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1. Introduction

Due to the advances in unmanned aerial vehicles (UAV), micro air vehicles (MAV) and wind
turbines, aerodynamics researches concentrated on low Reynolds number aerodynamics,
transition and laminar separation bubble (LSB) and its effects on aerodynamic performance.
In order to improve endurance, range, efficiency and payload capacity of UAVs, MAVs and
wind turbines, the aerodynamic behaviors of these vehicles mentioned should be investigated.

The range of Re numbers of natural and man-made flyers is shown in Figure 1. As the
Figure 1 shows most of the commercial and military aircrafts operate on high Reynolds
(Re) numbers, and the flow on the surface of these aircraft’s wing doesn’t separate until the
aircraft reaches higher angles of attack -as the angle of attack increases the effects of adverse
pressure gradients increase- due to having higher forces of inertia (Genç, 2009). The LSB can
be encountered on flyers whose Re number is in the range of 104 to 106 (King, 2001). On low Re
number flow regimes the effects of viscous forces are dominant, which may cause the laminar
flow to separate. Under certain circumstances the separated flow which occurs by reason of
an adverse pressure gradient reattaches and this forms the LSB. The LSB can be classified as
short and long (Tani, 1964). Both short and long bubbles have negative effects on aerodynamic
performance. These negative effects may increase drag and decrease lift owing to the altered
pressure distribution caused by the presence of the LSB. The characteristics of the LSB depend
on the airfoil shape, Re number, surface roughness, freestream disturbances (such as acoustic
disturbances), freestream turbulence and geometric discontinuities.

In order to improve the aerodynamic performance, there are new methods being developed
to eliminate the effects of the LSB, besides the high lift devices. These methods are called
flow control methods and could be classified as active and passive. By using the flow control
methods, drag force may be reduced, lift may be increased, stall may be delayed, noise and
vibrations may be reduced and reattachment of the separated flow may be obtained.

The effects of the LSB and flow control methods on low Re flow has been investigated by
means of various experimental methods, such as force measurement, velocity measurement
by using hot-wire anemometry and particle image velocimetry (PIV), pressure measurement
with pressure transducers, flow visualization with smoke wire, oil, InfraRed thermography,
etc. These systems are useful and accurate but also expensive and everyone cannot find
the opportunity to use these methods. Therefore investigating all kind of aerodynamic
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2 Low Reynolds Number Aerodynamics and Transition

phenomena via Computational Fluid Dynamics (CFD) is now popular and easier to use. By
using CFD, the flow characteristics of a wing profile or the device (UAV, MAV, wind turbine)
can be easily analyzed.

Fig. 1. Flight speeds versus Re number of aircrafts (Chklovski, 2012)

Low Re number flows are seen on mini, micro and unmanned air vehicles, wind turbine
blades, model aircrafts, birds and little creatures like bees or flies. Under such low Reynolds
numbers, the maximum lift and stall angle are lower than high Re number flow conditions.
Owing to the fact that the aerodynamic performance is lower, it is crucial to control of flow
and to generate higher lift for this kind of vehicles, devices and/or creatures.

2. Transition

Transition is the phenomenon which occurs in trough different mechanisms in different
applications (Langtry & Menter, 2006). The strongest factors affecting transition process
are roughness of the wall or surface where the flow passes, adverse pressure gradient and
freestream turbulence (Uranga, 2011). Transition is categorized as natural transition, bypass
transition, separated flow transition, wake induced transition and reverse transition. There
is a parameter to anticipate the type of transition. This parameter is called as acceleration
parameter, which represents the effect of freestream acceleration on the boundary layer.
The acceleration at the beginning of transition is defined as K = (v/U2)(dU/dx) (Mayle,
1991). Figure 2 (Mayle, 1991), from which one can decide the type of transition, is plotted as
acceleration parameter versus momentum Reynolds number. Above the line marked "Stability
Criterion" Tollmien-Schlichting type of instability is possible. The separation of a laminar
boundary layer occurs above the line marked "Separation Criterion". The separation may lead
to a separated flow transition. The shaded region on Figure 2 corresponds to the transition
Reynolds numbers for turbulence levels between 5% and 10%.

Mayle (1991) presented a study of laminar to turbulent transition phenomena, types of
transition and their effects on aerodynamics of gas turbine engines and he also reviewed
both theoretical and experimental studies. Schubauer & Skramstad (1947) studied on a flat
plate and showed the boundary layer is laminar at local Reynolds numbers (Rex) lower
than 2.8x106, whereas the boundary layer is turbulent when Rex is higher than 2.8x106. The
boundary layer at Rex numbers between these two values is called as transitional boundary
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www.intechopen.com



Low Reynolds Number Flows and Transition 3

layer. Formation and type of transition depend on airfoil shape, angle of attack, Re number,
free stream turbulence intensity, suction or blowing, acoustic excitation, heating or cooling
(White, 1991).

Fig. 2. Topology of the different types of transition in a Reynolds number-acceleration
parameter plane (Mayle, 1991)

Fig. 3. The natural transition process (Schlichting, 1979)

5Low Reynolds Number Flows and Transition
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4 Low Reynolds Number Aerodynamics and Transition

2.1 Natural transition

This type of transition is seen at high Re numbers and low freestream turbulence levels.
Natural transition begins with Tollmien-Schlichting (T/S) waves (Figure 3). T/S waves are
the weak instabilities in the laminar boundary layer and this phenomenon was described first
by Tollmien and Schlichting (Schlichting, 1979). In order to indicate the T/S waves, a quiet
and a relatively less vibrant wind-tunnel and/or experimental apparatus must be employed,
based on the fact that the T/S waves are weak instabilities and can be scattered at the higher
freestream turbulence levels so freestream turbulence level must be low (<1% (Mayle, 1991))
to observe the T/S waves. Viscosity destabilizes the T/S waves and the waves start to grow
very slowly (Langtry & Menter, 2006). The growth of the weak instabilities mentioned, results
in nonlinear three-dimensional disturbances. After this certain point the three-dimensional
disturbances transform into turbulent spots (Figure 4). The turbulent spots combine and so
transition from laminar to turbulent is completed, from now on the flow is fully turbulent.
Emmons (1951) and Emmons & Bryson (1951) stated that the turbulent spots within the
boundary layer grew and propagated downstream until the flow was fully turbulent. They
also presented a model of growth mechanism of turbulent spots, which indicated the time and
location dependent random production of the spots.

