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1. Introduction

The evolution of digital cameras and image processing techniques over the last decade has
inspired researchers in many fields, particularly agricultural research. Agricultural
researchers have used imaging systems in diverse applications, including a multispectral
system in viticulture (Hall et al., 2003) and an imaging system to count wheat ears (Cointault
et al., 2008).

High speed imaging (HSI) has been widely used for industrial and military applications
such as ballistics, hypervelocity impact, car crash studies, fluid mechanics, and others. In
agriculture HSI is mainly used in two domains that both require fast processing: fertilization
and spraying.

Fertilization, be it organic or mineral, is essential to agriculture. Over-fertilization can
reduce yield and lead to environmental pollution (Mulligan et al., 2006). To prevent
these consequences, the fertilization process must be controlled. In Europe and
worldwide, mineral fertilization is performed using centrifugal spreaders because they
are more cost-efficient than pneumatic spreaders. The process of centrifugal spreading
is based on spinning discs which eject large numbers of grains at high speeds (30 to 40
ms7). To control the spreading process and to predict the distribution pattern on the
soil, several characteristics need to be accurately evaluated, i.e., ejection parameters
such as velocity and direction, plus granulometry and the angular distribution.

The spray quality generated by agricultural nozzles plays an important role in the
application of plant protection products. The ideal nozzle-pressure combination should
maximize spray efficiency by increasing deposition and transfer of a lethal dose to the
target (Smith et al., 2000) while minimizing residues (Derksen et al., 2008) and off-target
losses such as spray drift (Nuyttens et al., 2007a) and user exposure (Nuyttens et al.,
2009a). The most important spray characteristics influencing the efficiency of the
pesticide application process are the droplet sizes, the droplet velocities and directions,
the volume distribution pattern, the spray sheet structure and length, the structure of
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individual droplets and the 3D spray dimensions. The mechanism of droplets leaving a
spray nozzle and their impact on the surface are very complex and difficult to quantify
or model. Accurate quantification techniques are therefore crucial.

Without accurate quantification techniques, it is not possible to evaluate the characteristics
of the processes in question. Both fertilization and spray processes occur with a relatively
high speed. We therefore developed HIS with adequate image processing techniques to
characterize the process of centrifugal spreading and the process of pesticide spraying.

This chapter addresses the application of HIS in fertilization and pesticide spraying. To
begin, we present the state of the art of characterization methods. A presentation of the
devices of acquisition, the applied image processing techniques, and the obtained results
follows. We end by discussing these results and present possible future avenues of research.

2. The state of the art of characterization methods for pesticide spraying and
fertilizer centrifugal spreading

2.1 Centrifugal spreading

Persson (1998) evaluated the quality of the spread pattern for different settings by collecting
the spread grains in trays. Piron & Miclet (2006) developed a new concept: the spreader
rotates over a radial placed single row of collector trays. Instead of the normal transverse
distribution in a cartesian coordinate system, a polar measurement system is used. These
methods can be used only for pre-calibration, they are done in test halls and the correct
adjustment of the spreader is generally not verified by the farmers.

Grift & Hofstee (1997) proposed a completely different approach, i.e., a combination of a
ballistic model and optical sensors. These sensors determine the initial conditions of flight
(velocity, direction) of the particles and their size. Subsequently, the spatial distribution of
particles is calculated by introducing the calculated parameters in the ballistic model. This
system provides only information for one individual granule and not for the entire flow,
however, which makes it inapplicable to real fertilization conditions.

The evolution of digital cameras and imaging techniques have made it possible to surpass
the limitations of previous methods. Several new approaches using imaging systems have
been investigated (Cointault et al 2003; Vangeyte & Sonck, 2005; Villette et al. 2007; Bilal et
al., 2010, 2011). Villette et al. (2007) developed a method based on blurred images from
which the outlet angles of particles can be determined. The angles are introduced in a
mechanical model (Olieslagers et al., 1996; Van Liedekerke et al., 2008) to calculate the
spread pattern. This method is not yet able to determine all parameters of interest such as
granulometry. Cointault & Vangeyte (2005) used a multi-exposure imaging system that
differs in the field of view (1 m? and 0.01m?) and in the illumination system used (flashes or
LEDs). These systems are very sensitive to noise and are limited by image acquisition
conditions (they require a darkened hall to prevent the influence of daylight).

