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1. Introduction 

1.1 Current distributions as a consequence of history 

Hypotheses about ancient processes are not testable by direct observation or manipulative 
experiments. However, their resulting present patterns can potentially be observed, 
approached from an inductively point of view, and, therefore, tested. Today, many 
historical biogeographical hypotheses of many taxa are often drawn from phylogenetic 
analyses or from fossils. Although biogeographical hypotheses may be presented in those 
cases simply as a narrative addendum of results, they are supported by the evolutionary 
relationships or dating of fossils, and are generally considered valid (but see Crisp et al., 
2011). Nevertheless, sometimes an evolutionary basis to explain the past biogeography of 
concrete species groups is not available. This could be the case of hyperdiverse taxa, for 
example, many groups of insects; in groups with a high diversity of species it may be 
difficult in the short term to have a complete phylogeny to help us answer some 
biogeographical questions (for example, the location of areas with a high supraspecific-taxa 
diversity). This could be aggravated when no significant fossils have been found. Moreover, 
insufficient biogeographical knowledge exacerbates this problem although such groups may 
have an important ecological role and interest in conservation. 

Current distribution is a consequence of past historical processes, and some basic 
biogeographical questions can be answered by analysis of contemporary geographic 
distribution of a species group. Under this assumption and having only geographical and 
taxonomic information, we need statistically robust methods to frame testable hypotheses 
and provide valid, scientifically rigorous answers. The set of approaches herein presented 
may be especially important when dealing with a group of species for which we have little 
or not at all phylogenetic information, although both the alpha taxonomy (not necessarily 
the beta taxonomy) and the taxon distribution are well known. 
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Using taxonomic and geographical information available about Aphodiini dung beetles 
species as an example, I examine their general current distribution and variation in 
diversity, taking into account the six major biogeographic regions worldwide. A similar 
procedure already was conducted in a previous paper by Cabrero-Sañudo & Lobo (2009), 
although Aphodiini genera were used rather than species. The faunal similarities and 
structure among the regions also will be evaluated to explore biogeographic relationships. 
In addition to elucidating major biogeographic patterns of this group, this study also 
proposes hypotheses about the historical processes operating in each biogeographic region 
and worldwide based on the supported results. 

1.2 Sample study group: Aphodiini dung beetles 

Dung beetles are a coleopteran group of species mostly constituted by representative taxa 
from the Scarabaeoidea (Insecta, Coleoptera) superfamily. Together with Diptera, they are 
the most abundant species group at dung communities on a worldwide scale (Hanski, 
1991a). While most Aphodiini species show special morphological, behavioural and 
ecological adaptations to the consumption of mammal excrements (mainly from ungulates), 
others are also known to feed on detritus, fungi, decaying plants or roots (Hanski, 1991a). 
These insects are of great ecological interest, as they increase the soil permeability and 
recycle organic matter, favouring the fertility of pastures (Bornemissza, 1976; Ridsdill-Smith 
& Edwards, 2011; Rougon et al., 1988). Also, they are the main controllers of hematophagous 
insects and disease vectors of cattle (McQueen & Beirne, 1975; Ridsdill-Smith & Edwards, 
2011; Waterhouse, 1974). Moreover, dung beetles have been also used as indicator taxa in 
conservation studies (A.L.V. Davis et al., 2004; McGeoch et al., 2002; Nichols & Gardner, 
2011). 

Within Scarabaeoidea, the tribe Aphodiini (Scarabaeidae: Aphodiinae), together with 
Scarabaeinae and Geotrupinae (Scarabaeidae and Geotrupidae families, respectively), 
comprise a significant majority of the known species of dung beetles (Halffter & Edmonds, 
1982; classification sensu Smith, 2006). Aphodiini are distributed worldwide in every 
biogeographical region (G. Dellacasa et al., 2001; M. Dellacasa, 1988a, 1988b, 1988c, 1991, 
1995), showing a remarkably high generic and specific diversity compared to other close 
groups within Aphodiinae. 