Fig. 4. Turbulent spot geometry and emergence of a turbulent boundary layer trough the
growth and propagation of turbulent spots (Mayle, 1991)

2.2 By-pass transition

The other type of transition is bypass transition. As the name suggests, for this type of
transition, first, second and third stages of the natural transition process are bypassed (Figure
3). Bypass transition occurs at flows having high freestream turbulence levels. The stages
mentioned are bypassed and the turbulent spots are directly produced within the boundary
layer by the influence of the freestream disturbances (Mayle, 1991). For bypass transition,
linear stability theory is irrelevant and T/S waves have not been documented yet when the
freestream turbulence is greater than 1% (Mayle, 1991). So the value 1% can be taken as
the boundary between natural and bypass transitions. Lee & Kang (2000) investigated the
transition characteristics in a boundary layer over a NACA0012 aerofoil by means of hot-wire

6 Low Reynolds Number Aerodynamics and Transition
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Low Reynolds Number Flows and Transition 5

anemometry at a range of Reynolds number of 2x105 and 6x105. The aerofoil installed in the
incoming wake generated by an aerofoil aligned in tandem with zero angle of attack. The
gap between two aerofoils varied from 0.25 to 1.0 of the chord length. Consequently, they
pointed that bypass transition occurred in flows around an aerofoil when incoming wave was
turbulent and when the incoming wake was present, the transition onset shifted upstream
and the transition length became smaller as Re number increased and as the aerofoil gap
decreased.

Fig. 5. Comparison of schematic of separation-induced transition process with the
experimental photograph obtained oil-flow visualization over the NACA2415 aerofoil (Genç
et al., 2012)

2.3 Separated flow transition

At high Re numbers, the laminar boundary layer on an object may transit to turbulent rapidly,
and in most cases of high Re number aerodynamics applications, the boundary layer is able to
overcome an adverse pressure gradient with minimum disturbance (Tan & Auld, 1992). For
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6 Low Reynolds Number Aerodynamics and Transition

low Re number aerodynamics, most of the experimental data indicates the occurrence of flow
separation and reattachment in the transitional region (Burgmann et al., 2006; Gaster, 1967;
Genç et al., 2008; Genç, 2009; Genç et al., 2011; 2012; Hain et al., 2009; Karasu, 2011; King,
2001; Lang et al., 2004; Mayle, 1991; Mohsen, 2011; Ol et al., 2005; Ricci et al., 2005; Swift,
2009; Tan & Auld, 1992; Tani, 1964; Yang et al., 2007; Yarusevych et al., 2007). The volume
full of slowly recirculating air in between the points of separation and reattachment is called
Laminar Separation Bubble or Turbulent Reattachment Bubble (Mayle, 1991).

When a laminar boundary layer cannot overcome the viscous effects and adverse pressure
gradients, it separates and transition may occur in the free-shear-layer-like flow near the
surface and may reattach to the surface forming a LSB (Mayle, 1991). Flow in the region under
the LSB, slowly circulates and reverse flow occurs in this region. The LSB may involve all the
stages mentioned for natural transition (Mayle, 1991), but with a LSB stage having the slowly
circulating flow region as shown in Figure 5. Genç et al. (2012) carried out experimentally
detailed investigation on the LSB over NACA2415 aerofoil by means of oil-flow visualization,
pressure measurement and hot-wire anemometry. They compared the flow pattern with the
schematic of natural transition introduced by White (White, 1991) and rearranged the figure
to adapt the schematic to separated flow transition (Figure 5 and 6).

Fig. 6. Laminar separation bubble (Lock, 2007)

Laminar separation bubble may cause adverse effects, such as decreasing of lift force,
increasing of drag force, reducing stability of the aircraft, vibration, and noise (Nakano et
al., 2007; Ricci et al., 2005; 2007; Zhang et al., 2008). Characteristics of LSB must be understood
well to design control system to eliminate to LSB or design new aerofoils which do not affect
from adverse effects of LSBs. If Figure 7 (Katz & Plotkin, 1991) is examined carefully, a hump
is seen on pressure distribution, this region illuminates the LSB, the region just after the
maximum point of this hump indicates transition. If the flow is inviscid, LSB will not take
place over the aerofoil.

In a favorable gradient (Figure 8a) the profile is very rounded and there is no point of inflection
so separation cannot occur for this case and laminar profiles of this type are very resistant to
a transition to turbulence. In a zero pressure gradient (Figure 8b), the point of inflection is
at the wall itself. Separation cannot occur here either. The flow will undergo transition at
local Reynolds numbers lower than Rex = 3x106 . In an adverse pressure gradient (Figure

8 Low Reynolds Number Aerodynamics and Transition
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Low Reynolds Number Flows and Transition 7

8c to 8e), a point of inflection occurs in the boundary layer. The distance of the point of
inflection from the wall increases with the strength of the adverse pressure gradient. For a
weak pressure gradient (Figure 8c), flow does not actually separate, but it is vulnerable to
transition to turbulence at low Rex numbers as low as 105. For a moderate pressure gradient
a critical condition is reached where the wall shear is exactly zero (∂u/∂y=0). This is defined
as the separation point (τw=0), because any stronger gradient will actually cause reverse flow
at the wall. In this case the boundary layer thickens greatly and the main flow breaks away,
or separates from the wall (White, 2004).

Fig. 7. The effects of laminar separation bubble on pressure distribution (Katz & Plotkin,
1991).

LSBs can be classified as short and long bubbles. The location and size of the bubble is a
function of aerofoil shape, angle of attack, freestream disturbances and Re number (Swift,
2009; Tani, 1964). The LSB moves forward and contract in streamwise extent by the increase in
angle of attack, which is classified as a short bubble (Tani, 1964). Within this kind of bubble, a
small region of constant pressure can be seen, which causes a plateau in the curve of pressure
distribution. In consequence of reattachment the curve of the pressure distribution recovers.
As the angle of attack increases further, the separation point continues to move towards the
leading edge and at a certain angle of attack the flow can no longer reattach to the aerofoil
surface within a short distance. This phenomenon is called breakdown or burst of bubble. The
occurrence of the breakdown phenomenon does not lead the flow to separate completely. The
separated flow passes above the aerofoil and reattaches farther down-stream. The flow region
under the separated flow slowly circulates and is called dead-air region or a long bubble.
The presence of a short bubble does not significantly alter the peak suction. However, the
presence of a long bubble results in a suction plateau of reduced levels in pressure distribution

9Low Reynolds Number Flows and Transition
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8 Low Reynolds Number Aerodynamics and Transition

(Figure 9) over the region occupied by the long bubble and does not result with a sharp suction
peak (Tani, 1964). Tan & Auld (1992) experimentally investigated the flow over a Wortmann
FX67-150K aerofoil at various Re numbers and various turbulence levels. They concluded
that short separation bubbles formed at mild pressure gradient, and that as the pressure
gradient increased the short separation bubble burst, forming a long separation bubble. In
their experiments, they observed the reattachment of the flow shortly after the transition for
the short separation bubble case. But for the long separation bubble case, the separated flow
couldn’t reattached to the aerofoil surface that quickly. They also stated that if the turbulence
level of the freestream increased, length of the bubble decreased because of high energy of the
flow, moreover for the short bubble case, the maximum turbulence intensity occurred in the
region of reattachment where as the maximum value occurred much forward in the bubble.

