
1

0
1

1
2 cos 1

N
Nk k k

k s N
s

N s
x X X X

N N






       
  

 , (11) 

where N=N1+N2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 

transform is simplified to 

    
1

1

1

2 0
1

1
2 1 1

N
s Nk k k

k s N
s

x X X X
N





 
      

 
 . (12) 

Therefore, in the computation only the spectral coefficients with even indices are involved. 

The number of required operations of multiplication and addition becomes one and N1+1, 

respectively.  

IDCT-II: 

 
 1

1
0

1

1 / 21
2 cos

N
k k

k s
s

N s
x X X

N N






   
      

 , (13) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 

transform is given by 

   
1

2 0
1

1
2 1

N
s k k

k s
s

x X X
N 

 
    

 
 . (14) 

We see that in the computation only the spectral coefficients with even indices are involved. 

The computation requires one multiplication operation and N1+1 addition operations.  

IDCT-III: 

 
 1

1

0

1 / 22
cos

N
k

k s
s

N s
x X

N N






  
  

 
 , (15) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 
transform is  

       
     1

1
1 1

1

1
1

[ /2]1
1

0

1 1 1 11 / 22
1 cos 1

4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N





 


                  
 . (16) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDCT-IV: 
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  1

1

0

1 / 2 1 / 22
cos

N
k

k s
s

N s
x X

N N






   
  

 
 , (17) 

where N=N1+N2+1. If xk is the central pixel of the window, that is, N1=N2 then the inverse 

transform is given by 

    
1

2 2 1 0
1

2
1

N
s k k k

k s s
s

x X X X
N




 
     

 
 . (18) 

One multiplication operation and N-1 addition operations are required to perform this 

computation.  

The inverse algorithms for the running DSTs are given as follows. 

IDST-I: 

 
 1

1

1

12
sin

N
k

k s
s

N s
x X

N N






  
  

 
 , (19) 

where N=N1+N2+2. If xk is the central pixel of the window; that is, N1=N2 then the inverse 

transform is simplified to 

  
1

2 1
0

2
1

N
s k

k s
s

x X
N




  . (20) 

Therefore, in the computation only the spectral coefficients with odd indices are involved. 

The complexity is one multiplication operation and N1 addition operations.  

IDST-II: 

 
    1

1
1

1

1 / 21
2 sin 1

N
Nk k

k s N
s

N s
x X X

N N






   
       

 , (21) 

where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then the inverse 

transform is given by 

    
1

1

1

2 1
0

1
2 1 1

N
s Nk k

k s N
s

x X X
N






 
     

 
 . (22) 

In the computation only the spectral coefficients with odd indices are involved. The 

computational complexity is one multiplication operation and N1+1 addition operations.  

IDST-III: 

 
  1

1

1 1 / 22
sin

N
k

k s
s

N s
x X

N N




   
  

 
 , (23) 
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where N=N1+N2+1. If xk is the central pixel of the window; that is, N1=N2 then we can 
rewrite 

               1
1

1 1

1

1

21
1 1

1

1 1 1 11 1 22
1 sin 1

4

N N
N

N Nk k
k s N s N

s

kN s
x X X X

N N




  


                   
 . (24) 

If N1 is even, then the computation requires N1+1 multiplication operations and 2N1 
addition operations. Otherwise, the complexity is reduced to N1 multiplication operations 
and 2N1 - 1 addition operations. 

IDST-IV: 

 
  1

1

1 / 2 1 / 22
sin

N
k

k s
s

N s
x X

N N




   
  

 
 , (25) 

where =N1+N2+1. If xk is the central pixel of the window; that is, N1=N2, then the inverse 
transform is given by 

      
1

11
2 2 1

1

2
1 1

N
s Nk k k

k s s N
s

x X X X
N






 
      

 
 . (26) 

The complexity is one multiplication operation and N-1 addition operations.  