Since the last Aphodiini revision by G. Dellacasa et al. (2001), some genera present in 
previous bibliographic sources have been later reconsidered or some other new sources 
have contributed new genera (Ádám, 1994; Bordat, 1999, 2003, 2009; Bordat et al., 2000; M. 
Dellacasa & G. Dellacasa, 2000a, 2000b, 2005; M. Dellacasa et al., 2002, 2003, 2004, 2007a, 
2007b, 2008, 2010, 2011; Gordon & Skelley, 2007; Hollande & Thérond, 1999; Koçak & Kemal, 
2008; Masumoto & Kiuchi, 2001; Ochi & Kawahara, 2001; Skelley, 2007; Skelley et al., 2009; 
Stebnicka, 2000; Tarasov, 2008; Ziani, 2002), although with limited phylogenetic support. 
Thus, after Cabrero-Sañudo & Lobo’s (2009) paper, which considered described genera 
through 2005, the number of genera increased by more than 18% (36 more genera, for a total 
of 234), so those previous results may have changed somewhat. Moreover, although genera 
analyses can be used to detect genealogical relationships and to answer some 
biogeographical questions, internal phylogenetic relationships among Aphodiini lineages 
are not well identified yet (Cabrero-Sañudo, 2007; Cabrero-Sañudo & Zardoya, 2004; 
Forshage, 2002; Smith et al., 2006). This implies that, for the Aphodiini tribe, a species-level 
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study may be currently more reliable than a genus-level analysis in revealing 
biogeographical patterns, although compilation of all the taxonomic and biogeographic data 
at the species level is a laborious task. 

2. Material and methods 

2.1 Data sets 

A matrix (AphoSpes) containing information about distribution and body size of every 
Aphodiini species was built. Data were obtained from several bibliographic sources, including 
original species descriptions, which are referenced in Table 1 and Appendix 1), as well as other 
taxonomic and biogeographic revisions (Baraud, 1985, 1992; Cabrero-Sañudo et al., 2007; G. 
Dellacasa & M. Dellacasa, 2006; G. Dellacasa et al., 2001; Veiga, 1998) and databases (Bisby et 
al., 2011; Schoolmeesters, 2011). The body size of species was calculated as the mean between 
minimum and maximum lengths (mm). In 6 cases it was not possible to obtain the species 
body length, and the mean size for the genera was used instead. Species distribution data were 
included according to the presence (1) and absence (0) of species for the six worldwide 
biogeographical regions (Palaeotropical, Australian, Nearctic, Neotropical, Oriental and 
Palaearctic) proposed by Cox (2001). The area of each biogeographical region was calculated 
using the Idrisi Kilimanjaro GIS program (Clark Labs, 2003). 

2.2 Descriptive examination and basic analyses 

Simple descriptive statistical analyses and calculations were carried out to characterize the 
fauna of the different biogeographical regions, using Statistica (StatSoft Inc., 2006). For each 
region, several data were considered, including: (1) total number of species and endemic 
species, (2) number of species shared with other regions, (3) mean number of regions per 
species, (4) mean body size per species and endemic species, (5) mean percentage of species 
and endemic species from genus, and (6) mean number of species and endemic species per 
genus. Possible correlations and differences among the considered data were analysed using 
nonparametric statistical tests and the relationship between the number of species and 
region area was also analysed, considering several potential nonlinear fits (Fattorini, 2006; 
Flather, 1996; Soberón & Llorente, 1993). 

2.3 Species co-occurrence and nestedness 

To confirm the existence of possible distribution patterns of regional faunas, a co-occurrence 
analysis was carried out to test if there was a biogeographical signal in the data set (Connor 
& Simberloff, 1979; Diamond, 1975). The number of species that never co-occur in the same 
biogeographical region (checkerboards) was estimated and the C-score was calculated as the 
average number of all possible checkerboard pairs (Stone & Roberts, 1990). 