Fig. 8. The effects of various types of pressure gradients on boundary layer (White, 2004)

If the Re number is sufficiently low the separated flow may not reattach to the surface at
all, so the laminar separation bubble will not be formed. Therefore the bubble formation is
possible only for a certain range of Re numbers. The absence of a bubble at low Re numbers
reduces the aerodynamic performance (Tani, 1964). There is a region above the upper surface
of the detached flow and near the trailing edge, where the velocity is low and the flow
reverses direction in places in a turbulent motion. As the angle of attack increases further,
the beginning of the separation moves towards the leading edge of the aerofoil. At a certain
angle of attack the lift rapidly falls off as the drag force rapidly increases. This phenomenon
is called trailing edge stall. This type of stall is generally encountered on thick aerofoils and
often refered as mild stall (McCullough & Gault, 1951). The other type of stall is leading edge
stall, and leading edge stall is abrupt (Tani, 1964) laminar flow separation near the leading
edge, generally without reattachment and can be encountered for aerofoils with moderate

10 Low Reynolds Number Aerodynamics and Transition
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Low Reynolds Number Flows and Transition 9

thickness (McCullough & Gault, 1951). For the trailing edge stall the stalled state begins just
after the highest lift force obtained. Thin-airfoil stall results from leading edge separation
with progressive rearward movement of the point of reattachment. This type of stall occurs
on all sharp edged aerofoils and on some thin rounded leading edged aerofoils (McCullough
& Gault, 1951).

Fig. 9. Separation bubble effects on suction side velocity distribution (Langtry & Menter,
2006)

The effects of different types of stall on the lift coefficient can be seen on Figure 10 (Bak et
al., 1998). The angle of attack, Re number, surface roughness and the aerofoil shape influence
the stall phenomenon. Yarusecych et al. (2007) investigated NACA0025 aerofoil at a range of
Re numbers of 0.55x105 to 2.1x105 and at three angles of attack (0◦, 5◦ and 10◦), by means
of smoke-wire flow visualization and they observed two boundary layer flow regimes. At
α = 5◦ and Re=0.55x105 (Figure 11) the boundary layer on the suction surface of the aerofoil
separated and the separated shear layer could not reattach. However, for angle of attack of 5◦

and Re=1.5x105 the separated shear layer reattached and this formed a LSB.

(Gaster, 1967) performed an experimental study about LSB by means of constant temperature
anemometry (CTA). This study was carried out over a wide range of Re numbers and
in a variety of pressure distributions. The bursting circumstances of short bubbles were
determined by a unique relationship between Re number and pressure rise. Consequently,
LSB was classified as short and long bubble. In the study of Genç et al. (2012), additionally

11Low Reynolds Number Flows and Transition
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10 Low Reynolds Number Aerodynamics and Transition

Fig. 10. Sketch of the three different stall types (Bak et al., 1998)

Fig. 11. Flow visualization results for NACA0025 aerofoil at a) Re=0.55x105 b) Re=2.1x105

(Yarusecych et al., 2007)

long bubble was seen at the angle of attack of 12◦ for Re=0.5x105 (Figure 12), this situation
also indicates the bursting of the short bubble at α = 4◦ and α = 8◦ when the angle of attack
reaches 12◦, which leads to forming of a long bubble. The pressure distributions of the other
angles of attack (4◦ and 8◦), in which sharp suction peaks can be seen, indicate the presence of
the short bubbles. In addition, Figure 12 points out that as the angle of attack increases the LSB
moves towards the leading edge. Sharma & Poddar (2010) carried out an experimental study
on NACA0015 aerofoil at low Reynolds numbers and at a range of angle of attack (-5◦ to 25◦)
and they used the oil flow technique to visualize the transition zone. They obtained the result
that as the angle of attack increased the laminar separation bubble moved towards the leading
edge and then the bubble burst at a certain angle of attack. The bursting of the bubble caused
abrupt stall to occur. Long bubbles should be avoided since they produce large losses and
large deviations at higher angles of attack. Short bubbles are effective way of forcing the flow
to be turbulent and control the performance. However, one cannot easily predict whether the
bubble will be long or short (Mayle, 1991).

Rinioie & Takemura (2004) conducted an experimental study on NACA0012 aerofoil at
Re=1.35x105 and they concluded that, short bubbles are formed when the angle of attack was
less than 11.5◦ , and long bubbles are formed when the angle of attack is higher than 11.5◦ .

12 Low Reynolds Number Aerodynamics and Transition
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Fig. 12. Cp distributions over the NACA2415 aerofoil at different angles of attack for
Re=0.5x105 (Genç et al., 2012)

Tan & Auld (1992) experimentally investigated Wortmann FX67-150X aerofoil at low Reynolds
numbers and they obtained that as the Reynolds number and freestream turbulence intensity
increased, transition occurred earlier and this caused the length of the laminar separation
bubble to shorten. Yang et al. (2007) carried out an experimental investigation on GA(W)-1
aerofoil at varying low Re numbers. It was concluded that while the maximum length of the
bubble was 20% of the chord length and the maximum height of the bubble was only 1% of
the chord length. And also they pointed out that the unsteady vortexes induced by laminar
separation bubble were caused by Kelvin-Helmholtz instabilities at angles of attack more than
7◦ . Diwan & Ramesh (2007) investigated experimentally the length and height of the LSB on
a flat plate at different Re numbers. It was obtained that both length and height of the LSB
decreased, and reducing ratio of the length is more than that of the height as Re number
was risen. Hain et al. (2009) introduced the dynamics of the laminar separation bubbles on
low-Reynolds-number aerofoils. It was obtained that Kelvin-Helmholtz instabilities had a
weak effect in the spanwise direction and in the later stages of transition these vortices led to
a three-dimensional breakdown to turbulence. Lang et al. (2004) also showed that transition
in laminar separation bubble was driven by amplification of 2-D T/S waves and first stages of
the 3-D disturbances played minor role in transition by studying both experimentally and
numerically over an elliptical leading edged flat plate. Furthermore, the results showed
that bidirectional vortexes lead to 3-D breakdown. Burgmann et al. (2006) conducted an
experimental study on the flow over SD7003 aerofoil which used as wind turbine blades at low
Re numbers by means of PIV. They stated that the shear roll-up in the outer region of the LSB
causes the regions of concentrated vorticity to form. The vortex roll-up which was initialized
by Kelvin-Helmholtz instabilities played effective role at transition process. The results
showed that the quasi-periodic development of the large vortex-rolls had a convex or c-like