2.2 Pesticide spraying

In the past, mainly intrusive methods, also called sampling techniques, were used for spray
characterization. With these techniques, droplets were collected and analyzed using
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mechanical sampling devices. However, these sampling devices may affect the spray flow
behaviour and can only be used to evaluate spray deposition and estimate droplet size
(Rhodes, 1998).

Due to the development of modern technology such as powerful computers and lasers,
quantitative optical non-imaging light scattering droplet characterization techniques have been
developed for non-intrusive spray characterization. Although these techniques are able to
measure some specific spray characteristics, none of them are able to fully characterize a
spray application process. Moreover, these techniques are complex, expensive and (in most
cases) limited to small measuring volumes. They are not able to accurately measure non-
spherical particles. The most important types of non-imaging light scattering droplet
characterization techniques are the Phase Doppler Particle Analysers (PDPA) (Nuyttens et
al., 2007b, 2009b), the laser diffraction analyzers, e.g., Malvern Analyzer (Stainier et al.,
2006), Particle Tracking Velocimetry (PTV), and the optical array probes (Teske et al., 2000).
Several studies have shown a wide variation in mean droplet sizes for the same nozzle
specifications while using different techniques (Nuyttens, 2007).

The limitations of the non-imaging techniques and the recent improvements in digital image
processing, sensitivity of imaging systems and cost reduction, have increased the interest in
high-speed imaging techniques for agricultural applications in general, specifically for pesticide
applications. Another major advantage is that a visual record of the spray under
investigation is available, providing a simple means to verify what is being measured, and
perhaps more importantly, what is not being measured (Kashdan et al, 2004 a).
Furthermore, another fundamental limitation of light scattering techniques is the inability to
accurately measure non-spherical droplets. For this reason, measurements must be obtained
sufficiently far downstream from the primary sheet or jet break-up region where ligaments
and initially large and often non-spherical droplets are formed. This is an unfortunate
limitation, since the near-orifice region is where the process of atomization is occurring and
the initial droplets are formed (Kashdan et al., 2004 a).

Recent developments in nozzle technology produce sprays with droplets containing air
inclusions. Because these internal structures can cause uncertainty with techniques that rely
on diffraction or scattering, interest has been renewed in droplet sizing using imaging
techniques. Moreover, imaging techniques offer greater simplicity over light scattering
techniques. One of the main issues using imaging techniques not only the need for
automated processing routines but also the problem of resolving the depth-of-field (DOF)
effect and its inherent influence on measurement accuracy (Kashdan et al. 2004b).

3. Overview of high-speed imaging used for spraying and spreading

Generally speaking, high-speed imaging analyzers are spatial sampling techniques
consisting of a (strobe) light source, a (high-speed) camera and a computer with image
acquisition and processing software. The image frames from the video are analyzed using
various image processing algorithms to determine particle (fertilizer grain or spray droplet)
characteristics. The imaging techniques have the potential to determine the particles’
velocity and other important characteristics like ejection angle and the distribution of the
particles.
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Several industrial imaging techniques (PDIA, PIV, LIF) are wused for particle
characterization. Although these techniques are not applicable to characterize the fertilizer
spreading process, they have the potential to fully characterize spray characteristics in a
non-intrusive way. For pesticide applications, however, technical and financial challenges
make this impossible to put into practice. These techniques are currently mainly used for the
characterization of small sprays, e.g., paints, medical applications, fuel injectors, etc.

Some of the available imaging techniques for industrial spray characterization are discussed
below (3.1.1 - 3.1.3).

Other interesting techniques were proposed to characterize pesticide sprays and fertilizer
spreaders using either a high-speed camera with a high-power light source (3.1.4) or a high-
resolution standard camera with a strobe light (3.1.5). These techniques can give additional
information about the particles” trajectory, which is needed to predict the outcome on the
plant (spraying) or in the field (spreading).