3. Local image restoration with running transforms 

First we define a local criterion of the performance of filters for image processing and then 

derive optimal local adaptive filters with respect to the criterion. One the most used 

criterion in signal processing is the minimum mean-square error (MSE). Since the processing 

is carried out in a moving window, then for each position of a moving window an estimate 

of the central element of the window is computed. Suppose that the signal to be processed is 

approximately stationary within the window. The signal may be distorted by sensor’s noise. 

Let us consider a generalized linear filtering of a fragment of the input one-dimensional 

signal (for instance for a fixed position of the moving window). Let a=[ak] be undistorted 

real signal, x=[xk] be observed signal, k=1,…, N, N be the size of the fragment, U  be the 

matrix of the discrete sinusoidal transform, E{.} be the expected value, superscript T denotes 

the transpose. Let a Hx  be a linear estimate of the undistorted signal, which minimizes 

the MSE averaged over the window 

     a a a a
T

MMSE E N   . (27) 

The optimal filter for this problem is the Wiener filter (Jain, 1989): 

     1

H a x xxT TE E


    . (28) 

Let us consider the known model of a linear degradation: 
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 ,k k n n k
n

x w a v  , (29) 

where W=[wk,n] is a distortion matrix, ν=[vk] is additive noise with zero mean, k,n=1,…N, N 
is the size of fragment. The equation can be rewritten as  

 x=Wa+v , (30) 

and the optimal filter is given by 

 
1

H K W WK W KT T
aa aa 


    , (31) 

where      K aa ,  K ,   a 0T T T
aa E E E  νν ν  are the covariance matrices. It is assumed 

that the input signal and noise are uncorrelated. 

The obtained optimal filter is based on an assumption that an input signal within the 

window is stationary. The result of filtering is the restored window signal. This corresponds 

to signal processing in nonoverlapping fragments. The computational complexity of the 

processing is O(N2). However, if the matrix of the optimal filter is diagonal, the complexity 

is reduced to O(N). Such filter is referred as a scalar filter. Actually, any linear filtering can 

be performed with a scalar filter using corresponding unitary transforms. Now suppose that 

the signal is processed in a moving window in the domain of a running discrete sinusoidal 

transform. For each position of the window an estimate of the central pixel should be 

computed. Using the equations for inverse sinusoidal transforms presented in the previous 

section, the point-wise MSE (PMSE) for reconstruction of the central element of the window 

can be written as follows:  

              
2

2

1

N

l

PMSE k E a k a k E l A l A l


           
   
 , (32) 

where      A A l H l X l     is a vector of signal estimate in the domain of a sinusoidal 

transform,  HU H l     is a diagonal matrix of the scalar filter,   l   α  is a diagonal 

matrix of the size xN N  of the coefficients of an inverse sinusoidal transform (see Eqs. (12), 

(14), (16), (18), (20), (22), (24), and (26)). Minimizing Eq. (32), we obtain 

   1
x axH P P IU x 

 , (33) 

where         I 1 , 2 ,...,diag N           is a diagonal matrix of the size xN N , 

  1  if  0,  else 0x x   ,          ax xP ,  PxE A l X k E X l X k        . Note that matrix 

  l   α  is sparse; the number of its non-zero entries is approximately twice less than the 

size of the window signal. Therefore, the computational complexity of the scalar filters in 
Eq. (33) and signal processing can be significantly reduced comparing to the complexity for 
the filter in Eq. (31). For the model of signal distortion in Eq. (30) the filter matrix is given as  
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   1

H U WK W K U UK W U IT T T T
U aa aa 


    . (34) 

If the matrices  U WK W K UT T
aa   and UK W UT T

aa  in Eq. (34) are close to diagonal, the 

matrix of the scalar filter in (34) is close to diagonal, and the filter can be written as 

    
   

1

2

P l
H l

P l P l



, (35) 

where      1 2,  ,  nnP l P l P l  are diagonal elements of the following matrices 

UK W U I ,T T
aa  U WK W UT T

aa , UK UT
 , l=1,… N . 