13Low Reynolds Number Flows and Transition
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12 Low Reynolds Number Aerodynamics and Transition

structure (Figure 13). They also mentioned that the c-like structures had no regular pattern
in the spanwise direction and that these vortical structures interacted and disturbed each
other and most of the vortices maintained their downstream speed, however some vortices
decelerated which leaded to vortex-pairing. Their results also indicated that the vortices
within the LSB formed as a consequence of the shear layer roll-up due to Kelvin-Helmholtz
instabilities and these vortices peeled away from the main recirculation region. These vortices
are tend to burst abruptly. The bursting of the vortices causes a strong vertical fluid motion
from the wall into the freestream. They also stated that the vortex formed within the LSB
increased in size and strength, and its downstream drift speed reduced this low speed state
caused instability. The unstable low speed state leaded to a critical condition determined by
the accumulation of the vortex strength assumed to be dominated by the momentum ratio
and the vortex rotated as a whole structure around the reattachment point in the downstream
direction. This leaded to strong ejection of low speed fluid into the freestream. This process
acted as a local flow disturbance. The results also showed that the curvature of the aerofoil
surface had a distinct effect on the development of the vortices.

Fig. 13. Sketch of vortex footprint and convex vortex structures (Burgmann et al., 2006)

2.4 Reverse transition

This type of transition is the transition of turbulent to the laminar flow. This is called reverse
transition or relaminarization. The relaminarization occurs because of the higher accelerations
on the pressure side of most airfoils near the trailing edge, in the exit ducts of combustors and
on the suction side of turbine airfoils near the leading edge (Mayle, 1991). Reverse transition
is known to occur when the acceleration parameter (K) is greater than 3x10−6 (Mayle, 1991)
and it is also possible for a relaminarized boundary layer to back to turbulent flow if the
acceleration is small enough (K<3x10−6).

2.5 Wake induced transition

Wake induced transition is an instance of the bypass transition which arises in turbomachinery
flows where the blade rows subjected to periodically passing turbulent wakes (Langtry &

14 Low Reynolds Number Aerodynamics and Transition
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Menter, 2006). The experimental results showed that the wakes are so disruptive to the
laminar boundary layer that turbulent spots often form in the region where the wake is first
encountered the aerodynamic body (Langtry & Menter, 2006).

3. Transition modeling

The experimental systems, especially for flow control methods, are expensive and complex.
Repeating experiments for a wide range of parameters will naturally cause very expensive
solutions. Thus, numerical experimentations using range of CFD methods such as Reynolds
Averaged Navier-Stokes (RANS) and/or Direct Numerical and/or Large Eddy Simulation
(DNS/LES) methods arise as viable alternatives to experimentation. Furthermore, nowadays
with advances in computing technology the CFD methods are used commonly. By using
CFD, one can obtain the aerodynamic forces, pressure and velocity distributions over an
aerodynamic body and can fix and/or improve the aerodynamic system before the final
experimental test (Genç, 2009). Thus, the costs of experimental and design can be decreased.

In parallel with modern developments in experimental capturing, measuring, and identifying
the LSBs that are typical for the low-speed flow regimes, improved prediction methods have
been devised to account for transition mechanisms over wings of aeroplanes. Today, high
performance computing capabilities make it possible to routinely use RANS based CFD
methods for simulating low Re number flows. The RANS solvers frequently include practical
one- or two-equation turbulence closure models (Wilcox, 1998) for turbulence calculations,
although numerical transition modeling side still embed certain difficulties in capturing the
complex transition process. Despite the difficulties, transition predictions have developed by
means of the eN method (Cebeci et al., 1972; Drela & Giles, 1987), two-equation low Re-number
turbulence models (Cebeci et al., 1972), and some early (Drela & Giles, 1987) and modern
(Abu-Ghannam & Shaw, 1994; Wilcox, 1994) methods based on experimental correlations.
The eN method has been quite successful in practice and more or less has become the industry
standard (Cebeci et al., 1972). Standard two-equation low-Re models have shown certain
successes although the wall damping terms’ ability to capture important transition effects
limits their use. The correlation-based models (Abu-Ghannam & Shaw, 1994; Suzen & Huang,
2000; 2003) have become helpful tools for industry owing to their use of integral (or global)
boundary layer parameters. Recently, transport equation models (Fu & Wang, 2008; Langtry &
Menter, 2005; Menter et al., 2004; Walters & Leylek, 2004; 2005) which rely on local information
to circumvent some complex procedures in the early methods, have been introduced. These
transport equation models solve several transport partial differential equations written for
various transition quantities in addition to the baseline turbulence models. Some of these
models have been made available in a number of commercial CFD codes such as FLUENT,
ANSYS CFX (Langtry & Menter, 2005; Menter et al., 2004). Some of these models are the
intermittency transport equation models of Suzen and Huang Suzen & Huang (2000; 2003)
and the correlation-based k-ω Shear Stress Transport (SST) transition model of Menter et
al. Menter et al. (2004). More recently truly single point RANS approaches such as the
k-kL-ω transition model of Walters and Leylek Walters & Leylek (2004; 2005) which essentially
eliminates the need for the intermittency, and a variant of the SST model called as the k-ω-γ
model of Fu and Wang Fu & Wang (2008) have been introduced. Such models are suitable
for straightforward implementation within RANS methods as they solve additional transport
equations for predicting transition phenomena that rely on local information only, in contrast
with the global information, as used in the early methods. Assessment of these models has
been recently made by different authors including trials of different user-dependent transition
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14 Low Reynolds Number Aerodynamics and Transition

correlations (Cutrone et al., 2008; Genç et al., 2008; 2009; Genç, 2009; 2010; Genç et al., 2011;
Karasu, 2011; Kaynak & Gürdamar, 2008; Misaka & Obayashi, 2006; Suluksna & Juntasaro,
2008).