In order to identify the presence of nested patterns within regional faunas (Darlington, 1957), 
in which species-poor regions constitute a subset of those present within richer regional faunas, 
three different analyses were performed (Ulrich et al., 2009). The nestedness temperature  
of the presence-absence species matrix was calculated by means of the temperature index, 
which is a descriptor of the matrix disorder (0° for a completely nested matrix, 100° for a 
completely random matrix) (Atmar & Patterson, 1993). The BR (Brualdi) index was  
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Ádám, 1983, 1994 
Ahrens & Stebnicka, 1997 
Akhmetova & Frolov, 2008 
Allibert, 1847 
Aubé, 1850 
Ávila, 1986 
Báguena, 1930 
Ballion, 1870, 1878 
Balthasar, 1929, 1931, 1932a, 1932b, 1932c, 1932d, 

1932e, 1933a, 1933b, 1933c, 1935a, 1935b, 1935c, 
1935d, 1936, 1937a, 1937b, 1938a, 1938b, 1938c, 
1939, 1941a, 1941b, 1941c, 1942a, 1942b, 1943, 
1945a, 1945b, 1945c, 1946, 1952a, 1952b, 1952c, 
1955, 1960a, 1960b, 1960c, 1961a, 1961b, 1963a, 
1963b, 1965a, 1965b, 1965c, 1965d, 1966, 1967a, 
1967b, 1970, 1971a, 1971b, 1971c, 1973 

Balthasar & Hrubant, 1960 
Baraud, 1971, 1973, 1975, 1976a, 1976b, 1976c, 

1977, 1978, 1980, 1981a, 1981b, 1982 
Barrett, 1931, 1932 
Bates, 1887, 1889, 1890 
Baudi di Selve, 1870 
Bedel, 1904, 1907 
Berlov, 1989 
Berlov, Kalinina & Nikolajev, 1989 
Blackburn, 1892a, 1892b, 1895, 1897, 1904 
Blanco, 1986 
Boheman, 1857 
Bonelli, 1812 
Bordat, 1983, 1984, 1985, 1986, 1988, 1989a, 1989b, 

1989c, 1990a, 1990b, 1990c, 1990d, 1992a, 1992b, 
1992c, 1992d, 1993, 1994a, 1994b, 1995, 1996a, 
1996b, 1997a, 1997b, 1999, 2003, 2005, 2008, 2009

Bordat, Cambefort & Bruneau de Miré, 1991 
Bordat, Dellacasa, G. & Dellacasa, M. 2000 
Bordat, Paulian & Pittino, 1990 
Boucomont, 1928, 1929, 1930, 1932, 1936 
Boucomont & Gillet, 1921 
Brahm, 1790 
Branco & Baraud, 1984, 1988 
Brisout de Barneville, 1866 
Brown, 1927, 1928a, 1928b, 1928c, 1928d, 1929a, 

1929b, 1929c 
Brullé, 1832 
Carpaneto, 1973, 1976, 1978, 1986 
Carpaneto & Piatella, 1989, 1990 
Cartwright, 1939, 1944a, 1944b, 1957, 1972 

Castelnau, 1840 
Červenka, 1994a, 1994b, 1995, 2000, 2003, 2005 
Chromy, 1993 
Clément, 1928, 1958a, 1958b, 1969, 1975, 1976, 

1981, 1985, 1986 
Clouët des Pesruches, 1896, 1898 
Cooper & Gordon, 1987 
Creutzer, 1799 
Csiki, 1901 
Daniel, J., 1902 
Daniel, K., 1900 
DeGeer, 1774 
Deloya & Ibáñez-Bernal, 2000 
Deloya & Lobo, 1995 
Deloya & McCarty, 1992 
Dellacasa, G., 1982, 1983a, 1983b, 1984, 1986, 1990 
Dellacasa, G. & Dellacasa, M., 1997a, 1997b, 2009 
Dellacasa, G. & Johnson, 1983 
Dellacasa, G. & Pittino, 1985 
Dellacasa, M., 1988a, 1988b, 1988c, 1991, 1995 
Dellacasa, M., Dellacasa, G. & Gordon, 2007, 2008, 