3.1 Imaging techniques
3.1.1 Particle/Droplet Imaging Analyzers (PDIA)

Particle Droplet Imaging Analyzers (PDIA) automatically analyze digital images of a spray
(Fig. 1). A very short flash of light illuminates a diffusing screen to back-illuminate the
subject. A digital camera with a microscope lens captures images of the subject. Different
magnification settings can be used to measure a very wide range of droplet sizes. Image
analysis software analyses the images to find drop size. Shape data for the particles can also
be measured and recorded. By using dual laser flashes in short succession and measuring
the movement of the particle, it is possible to measure the particle velocity. Information on
spray geometry can be provided by switching to light sheet illumination. The most common
PDIA in use is the Visispray developed by Oxford Laser and is used by Kashdan et al.
(2007). This system measures cone angle, drop size and drop velocity and other key
parameters of the spray. Kashdan et al. (2004 a; b) made comparisons between the PDIA,
PDPA and Laser Diffraction and found good correlation between the results.
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Fig. 1. Typical Particle droplet imaging analyzer (PDIA) (Schick, 1997).
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3.1.2 Particle Image Velocimetry (PIV)

Particle Image Velocimetry (PIV) is an optical method used to obtain velocity measurements
and related properties of particles. It produces two-dimensional vector fields, whereas other
techniques measure the velocity at a point. In PIV, the particle size and density makes it
possible to identify individual particles in an image, but not with enough certainty to track it
between images. This technique uses laser light and it is well adapted to laboratory
conditions but cannot be used in the field. It is rather used as a reference method and not for
pesticide spray characterization under practical conditions. Particle Tracking Velocimetry
(PTV) (Hatem, 1997) is a variant which is more appropriate with low seeding density
experiments, and Laser Speckler Velocimetry (LSV) with high seeding density. Like PIV,
PTV and LSV measure instantaneous flow fields by recording images of suspended seeding
particles at successive instants in time. Hence, LSV, PTV and PIV are essentially the same
technique, but are used with different seeding densities of particles (Paul et al., 2004).

3.1.3 Laser Induced Fluorescence (LIF)

Laser Induced Fluorescence (LIF) is a spectroscopic method used to study the structure of
molecules, detect selective species, and to perform flow visualization and measurements
(Cloeter et al., 2010). The particles to be examined are excited with a laser. The excited
particles will, after a few nanoseconds to microseconds, de-excite and emit light at a
wavelength larger than the excitation wavelength. This light (fluorescence) is then
measured. One advantage that LIF has over absorption spectroscopy is that LIF can produce
two- and three-dimensional images, as fluorescence takes place in all directions (i.e., the
fluorescence signal is isotropic). By following the movement of the dye spot using high
speed camera and image processing, the particle velocity can be determined (Mavros, 2001).
LIF can minimize the effect of multiple scattering found with laser diffraction analysers and
can minimize the interference between the reflection and refraction lights (Hill & Inaba,
1989). The drawback of this method is that the particles reflect the LIF signal of the tracers,
which can cause error in the measurement signal of the liquid flow.

3.1.4 High-speed camera with high-power light source

An alternative method to analyse spray/spreading characteristics is to use a high-speed
camera combining high resolution images with a high frame rate. Because of the short
exposure time inherent to high-speed imaging, very high illumination intensities are
needed. The advantage of this system is the possibility to be adapted to the application
condition, the frame rate and the resolution of the image.

Vangeyte et al. (2004) used a high-speed camera (MotionXtra HG 100K, 1504x1128 pixels
and frame rate of 1000 images/s) to make a comparison with a multi-exposure imaging
system for determination of the trajectories of fertilizer grain ejected from a centrifugal
spreader. However, the field of view was small (10x10 cm?). To characterize the full process,
all the ejected grains need to be visualized.

Massinon and Lebeau( 2011) used a high-speed camera (Y4 CMOS, Integrated Design Tools)
with a high magnification lens (12 x zoom Navitar, 341 mm working distance) coupled with
high-power LED lighting and image processing to study droplet impact and spray retention
of a real spray application. Camera resolution was reduced to 1016 x 185 pixels to acquire
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20000 images per second with a spatial resolution of 10.58 pm.pixell. A background
correction was performed with Motion Studio embedded camera software to get a
homogeneous image. Nineteen-LED backlighting (Integrated Design Tools) with a beam
angle of 12.5° was placed 0.50 m behind the focus area to provide high illumination and a
uniform background to the images. Based on the pixel size of the droplet as determined
manually from the pictures with Motion Studio software, together with the spatial
resolution, the diameter of the droplets was calculated. Similarly, droplet velocities were
calculated in a very-time consuming and visual way, based on the distance between the
position of the droplet between two consecutive frames and the frame rate. In this way, only
the 2-dimensional velocity was calculated.