Lian & Shyy (2007) conducted a numerical study over a rigid and flexible SD7003 aerofoil
and and compared the results with experimental measurements. They investigated the
models by coupling a Navier-Stokes solver, the eN transition model and a Reynolds-averaged
two-equation closure to study the laminar separation bubble and transition. Also they
proposed a new intermittency function suitable for low Re number transitional flows incurred
by laminar separation. They concluded that the LSB became shorter and thinner with the
increase of angle of attack. Also higher freestream turbulence levels caused a shorter and
thinner separation bubble. And they achieved a good agreement with the model they
employed, which is based on linear stability analysis and is designed for steady-state flows
with the assumptions that the initial disturbance is small and the boundary layer is thin.
Windte et al. (2006) conducted on an experimental and numerical study to investigate LSB
over SD 7003 aerofoil at Re=6x104. RANS model was used to validation of results of the
experiments. They concluded that however both Menter’s BSL-2L and Wallin model gave
good result, Menter’s BSL-2L model gave the best results at both laminar separation and CL.

The k-ω SST transition model is based on two additional transport equations beyond k and
ω: the first is an intermittency equation (γ- equation) that is used to trigger the transition
process; and the second is the transition onset momentum thickness Reynolds number (Reθt-
equation) which is forced to follow experimentally-determined correlations with some lag.
In this model, SST feature is linked to the transition model by coupling it with the k-ω SST
turbulence model (Menter, 1994). Transition correlations are user dependent data retrieved
from benchmark experiments obtained at different laboratories. A number of investigators
have tried to develop their own correlations of the model parameters against different
experimental cases (Cutrone et al., 2008; Fu & Wang, 2008) as the original parameter set
remains proprietary (Menter et al., 2004). The k-kL-ω model is considered as a three-equation
eddy-viscosity type, which includes transport equations for turbulent kinetic energy (k),
laminar kinetic energy (kL), and specific dissipation rate (ω). This model, which is essentially
a single-point technique, combines the advantages of the prior correlation methods and
eliminates the need for intermittency. In this model, the turbulent energy is assumed in the
near-wall region to be split into small scale turbulent energy, which contributes directly to
turbulence production, and large scale turbulent energy, which contributes to production of
laminar kinetic energy through the splat mechanism (Walters & Leylek, 2004; 2005). Walters
and Leylek Walters & Leylek (2004; 2005) assumed that transition initiates when the laminar
streamwise fluctuations are transported a certain distance from the wall, where that distance
is determined by the energy content of the free stream, and the kinematic viscosity. As for the
the wall boundary conditions, the k-kL-ω transition model uses a Neumann type boundary
condition which specifies the normal derivative of the function on a surface, whereas the
k-ω SST transition model uses Dirichlet type wall boundary conditions which gives the value
of the function on a surface (Genç et al., 2011). Recently, Cutrone et al. (2008) proposed to
use a combination of the two conditions for ω in the case of separated flows. Catalano &
Tognaccini (2010) conducted on a numerical study over SD 7003 aerofoil has Re=6x104. In this
study, RANS and DNS approach were used. Menter’s standart k-ω SST and k-ω SST-LR (Low
Reynolds) model were used for RANS approach. Stall and LSB characteristics were predicted
same so they concluded k-ω SST-LR could be used for LSB. Sanders et al. (2011) carried out
numerical investigation over GH1R low pressure turbine aerofoil using three RANS model
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and compared with experimental results had been performed before and they concluded that
the newer transition model k-kL-ω model gave better results thank-ω SST and Realizable k-ǫ
models according to the experimental values.

4. Experimental techniques at low Reynolds numbers

The wind tunnel tests are crucial for investigations at low Reynolds numbers. In order to
understand and improve the performance of low Reynolds number aerofoils, accurate wind
tunnel tests must be performed. Since the low Reynolds number aerofoil performance is
highly dependent of the laminar boundary layer (Mayle, 1991), low turbulence levels in the
wind tunnel’s test section are necessary (Selig et al., 2011). If the laminar boundary layer
transitions to turbulent prematurely because of freestream disturbances, the phenomenon
like laminar separation bubble may not be investigated and/or documented properly. In
order to ensure low levels of freestream turbulence and good flow quality in test section of
wind tunnel, turbulence screens and honeycombs may be employed. In order to determine
aerodynamic characteristics of an aerofoil, wind tunnel test methods such as force and
pressure measurements, velocity measurement by using a manometer and pitot static-tube
system, hot-wire system and laser doppler anemometry (LDA), laser doppler velocimetry
(LDV), and PIV, flow visualizations with oil, smoke wire may be done.

Pressure measurements: Pressure measurement is made by a device at rest relative to the
flow. Pressure is usually measured both at walls and in the freestream using the types of
measurement device such as pitot static-tube connected to a transducer or manometer. At
walls, pressure tappings can be used and can be connected to pressure measurement device
via tubes. In order to measure the pressure, one or more transducers can be employed. When
a transducer is employed, calibration system requires and calibration can be carried out using
by a manometer and pitot-static tube.

Force measurements: During the early years of wind tunnel testing, forces and moments
were measured through pan-type balances. Although technology has gradually developed,
the term balance is still used to the devices used for force and moment measurements, today.
Balances can be divided into two main groups as internal and external. These names are
derived from their location relative to the test model and wind tunnel test section. Internal
balances which are almost universally used for measurements in supersonic and transonic
tunnels locate inside a model, while external balances which are used in subsonic wind
tunnels locate outside the test section of wind tunnel. External balances are with either
three or six components. Three-component balances measure lift, drag and pitching moment
while six-component balances also measure side force, rolling moment and yawing moment.
In external balances, load cell systems are employed. Load cells which simply measures
the deformation can be placed on a rod weakened in different axis for different forces and
moment. When the wind tunnel is on the weakened part of the rod for the each force will
undergo deformation and with the load cells placed on each part one can obtain the data for
forces and moment. A balance system software, which is calibrated for forces and moment,
gives digital output of forces and moments in desired units. The calibration is performed by
loading the load cell with known weights and is repeated before each set of experiments to
ensure consistency (Genç et al., 2012).