2009, 2011 
Dellacasa, M., Dellacasa, G. & Skelley, 2010 
Dellacasa, M., Gordon & Dellacasa, G., 2003, 2007 
Dellacasa, M., Dellacasa, G., Gordon & Stebnicka, 

2011 
Dellacasa, M., Gordon, Harpootlian, Stebnicka & 

Dellacasa, G., 2001 
D’Orbigny, 1896 
Duftschmid, 1805 
Emberson & Stebnicka, 2001 
Endrödi, 1955, 1956a, 1956b, 1957, 1960a, 1960b, 

1961, 1964, 1967a, 1967b, 1968, 1969, 1971, 1973, 
1976a, 1976b, 1977a, 1977b, 1978, 1979a, 1979b, 
1980, 1982, 1983a, 1983b, 1991 

Erichson, 1834, 1842, 1843, 1848 
Eschscholtz, 1922, 1923 
Fabricius, 1775, 1781, 1787, 1792, 1798, 1801 
Fairmaire, 1849, 1871, 1881, 1882, 1883, 1886, 1888, 

1892, 1893a, 1893b, 1894, 1897, 1903 
Fairmaire & Coquerel, 1860 
Fairmaire & Germain, 1860 
Faldermann, 1835a, 1835b 
Fall, 1901, 1927, 1932 
Fall & Cockerell, 1907 
Frivaldszky, 1879 
Frolov, 1997, 2001a, 2001b, 2001c, 2001d, 2001e, 

2002a, 2002b, 2006 
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Galante, Stebnicka & Verdú, 2003 
Garnett, 1920 
Gebler, 1848 
Germar, 1813, 1824 
Germar & Kaulfuss, 1817 
Gerstaecker, 1871, 1883 
Gestro, 1895 
Given, 1950 
Gordon, 1974, 1976, 1977a, 1977b, 2006 
Gordon & Howden, 1972 
Gordon & Salsbury, 1999 
Gordon & Skelley, 2007 
Graëlls, 1847 
Gridelli, 1930 
Gusakov, 1997, 2004, 2006 
Gyllenhal, 1808, 1827 
Haldeman, 1843, 1848 
Harold, 1859, 1860, 1861, 1862a, 1862b, 1863, 1866, 

1867, 1868a, 1868b, 1868c, 1869a, 1869b, 1870, 
1871a, 1871b, 1871c, 1874a, 1874b, 1875, 1876a, 
1876b, 1877a, 1877b, 1879, 1880a, 1880b, 1881 

Hatch, 1971 
Herbst, 1783, 1789 
Heyden, 1887 
Heyden & Kraatz, 1881 
Hinton, 1934a, 1934b, 1934c, 1934d, 1938 
Hope, 1846 
Horn, 1870, 1871, 1875, 1887 
Hrubant, 1961 
Hubbard, 1894 
Iablokov-Khnzorian, 1972 
Ilcikova & Kral, 2004 
Illiger, 1798, 1803 
Islas, 1945, 1955a, 1955b 
Jacobson, 1897, 1911 
Jacquelin du Val, 1863 
Johnson, 1978 
Kabakov, 1996 
Kabakov & Frolov, 1996 
Karsch, 1881 
Käufel, 1914 
Kawai, 2004 
Kieseritzky, 1928 
Kim, 1986, 1996 
Klug, 1835, 1845, 1855 
Klug & Erichson, 1859 
Kolbe, 1886, 1908 