Many others, like Sikalo et al. (2005) also studied the impact of droplets with a high-speed
CCD camera but in these studies, single droplets were produced using a microdrop
generator in an on-demand or continuous mode.

3.1.5 High-resolution standard camera with a strobe light

This technique combines a high resolution standard (slow speed) camera with a strobe light
for tracking high-speed particles. The principle is that a series of light flashes is triggered
one after the other over a single camera exposure. The number of flashes determines the
maximum number of particle positions that can be recorded on each image.

Cointault et al.(2002 proposed a system combining a monochrome camera (1008x1018
pixels) with a strobe light consisting of photograph flashes to determine the trajectories and
velocities of the spread grains in a field of view of ImxIm. Vangeyte and Sonck (2005) also
used a similar system but with a LED stroboscope and a small field of view (0.1m x 0.1m) to
capture the grain flow.

This technique was already used by Reichard et al. (1998) to analyse single droplet
behaviour combining a monochrome video camera (60 fields per second) with a single
backlight stroboscope (Type 1538-A, Genrad, Concord, MA 01742) at a flash rate of about
seven times the field-sequential rate used to drive the camera. This produced multiple
images of the same droplet.

Lad et al. (2011) used a high-intensity pulsed laser (200 m]J, 532 nm) as a backlight source
which was synchronized with a firewire type of digital camera (1280 x 960 pixels) to analyze
a spray atomizer. The laser beam was converted to a laser cone using a concave lens, and
then it was diffused by a diffuser. A 200 mm micro-lens equipped with a spacer was used to
get a magnification of 2.6 of the image resulting in a field of view of 1.82 x 1.36 mm for a
working distance of 250 mm. The digital camera captured shadow images which were
analyzed to determine droplet sizes. The system is capable of performing an online
characterization of spray droplets and an image calibration was performed using graph
paper. A calibration method of an imaging system in the diameter range 4 to 72 um has been
reported by Kim and Kim, (1994).

Malot and Blaisot (2000) developed a particle sizing method based on incoherent backlight
images using a stroboscope with two fibers synchronized with two cameras. This technique
was used to project 2D images of drops on a video camera, which led to two-dimensional
images.
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3.2 Adopted solution

In both domains (fertilization and spraying), events are relatively fast; typical speeds are 1 to
15 ms? in spraying and 30 to 40 ms? in fertilization. High-speed cameras with frame rate
between 500 and 1000 images per second are needed to capture movement of the particles.
However, the size and transparency of the particles are different between the two applications.

e  The fertiliser grains are opaque and their diameters are between 3 and 6 mm
e The spraying droplets are translucent and their diameters are between 10-1000um

These differences between the physical characteristics of the particles thus require different
setups.

e Infertilization a front-light is adequate and a lens with a focal between 16 and 28 mm is
sufficient.

e [llumination of translucent spray droplets with a front-light is not practical. Hence
back-light is used. Because of the small droplet size, a macro lens with a high focal
length should be used.

4. Imaging device and results
4.1 Fertilization application

The aim is to determine the spatial fertilizer distribution on the ground by calculating the
ballistics of the particles from their initial conditions of flight (velocity, direction), their
properties and geometrical parameters (topography, height and tilt of the discs, etc.). To
determine the velocities and the trajectories of the grain at the ejection, imaging devices
combined with a image processing techniques can be used. Given that the grains are ejected
with a speed of 30 - 40 ms-, a HSI system at a minimum rate of 500 images per second is
used to film at least the same scene in two different instants. The resulting frame of the same
scene is used to estimate the motion of the fertilizer grains.

The fertiliser grains are actually ejected in an arc (Fig 2). To ensure the filming of the same
arc, the HSI system has to visualise a field of view of 1x1 m2.

Fig. 2. Image of ejected fertiliser grain.
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Therefore, our system consists of a high-speed camera with a frame rate of 1000 Hz, a sensor
of 1280x1042 pixels?, a pixel size of 12pm and a lens with 28mm focal length. The camera is
placed two meters above the field of work.