Velocity measurements: Velocities and turbulence intensities for different points and fields
around an object can be measured by using a manometer and pitot-tube system, hot-wire
system, and LDV, LDA and PIV. Measurement by using a manometer and pitot-tube system is
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pressure-based velocity measurement and this method is related to measurement of dynamic
pressure. Then, the velocity is calculated with dynamic pressure measured by using Bernoulli
equation. This method is simple and inexpensive. The hot-wire system is the most used
system, for their very small probes, low response time and high precision for measuring
velocity components and turbulence characteristics. This system is capable of detecting
turbulent fluctuations with a large dynamic response because of the very small hot-wire
thermal inertia and its correction in the anemometer. The hot-wire system can be operated
in three methods: constant current (CCA), constant temperature (CTA) and constant voltage
(CVA). This systems require also calibration techniques and electronic circuit consisting of a
Wheatstone bridge. The probe of a hot-wire system consists of an electrically heated a wire or
a thin film. Usually the wire of the probe is made of tungsten or platinum, 0.5-2 mm long and
has a diameter of 0.5-5 μm. The films are about 0.1 μm thick and deposited on fine cylinders
of quartz, about 25-50 μm in diameter.

Genç et al. (2012) investigated the characteristics of NACA2515 aerofoil at Re numbers of
5x104, 1x105, 2x105 and 3x105 and varying the angle of attack from -12◦ to 20◦ . The separation,
transition, the formation and progress of the laminar separation bubble and reattached flow
were observed obviously by means of force measurements, constant temperature anemometry
and pressure measurements. They pointed out that, the near highest point of the peak in
the pressure coefficient of suction surface indicated the transition from laminar to turbulent
flow and the fluctuations in the graphs of force and moment denoted the separation a
post-stall. The CL-α curves showed that the stall angle and the stall abruptness increased as the
Reynolds number raised. Selig et al. (2011) presented a study of a flapped AG455ct aerofoil
and a flat-plate with leading edge serration geometries (protuberances like those found on
fins/flippers of some aquatic animals) to explore the effects on stall characteristics at low Re
numbers and varied angles of attack by means of force measurements. The results for the
flapped AG455ct aerofoil showed a dramatic increase with higher flap deflections and the
flap efficiency reduces with large deflections up to 40◦ . And the tests on the flat-plate aerofoil
with leading edge serration geometries showed that the serrations on the leading edge lead to
higher lift and softer stall and lower drag in the stall and post-stall.

Optical Measurement Techniques: LDV, LDA and PIV techniques are particle-based and
optical measurement techniques. These techniques rely on the presence of tracer or seed
particles in the flow which not only follow all flow velocity fluctuations but are also sufficient
in number to provide the desired spatial or temporal resolution of the measured flow velocity.
In these sytems, laser is used to illuminate the desired plane. The laser sheet is placed based
on the plane in which velocity will be measured. A combination of cylindrical and spherical
lenses is used to adjust both the thickness and the width of the laser sheet. Images are
captured using a camera, and a cross-correlation algorithm is used to analyze the images and
to calculate the velocities. Ol et al. (2005) compared three different facilities for investigating
the LSB on SD7003 aerofoil at low Re number by means of PIV. They conducted experiments
in a tow tank, a low-noise wind tunnel and a free-surface water tunnel at Re number of 6x104

and angles of attack of 4◦, 8◦, 11◦ . The results showed a qualitative similarity in the bubble
shape and velocity fields, as well as the Re stress distributions but the measured location and
flow structure of the bubble was still contradictory.

Flow Visualization: Flow visualization is the way to visualize and understand the
characterization of the flow. However, air and water which are both used in experiments
are transparent, and the observer cannot see the flow and the streamlines around an object
with naked eye. So, to make the flow visible, there are two different principles. One is to add
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different substances into the flow. These substances must be small enough to be able to follow
the flow and large enough to be seen. The other principle is to alter the optical properties of
the flow. The ratio of refraction of the light passes through the fluid media is a function of
the density of the fluid. So within compressible flow, the flow field can be made visible by
changing the refractive ratio of light passes through the fluid media (Genç, 2009).

There are different techniques of flow visualization, both optical and by adding different
substances. These are smoke visualization, surface flow visualization and optical methods.
The smoke visualization method is made by using a smoke-wire or a fog generator. A fog
generator usually, generates a single strip of smoke. This may be a disadvantage because,
one cannot easily visualize the flow within a large area with just one strip of smoke. The
advantage of this method is that the fog generators usually use odorless, non-toxic oil to
generate fog. A smoke wire is a high resistant wire or a coil of wires which is stretched
between the walls of a wind tunnel and coated with oil. When voltage applied to the smoke
wire the wire, gets hot and the oil starts to evaporate to create short bursts of smoke filaments,
marking streak lines (Yarusevych et al., 2008a). These filaments introduced to the flow can
easily mark the separation and the bubble. To document streak lines, separation and bubble
a high-speed camera can be employed for digital imaging (Yarusevych et al., 2008a). As the
Reynolds number increases, it gets harder to get a proper image owing to the decrease of
smoke filaments’ duration. Smoke wire diameter, voltage and the coating liquid employed
may be changed as the Reynolds number increases or decreases (Dol et al., 2006). The number
of smoke droplets per unit length of the wire depend on the wire diameter and the surface
tension of the coating liquid. And also the smoke duration depends on voltage and droplet
size (Torii, 1977). This method may not be adequate for higher Reynolds numbers because
of being constrained by the smoke duration (Dol et al., 2006; Mueller, 1983; Yarusevych et
al., 2008a). (Dol et al., 2006) studied experimentally to determine the optimum smoke-wire
material and diameter, wire design (single or coiled), and coating liquid for varying freestream
velocities. They concluded that Safex is the most effective liquid and two-coiled Nichrome
wire is the optimum wire design to use at freestream velocity of 2 m/s. Yarusevych et al.
(2008a) studied experimentally on a NACA0025 aerofoil at low Reynolds numbers by means
of smoke-wire visualization and obtained images with a high speed camera. They employed a
wire of 0.076 mm diameter and applied 100 volts of voltage to electrically heat and evaporate
the coating oil. And they concluded that at Rec = 5.5 × 104 the vortices appeared to form
a pattern in the wake region of the aerofoil (approximately, x/c=1 and x/c=2) were similar
to a Karman vortex street. Yarusevych et al. (2008b) investigated also the vortex shedding
characteristics on a NACA0025 aerofoil at low Reynolds numbers and three different angles
of attack by means of constant temperature anemometry and smoke-wire flow visualization
method. And they concluded that the shedding frequency of the shear layer roll-up vortices
was found to exhibit a power law dependency on the Reynolds number; whereas, the wake
vortex shedding frequency varied almost linearly with the Reynolds number. However, the
results demonstrated that these correlations depend significantly on the shear layer behavior.
Moreover, in contrast to flows over circular cylinders, the ratio of the two frequencies did not
exhibit a power law dependency on the Reynolds number.