For a real symmetric matrix of the covariance function, say K , there exists a unitary matrix 

U  such that U K UT  is a diagonal matrix. Actually, it is the KLT. It was shown (Jain, 1989) 

that some discrete sinusoidal transforms perform close to the optimum KLT for the first-

order Markov stationary data under specific conditions. In our case, the covariance matrices 

K W UT T
aa  and WK WT

aa  are not symmetric. Therefore, under different conditions of 

degradation different discrete sinusoidal transforms can better diagonalize these matrices. 

For instance, if a signal has a high correlation coefficient and a smoothed version of the 

signal is corrupted by additive, weakly-correlated noise, then the matrix 

 U WK W K UT T
aa   is close to diagonal. Figure 1 shows the covariance matrix of the 

smoothed and noisy signal having the correlation coefficient of 0.95 as well as the discrete 

cosine transform of the covariance matrix. The linear convolution between a signal x and the 

matrix K WT
aa  in the domain of the running DCT-II can be well approximated by a 

diagonal matrix  UK W U I XT T
aadiag  . Therefore, the matrix of the scalar filter in Eq. (34) 

will be close to diagonal. 

 
(a) (b) 

Fig. 1. (a) Covariance matrix of a noisy signal, (b) DCT-II of the covariance matrix. 
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For the design of local adaptive filters in the domain of running sinusoidal transforms the 

covariance matrices and power spectra of fragments of a signal are required. Since they are 

often unknown, in practice, these matrices can be estimated from observed signals 

(Yaroslavsky & Eden, 1996). 

4. Computer simulation results 

The objective of this section is to develop a technique for local adaptive restoration of 

images degraded by nonuniform motion blur. Assume that the blur is owing to horizontal 

relative motion between the camera and the image, and it is approximately space-invariant 

within local regions of the image. It is known that point spread functions for motion and 

focus blurs do have zeros in the frequency domain, and they can be uniquely identified by 

the location of these zero crossings (Biemond et al., 1990). We assume also that the 

observation noise is a zero-mean, white Gaussian process that is uncorrelated to the image 

signal. In this case, the noise field is completely characterized by its variance, which is 

commonly estimated by the sample variance computed over a low-contrast local region of 

the observed image. To guarantee statistically correct results, 30 statistical trials of each 

experiment for different realizations of the random noise process were performed. The MSE 

criterion is used for comparing the quality of restoration. Additionally, a subjective visual 

criterion is used. In our computer simulation, the MSE is given by 

  
 2( ) ( )

,

N

i

a i a i

MSE a a
N





, (36) 

where  ( ), 1,..a i i N  is the original image, and  ( ), 1,..a i i N is the restored image. The 

subjective visual criterion is defined as an enhanced difference between original and 

restored images. A pixel is displayed as gray if there is no error between the original image 

and the restored image. For maximum error, the pixel is displayed either black or white 

(with intensity values of 0 and 1, respectively). First, with the help of computer simulation 

we answer to the question: how to choose the best running discrete sinusoidal transform for 

local image restoration?  

4.1 Choice of discrete sinusoidal transform for local image restoration 

The objective of this section is to test the performance of the scalar filter (see Eq. (34)) 
designed with different running sinusoidal transforms for local image restoration while the 
statistics of the degraded image are varied. In our experiments we used realizations of a 
wide-sense colored stationary process, which is completely defined by the second-order 
statistics. The zero-mean process has the bi-exponential covariance function with varying 
correlation coefficient  . 

The generated synthetic image is degraded by running 1D horizontal averaging of 5 pixels, 

and then a white Gaussian noise with a given standard deviation n  is added. The size of 

images is 1024x1024. The quality of restoration is measured in terms of the MSE. The size of 

moving window for local image restoration is 15x15. The best running discrete sinusoidal 
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transform a function of the model parameters ( n  and  ) is presented in Table 2. So, in 

similar degradation circumstances and image model, local adaptive restoration yields the 

best results if the three sinusoidal transforms depending on local statistics of the processed 

image are used. The decision rule for choosing the best sinusoidal transform at each position 

of the moving window is given in Table 2. Next, we carry out adaptive local restoration with 

real images. 