After image acquisition, the image must processed. During this essential phase, the
velocities and the trajectories must be predicted in order to determine the spatial
distribution of the fertiliser grain on the ground (Fig. 3). We have therefore investigated
several motion estimation techniques in order to achieve high accuracy.

- i Balistic
Images of the fertiliser grain ‘Motion B

ejection atinstant t and t+4t astimation j e model

Fig. 3. The images on the left are images of fertilizer grain ejection at the instant t and At; the
middle image shows the displacement vector determined by the motion estimation algorithm,
and the right image shows the spread pattern determined from the ballistic model.

Barron et al. (1994) divided the optical flow method into four categories: (1) differential
methods, (2) region-based matching, (3) energy-based techniques and (4) phase-based
techniques. The difference between these methods is the way to resolve the image constraint
equation (1):

I(x,y,t)=1(x+dxAt, y + dyAt, t +At) (1)

I is the intensity of pixels and dx and dy are the displacement after At (for more details see
(Barron et al., 1994)).

The fertilizer grain displacements in pixels/image are very large compared to the
displacements generally estimated with classical motion estimation methods. These
displacements can therefore not be estimated directly using methods such as Markov
Random Fields or optical flow measurement; the maximum displacement detectable by
these methods is too small to detect the fertilizer granules” path. Therefore, a theoretical
model of the movement of the grains was first combined with a Markov Random Fields
method to estimate the motion of the grains on high speed images of the grain flow. This
technique had a good accuracy but it was not sufficient to have a very accurate prediction
of the spatial distribution. An improved method was needed.
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We then investigated whether Block Matching or motion estimation methods based on
Gabor filters could improve the accuracy and eliminate the modeling and minimization
steps of the MRF technique.

Although the block matching techniques are able to detect large displacements between
different frames, our experiment using block matching techniques showed that it is not
suitable for our application (Hijazi et al., 2008). These techniques only give good results
when scenes are highly textured, which is not the case for the fertilizer images. In reality, the
fertiliser grains have all a similar shape. The probability of erroneous estimation is therefore
too high.

For the motion estimation method based on Gabor filters, Spinei’'s method (Spinei et al.,
1998), a triad of controlled Gabor filters was implemented. To expand the range of
detectable displacements, this method uses a multi-resolution representation of image
sequences. The higher level has a lower resolution. When the resolution is decreased, the
displacement decreases with the same ratio. We showed, however, that this method did not
improve the accuracy on the measurement of the displacements (Hijazi et al., 2008).

Because of the similarity between the fertiliser grain images and the images used in PIV to
study the turbulence phenomena in fluid, it is possible to apply the proven high-accuracy
PIV algorithms to estimate the movement of the fertilizer granules.

A two-step cross correlation algorithm with sub-pixel accuracy for motion estimation was
applied to the fertilizer granules” motion during centrifugal spreading. In this method, the
first step is to fit an arc of a circle in the grain region of each image (Fig. 3). These arcs are
used to divide the grain region in several smaller regions. For each region, a global motion
displacement is then determined. The second step uses the global displacement to determine
the local displacement using a normalized cross-correlation. The final results, with their
subpixel accuracy, created the possibility to develop a system based on a low-resolution
camera sensor. For more details about the techniques see Hijazi et al., 2010, 2011.

A comparison with the result of the MRF technique clearly shows that the cross-
correlation method determines very precisely the fertiliser granule velocities with an
average error of 0.4 pixel or less, and 90% of the granule velocity with a rate of error less
than 0.2 pixel (Table 1).

Cross-correlation MRF
horizontal | vertical horizontal | vertical
Mean velocity 62.402 61.453
modulus (pixel) ' '
Bias error (pixel) 0.085365 0.099817 1.624881 0.800443
Error maximum | 504475 | 0330194 5.549145 3.431636
(pixel)
Standard 0.073746 | 0.080768 1.399179 0.834144
deviation (pixel)
Accuracy 90% 0.17261 0.21957 3.65780 2.34400
(pixel)

Table 1. Comparison between the cross correlation method and the MRF method.
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4.2 Spray application process

In a precision spraying context, the analysis of droplet behaviour on the leaves (adhesion,
bounce or splash) and the link with leaf surface features, particularly its roughness, is one of
the most important steps. Our study features two main parts. One aspect is to analyze the
surface and to extract features using texture analysis methods. This characterizes the leaf
roughness. The other aspect is to analyze the droplet and its behaviour using HSI and
associate image processing techniques. This chapter only discusses the analysis of the
droplet and its behavior. We use a system composed of a high-speed camera with a high-
power light source and a droplet generator (Figs. 4 and 5).