Yarn tufts (Figure 14) are applied to the surface of the aerofoil and they are used for indicating
the flow pattern on the surface of the aerofoil when the wind tunnel is on. They are easily
applied to any surface and can be used at any model position. But they do not provide a
detailed flow pattern due to moving constantly with the airflow (UWAL, 2012).
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Fig. 14. Fluorescent mini-tufts on an aircraft wing (UWAL, 2012)

Oil-flow surface visualization method is a simple and effective way of documenting the
surface flow events by means of photography. In order to photograph the surface flow events
using this method, the pigmented oil is applied into a mat black aerofoil and the wind tunnel
is on (Genç et al., 2012). Once the oil on the aerofoil’s surface is dried, the flow events on
the aerofoil surface can be observed and photographed. But it is important to have the
proper type of oil mixture for certain wind tunnel speed. The mix should have the right
consistency to effectively indicate the development of the boundary layer (Genç et al., 2012).
The inertia forces of the moving oil should be lower than the viscous and surface tension forces
(Merzkirch, 1974) in order to not affect the flow events on the surface. Some common oils are
light diesel oil, light transformer oil and kerosene and some common pigments are titanium
dioxide and china clay. Furthermore to see the pigment residue more clearly oleic acid can
be added to the mixture (Genç et al., 2012). Genç et al. (2012) investigated experimentally
the flow over NACA2415 aerofoil at low Reynolds numbers also by means of oil-flow surface
visualization. They applied a mixture using titanium dioxide as pigment, kerosene as oil
and oleic acid to see the flow pattern more clearly. They photographed and documented the
laminar separation bubble at Reynolds numbers of 1x105, 2x105 and 3x105 and at angles of
attack of 4◦, 8◦, 12◦ and 15◦ , and compared the results with constant temperature anemometry
and pressure measurements experiments. Consequently, they observed the formation and
progress of the separation bubble and reattached flow clearly. Selig et al. (2011) studied on
E387 aerofoil at low Re numbers by means of oil-flow surface visualization and sketched
a graphic of relation between oil-flow visualization photograph and skin friction coefficient
(Figure 15). They also mentioned that the texture that existed before running the tunnel still
existed in the leading-edge region of the LSB due to the stagnant flow, and that the magnitude
of the C f in this region is quite small because of the low flow speed, and negative in sign
because of the reverse flow.

5. Flow control at Low Reynolds numbers

The concept of boundary layer control was introduced first by Prandtl (1904). Flow control
methods can be categorized as active and passive flow control methods (Mohsen, 2011; Ricci
et al., 2007). Active flow control can be made by adding energy to the free stream or to
the boundary layer directly. Passive flow control can be carried out by adding geometrical
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Fig. 15. Conceptual illustration of the relationship between the surface oil flow features and
skin friction distribution in the region of a LSB (Selig et al., 2011)

discontinuities or increasing the roughness of the surface. Passive flow control may be simple
and cheap but it has its own disadvantages. This kind of geometrical discontinuities increase
the drag force and since they are fixed, they cannot adjust with the changing location of the
LSB and off-design conditions (Mohsen, 2011; Ricci et al., 2007). Shan et al. (2008) carried out
a numerical study on a NACA0012 aerofoil in three different cases. These are uncontrolled
flow separation, flow separation control with passive vortex generators and flow separation
with control with active vortex generators. And the results showed that in the case of flow
separation control with passive vortex generator, the time and spanwise averaged results
have shown that the separated flow in the immediate downstream region over an extent of
0.1C. However, the reattached flow separated again and in the conclusion of the transition
and reattachment of the separated layer formed the second laminar separation bubble. Thus,
the passive vortex generators reduced the size of the separation zone by approximately 80%.
The results of the numerical investigation of the active vortex generators case there were no
sign of separation so that the flow control with the active vortex generators is more effective
than the passive ones. Lengani et al. (2011) investigated the effects of low profile vortex
generators on a large-scale flat plate with a prescribed adverse pressure gradient. They placed
the vortex generators in the meridional and cross-stream panels and surveyed the velocity
fields by means of Laser Doppler Velocimetry (LDV) and measured the total pressure by
means of a Kiel total pressure probe. They showed that the presence of vortex generators
induced the cross-stream vortices to suppress the separation with large flow oscillations.
Santhanakrishnan & Jakob (2005) presented a numerical investigation on a standard Eppler
398 aerofoil with regular perturbations at a range of Re numbers, 2.5x104 to 5x105. They used
smoke-wire flow visualization for qualitative observation of both perturbed and unmodified
aerofoils to determine the region of separation. They also employed 2-D PIV measurements
to understand the near-wall flow-field behavior. Consequently, at Re=2.5x104 and α=4◦ ,
separation started very close to the leading edge of the unmodified aerofoil and there was
no reattachment. But for the perturbed aerofoil, the flow was attached and the point of
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the separation was moved further downstream due to the addition of the perturbations.
Dassler et al. (2010) developed a new approach for modeling the roughness induced transition,
which based on local variables and a transport equation. Two functions determining the
value of the transported variable named roughness amplification (Ar), are employed in this
model. They implemented the model in the DLR flow solver TRACE and they validated the
model by two test cases, a flat plate with roughness and different linear pressure gradients
and a flat plate with a two-scale roughness. They indicated the shifting of the transition
onset position when different surface roughness values and step change of roughness were
prescribed and this result showed that the approach was feasible and was in agreement with
the measurements. Roberts & Yaras (1947) conducted an experimental study on a flat surface
with five variations. These are three different freestream turbulence intensities (0.5%, 2.5% and
4.5%) and two different Re numbers (3.5x105 and 4.7x105). They observed both attached flow
and separation flow transition with laminar separation bubble. They also mentioned that T/S
instability mechanism was responsible for transition in each of the test cases. Consequently,
for most of the range of surface roughness heights, the roughness elements remained below
the transitioning shear layer of the bubble. This showed that, the roughness elements had
no effect on the rate of transition. Ergin & White (2006) carried out an experimental study
in a flat plate boundary layer downstream of a spanwise array of cylindrical roughness
elements at both subcritical and supercritical values of Rek. They observed rapid transition
only for Rek=334 because of the sufficiently large fluctuation growth, and they stated that the
growth of unsteady disturbance increased with the increasing Rek. However, for subcritical
configurations these disturbances stabilized before the transition could occur. Rizetta & Visbal
(2007) used DNS to investigate the effects of roughness elements on a flat plate, for roughness
based Re numbers of 202 and 334, and they compared the numerical results with experimental
results. The numerical method they employed used a sixth-order-accurate numerical scheme
and an overset grid methodology for describing the computational flow-field and a high-order
interpolation procedure was employed to maintain accuracy at overlapping boundaries of
distinct mesh systems which used for defining the roughness element. For Rek=202, growth
of the integrated turbulent energy was displayed by the simulation in the streamwise extent of
computational domain. They also stated that this behavior did not observed experimentally.
For Rek=334, explosive bypass transition displayed by the simulation. Cossu & Brandt
(2002; 2004) studied the effect of three-dimensional roughness element in laminar boundary
layer. The optimal disturbances in fixed finite magnitude is captured the boundary layer
T/S disturbance. They investigated the effects of spanwise invariant disturbances in the T/S
unstable frequency band on boundary layer. They found that the stationary finite-amplitude
optimal disturbances could suppress the growth of the T/S-like disturbances in a boundary
layer.