n  0.05 0.1 0.2 0.25 

0.95   SDCT-II SDCT-II SDCT-II SDCT-II 

0.9   SDCT-II SDCT-II SDCT-II SDCT-II 

0.8   SDCT-II SDCT-II SDCT-II SDCT-II 

0.7   SDCT-II SDCT-II SDCT-II SDCT-II 

0.6   SDCT-II SDCT-II SDCT-II SDCT-II 

0.5   SDST-I SDCT-II SDCT-II SDCT-II 

0.3   SDST-I SDST-I SDST-I SDST-I 

0   SDST-I SDST-I SDST-I SDST-I 

0.3    SDST-I SDST-I SDST-I SDST-I 

0.5    SDST-II SDST-II SDST-II SDST-II 

0.7    SDST-II SDST-II SDST-II SDST-II 

0.8    SDST-II SDST-II SDST-II SDST-II 

0.9    SDST-II SDST-II SDST-II SDST-II 

Table 2. Best local restoration with running discrete sinusoidal transforms versus the model 
parameters. 
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4.2 Local adaptive restoration of real degraded image  

A real test aerial image is shown in Fig. 2(a). The size of image is 512x512, each pixel has 256 

levels of quantization. The signal range is [0, 1]. The image quadrants are degraded by 

running 1D horizontal averaging with the following sizes of the moving window: 5, 6, 4, 

and 3 pixels (for quadrants from left to right, from top to bottom). The image is also 

corrupted by a zero-mean additive white Gaussian noise. The degraded image with the 

noise standard deviation of 0.05 is shown in Fig. 2(b). 

In our tests the window length of 15x15 pixels is used, it is determined by the minimal size 

of details to be preserved after filtering. Since there exists difference in spectral distributions 

of the image signal and wide-band noise, the power spectrum of noise can be easily 

measured from the experimental covariance matrix. We carried out three parallel processing 

of the degraded image with the use of SDCT-II, SDST-I, and SDST-II transforms. At each 

position of the moving window the local correlation coefficient is estimated from the 

restored images. On the base of the correlation value and the standard deviation of noise, 

the resultant image is formed from the outputs obtained with either SDCT-II or SDST-I, or 

SDST-II according to Table 2. 

 

 
(a) (b) 

Fig. 2. (a) Test image, (b) space-variant degraded test image. 

The results of image restoration by the global parametric Wiener filtering (Jain, 1989) and 

the proposed method are shown in Figs. 3(a) and 3(b), respectively. Figs. 3(c) and 3(d) show 

differences between the original image and images restored by global Wiener algorithm and 

by the proposed algorithm, respectively. 

We also performed local image restoration using only the SDCT. As expected, the result of 

restoration is slightly worse than that of adaptive local restoration. We see that the proposed 
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algorithm is capable to perform a good space-variant image restoration and noise 

suppression. Finally, we investigate the robustness of the tested restoration techniques to 

additive noise. The performance of the global parametric Wiener filtering and the local 

adaptive filtering is shown in Fig. 4. 

 

 
(a) (b) 

 
(c) (d) 

 

Fig. 3. (a) Global Wiener restoration, (b) local adaptive restoration in domain of running 
transforms, (c) difference between the original image and restored image by Wiener filtering, 
(d) difference between the original image and restored image by proposed algorithm. 
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Fig. 4. Performance of restoration algorithms in terms of MSE versus standard deviation of 
additive noise. 

4. Conclusion 

In this chapter we treated the problem of local adaptive technique for space-variant 

restoring linearly degraded and noisy images. The minimum MSE estimator in the 

domain of running discrete sinusoidal transforms was derived. To provide image 

processing at high rate, fast recursive algorithms for computing the running sinusoidal 

transforms were utilized. Extensive testing using various parameters of degradations 

(nonuniform motion blurring and corruption by noise) has shown that the original image 

can be well restored by proper choice of the parameters of the proposed adaptive local 

restoration algorithm. 
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