Dropletsgenerator

. - =[

High speed camera Contactsurface Backlight

Fig. 4. Scheme of the system for single spray droplet characterization.

Fig. 5. Picture of the system.

The droplet generator runs in “on demand” mode and creates single droplets. Depending
on its features (size, velocity, surface, composition), a droplet can have different behaviours
after impact such as adhesion, bounce or shatter. We influence the size and velocity of the
droplet by using several nozzles and changing the height of fall of the droplet.

The small size of the droplets (80-400um) requires use of a macro lens with a high focal
length. In addition to these constraints, we have to set up the camera with a high frame rate
(1000 frames/s) and a low exposure time (16 us) in order to extract accurate information of
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size, velocity and behaviour of the droplets. Consequently we illuminate the scene with a
LED system which provides high illumination and uniform background that leads in well-
contrasted images for easier tracking of the droplets.

Object tracking is an important task within the field of computer vision. Computer
performance has increased and high-quality cameras are now available for a reasonable
price. These advancements have led to increased interest in object tracking algorithms.
Video analysis has three key steps: (1) detection of moving objects of interest, (2) tracking
such objects from frame to frame, and (3) analyzing object tracks to recognize their
behaviour (Yilmaz et al., 2006).

The first task is to define a suitable representation of the object. The object can be
represented in several ways, such as points, primitive geometric shapes or object contours.
The point is the simplest representation. The point representation is not suitable here
because we need to extract the size of the droplet from the video. A circular shape as
primitive geometric shape for droplet representation could be a good solution in order to
extract the size, but it may lead to wrong interpretation of the behaviour of the droplet
because it may be hard to distinguish adhesion from bounce. We therefore use a contour
representation for the droplet.

The next task is to determine the way to detect the object. Almost all tracking algorithms
require detection of the objects either in the first frame or in every frame. Objects can be
detected in the video in different ways. For instance, we can use point detector algorithms to
find interest points in images. This method is well adapted for images with expressive
texture in localities, but this is not the case of our images. Another way could be to use
segmentation methodsn but this can lead to detection errors after impact, when the droplet
merges with the contact surface. To overcome these difficulties, we used background
subtraction. We acquire a first image corresponding to the background when the droplet is
out of the field of view. Then we subtract the background from next images that contain the
droplet. Finally techniques of supervised learning could have been used to detect objects
and correctly separate surface from droplets but we reject them because the learning step is
too time-consuming

We first perform an inversion of the image to get high intensity values for the pixels belonging
to the droplet. Then we apply the background subtraction, which allows us to detect only
moving objects in the scene. We now track these objects from frame to frame (Fig. 6). To do so,
we use a combination of two methods: shape matching and contour tracking.

Fig. 6. Sequence of droplet impact with adhesion.
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We consider two main stages in the video, i.e., the time before impact and after impact.
Before impact, we use an algorithm of shape matching, because that the droplet keeps a
circular shape (Fig. 7). We compute an area-perimeter ratio I defined as:

_4nA

I 2
P )

with A : area of the object, P : perimeter of the object.

If Iis equal to 1, the object has a circular shape and we can consider it as a droplet. We
include a tolerance of 5% for lin order to take into account small deformations of the
droplet.

A
-

Fig. 7. Droplet detection using shape matching.

Once the droplet reaches the surface, it is subject to bigger deformations during the steps of
spreading and recoiling. It is no longer possible to use shape matching for tracking the
droplet. We use contour tracking technique named Active Contour, also known as the snake
method. The development of active contour models results from the work of Kass et al.
(1988). A snake is an active (moving) contour, in which the points are attracted by edges and
other image boundaries. To keep the contour smooth, a membrane and thin plate energy is
used as contour regularization. Basically, snakes are trying to match a deformable model to
an image by means of energy minimization (Fig. 8). The energy functional which is
minimized is a weighted combination of internal and external forces. The internal forces
emanate from the shape of the snake, while the external forces come from the image and/or
from higher level image understanding processes. The snake is parametrically defined as
v(s) = (x(s), y(s)) , where x(s), y(s) are x, y coordinates along the contour and s is from
[1,0] . The energy functional relative to the snake is written:

1

Esnake = J.Eint (?J(S)) + Eimage(v(s)) + Econ (U(S))ds (3)
0

b Eint
constraint.