On the other hand active flow control methods, such as suction/blowing systems, may
be expensive and complex but they can adjust with the changing location of the laminar
separation bubble by changing the control parameters and/or off-design condition by
completely switching of the whole control system. But for active blowing systems some
additional disturbances may be generated by the secondary flow through the holes may
still be present (Mohsen, 2011). Genç (2009) and Genç et al. (2008; 2009; 2011) studied the
prediction of the LSB over the aerofoils at low Re numbers, and the controlling this LSB
by using high lift (Genç et al., 2008; 2009; Genç, 2009), blowing and suction systems (Genç,
2009; Genç et al., 2011). The numerical results of the control cases, it was predicted that the
separation bubble was eliminated by using the slat, blowing and suction resulting in some
marginal increase in the lift and decrease in drag.
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Acoustic excitation is an active flow control method, in which typically a signal generator,
amplifier and a sound source were used (Ricci et al., 2007). The frequency of the sound wave
introduced to the flow can be adjusted with the changing behavior of the aerodynamic body.
Theoretically the acoustic excitation induces T/S waves forcing the transition to begin (Ricci
et al., 2007). Ricci et al. (2005; 2007) conducted studies on the effects of acoustic disturbances
on laminar separation bubbles by means of IR thermography at Reynolds number of 6x104.
They inspected a RR3823HL aerofoil at varied angles of attack between 2◦ and 8◦. They
introduced a sinusoidal sound wave frequency range was between 200 and 800 Hz with a step
of 100 Hz. They concluded that the sinusoidal sound wave having certain frequency reduces
the laminar separation bubble’s length by retarding the separation. Yarusevych et al. (2007)
studied the effect of acoustic excitation amplitude on boundary layer and wake development
at low Reynolds numbers by means of hot-wire anemometry, pressure measurements and
flow visualization. The results showed that an increase of the excitation amplitude advances
the location of reattachment and delays boundary layer separation, reducing the extent of the
separation region. Also they indicated that when boundary layer separation occurs without
reattachment, the increase of the excitation amplitude above the minimum threshold leads a
separation bubble formation with delayed boundary layer separation. Zaman & McKinzie
(1991) investigated the effects of acoustic excitation in reducing the adverse influences of the
LSB over two dimensional aerofoils at low angles of attack by using smoke wire visualization
and hot wire anemometry. They studied in the chord based Re number range of 2.5x104 <Rec

<1x105 . However the amplitude of the excitation-induced velocity fluctuation kept constant
at a reference point within the flow field, it was founded that the most effective frequency
scale was as U∞

3/2. The parameter St/(Rec
1/2 corresponding the most effective frequency

for all of the cases studied falls in the range of 0.02 to 0.03, with Strouhal number based on
the chord. Experimental results showed that lift coefficient had a significant improvement.
Zaman (1992) also investigated the effects of acoustic excitation on post-stalled flows over an
aerofoil. They used a two dimensional aerofoil LRN (1)-1007 with a chord length of 12.7 cm
and employed a crossed hot-film probe for the experiments. The acoustic excitation resulted in
a tendency to force the flow to reattach, which was accompanied by an increased lift coefficient
and reduced drag coefficient. It was shown that as the amplitude of excitation was increased,
a large enhance in the lift was achieved. Ishii (2003) presented the effect of weak acoustic
excitation on a separated flow over an aerofoil. Two-dimensional numerical simulations are
performed for an NACA0012 aerofoil at angle of attack of 12◦ and Reynolds numbers, 5x104

and 1x105. The amplitude of external sound pressure was set at %0.05 of the static pressure.
Numerical results pointed that the acoustic waves with effective frequencies increased the
time-averaged lift coefficients. Chang et al. (1992) studied on internal acoustic excitation on
the improvement of NACA633 − 068 aerofoil performance at low Re numbers by means of
hot wire and pressure measurements. The acoustic excitation by a loudspeaker was funneled
into the interior of the model and then ejected into the flow field from a narrow slot of 0.6 mm
in width at %1.25 chord from the leading edge. Experimental results indicated that the flow
separation was delayed at the post-stall angle with a low level excitation.

6. Conclusion

In this study, a review of low Reynolds number flows was presented. Firstly, transition
and transition types were explained. These transitions types are natural transition, by-pass
transition, separated flow transition, reverse transition and wake induced transition. Natural
transition is seen at high Reynolds number and low free stream turbulence level. Bypass
transition is occurred at high freestream turbulence level and some phases of the natural
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transition are bypassed. Wake induced transition is an instance of the bypass transition
which arises in turbo-machinery flows where the blade rows subjected to periodically passing
turbulent wakes. Reverse transition is transition from turbulent flow to laminar. The most
important transition for low Reynolds number flows is separated flow transition, in which
the flow separates from surface because of viscous effects and adverse pressure gradient, and
transition process is completed in the separated region then the fully turbulent flow reattaches
to surface. The region between the separation point and the reattachment point is called LSB,
which causes negative effects such as decreasing performance, decreasing stability and early
stall in aircrafts. LSBs are classified as long bubbles and short bubbles. If short bubble bursts
or the separated flow can not reattach to surface and stall will occur and this is a serious
problem for aerofoils. Thus, LSB occurring at low Re number flows must be controlled or
delayed. Experimental techniques such as pressure measurement, velocity measurement,
PIV, smoke and oil flow visualization can be applied for low Reynolds number flows, for
instance if pressure distribution is obtained over an aerofoil, a hump is seen at region where
laminar separation bubble takes place or another simple method to see LSB region is oil
flow visualization method, since there is no movement inside the dead region of LSB, the
oil applied before to surface does not move so separation and reattachment point can be seen
clearly. Furthermore, transition modeling is one of the most popular research areas nowadays
although it has not completely accomplished to model the low Re number flows yet.
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