: internal energy due to bending which serves to impose piecewise smoothness
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. E

terminations).
e E_. : external constraints are responsible for putting the snake near the desired local

image forces pushing the snake toward image features (edges, lines,

image *

minimum
The internal spline energy can be written:

2 2

dov

dv d’v
ds

Eint = a(s) d52

+5(s)

where a(s), B(s) specify the elasticity and stiffness of the snake, respectively.

The second term of the energy integral is derived from the image data over which the snake
lies. A weighted combination of three different functionals is presented which attracts the
snake to lines, edges, and terminations:

E = Wiipe Eline +w E + Wierm Eterm (5)

image edge “edge

The line-based functional may be very simple:

Eline = f(x' y) (6)

where f(x,y) denotes image gray levels at image location (x,y). The sign of w,,, specifies

wether the snake is attracted to light or dark lines.

The edge-based functional attracts the snake to contours with large image gradients, i.e., to
locations of strong edges:

Eedge =-|grad f(x,y) |2 7)

Line terminations and corners may influence the snake using a weighted energy functional
E,,.. Let C(x,y)=(G, (x,»)* f(x,»))?* be a smoothed image, with G, a Gaussian with a

C
standard deviation o . Let 0= tan’l[gyj the gradient angle, n=(cosf,sin¢) unit vector

X

along gradient, n, =(—siné,cos#) perpendicular to gradient. E

term

is defined using curvature

of level lines in C(x,y):

c_00 @

term
on,

The snake behaviour is controlled by adjusting the weights w,,, , w,,, and w

edge term *

For the moment, only E;, and E,, . are used to define the energy of our snake. In order to
improve the process of energy minimization, i.e., to reduce the number of iterations in the
process of minimization, we plan to create a third energy based on a priori knowledge about

the deformation of the droplet.
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®,

(@) (b) ©) (d)
Fig. 8. (a) Previous contour displayed in image after inversion and background subtraction.
(b) Image representing external energy. (c) Image displaying snake evolution. (d) Current
contour displayed in original image.

Our tracking methods allows to extract information about size and velocity of the droplet and
then calculate the Weber number, We , which is a dimensionless number characterizing a
droplet. We is the ratio between kinetic energy and surface energy (Richard & Quéré, 2000):

— pDyv°

We )

o}

with p: density of liquid, D,: diameter of the spherical droplet, v: velocity of the droplet

and o : surface tension of the liquid.

More than extracting droplet’s features, our tracking method can automatically determine
the behaviour of the droplet. For the moment, our algorithm only recognizes adhesion or
bounce. In future improvements are planned in order to manage other behaviours as
splashing or runoff.

5. Conclusion

The aim of this chapter is to show the potential of using high-speed imaging systems in
precision agriculture. Here, we present pesticide spraying and fertiliser spreading to
illustrate agricultural applications that where HSI can be used to characterise their
processes. In centrifugal fertilizer spreading, we developed a HSI device based on a high-
speed camera and a high-power light. The images are taken at a frame rate of 1000
images/s. Then a newly developed image processing algorithm is used to determine the
grain velocities and trajectories necessary for the characterization of the centrifugal
spreading.

In pesticide spraying, we used a HSI system based on a high-speed camera and a back-light
system based on power LEDs to determine the pesticide droplet impact. The captured
images are used in a tracking algorithm that determines the behaviour of the droplet on the
impact surface.
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The results obtained in both applications were promising. More work is needed to fully
characterize the processes such as the determination of the granulometry of fertilizer grain,
displacement of pesticide droplets in a real spraying process, and the combination of the
calculated spray characteristics with leaf roughness.

Only two applications of HSI in agriculture were presented here. However, this technique
could be used in other areas of agriculture, such as harvesting, where a fast process needs to
be visualised or characterized.
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