Kolenati, 1846 
Koshantschikov, D., 1891, 1894a, 1894b, 1894c, 

1894d 
Koshantschikov, W., 1910, 1911, 1912, 1913a, 

1913b, 1916 
Kral, 1995, 1996, 1997a, 1997b, 1997c, 2000, 2002 
Krikken & Kaas, 1984 
Kugelann, 1792 
Küster, 1854 
Laicharting, 1781 
Landin, 1949, 1956, 1959, 1967, 1974 
Lansberge, 1886 
Laxmann, 1770 
Lea, 1923 
Lebedev, 1911, 1932 
LeConte, 1850, 1857, 1858, 1872, 1878 
Lewis, 1895 
Linell, 1896 
Linnaeus, 1758, 1761, 1767 
Lucas, 1846 
Mannerheim, 1843, 1849, 1853 
Masumoto, 1975, 1977, 1981, 1984a, 1984b, 1988, 

1991, 1992, 1996 
Masumoto & Kiuchi, 1987, 2001, 2003 
Maté, 2007, 2008 
Medvedev, 1928, 1968a, 1968b, 1968c 
Medvedev & Dzambazish, 1977 
Melsheimer, 1845 
Ménétriès, 1832, 1849 
Miwa, 1930 
Moll, 1782 
Motschulsky, 1849, 1858, 1860, 1863, 1866, 1868 
Müller, G., 1940, 1941, 1942 
Müller, O.F., 1776 
Mulsant, 1842, 1851 
Mulsant & Godart, 1879 
Mulsant & Rey, 1869, 1870 
Nakane, 1951, 1956, 1960, 1967, 1977, 1983 
Nakane & Shirahata, 1957 
Nakane & Tsukamoto, 1956 
Nikolajev, 1979, 1983, 1987, 1998 
Nikolajev & Frolov, 1996 
Nikolajev & Puntsagdulam, 1984 
Nikritin, 1969, 1971, 1973, 1979 
Nikritin & Kabakov, 1979 
Nomura, 1973 
Nomura & Nakane, 1951 
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Novikov, 1996 
Obenberger, 1914 
Ochi, 1986, 1991 
Ochi & Kawahara, 2001 
Ochi & Kon, 2004, 2008 
Ochi, Kawahara & Kawai, 2002 
Ochi, Kawahara & Kon, 2006 
Olivier, 1789 
Olsoufieff, 1918 
Palisot de Beauvois, 1805 
Panzer, 1795, 1798, 1799, 1823 
Pardo-Alcaide, 1936 
Paulian, 1933, 1934, 1936a, 1936b, 1938, 1939a, 

1939b, 1939c, 1942a, 1942b, 1942c, 1945, 1954, 
1980, 1984 

Paulsen, 2006a, 2006b 
Penecke, 1911 
Péringuey, 1901, 1908 
Petrovitz, 1954, 1955, 1956, 1958a, 1958b, 1959a, 

1959b, 1961a, 1961b, 1961c, 1961d, 1961e, 1961f, 
1962a, 1962b, 1963a, 1963b, 1964, 1965a, 1965b, 
1966a, 1966b, 1967a, 1967b, 1967c, 1967d, 1968a, 
1968b, 1968c, 1969a, 1969b, 1970a, 1970b, 1970c, 
1970d, 1971a, 1971b, 1971c, 1971d, 1972a, 1972b, 
1972c, 1973a, 1973b, 1974, 1975a, 1975b, 1975c, 
1976, 1980 

Peyerimhoff, 1907, 1925, 1929, 1939, 1949 
Pilleri, 1953 
Pittino, 1978, 1984, 1988, 1995, 1997, 2001a, 2001b, 

2004 
Pittino & Ballerio, 1994 
Quedenfeldt, 1884 
Raffray, 1877 
Rakovič, 1977, 1984, 1991 
Ratcliffe, 1988 
Reiche, 1847 
Reiche & Saulcey, 1856 
Reitter, 1887a, 1887b, 1889, 1890a, 1890b, 1891, 

1892, 1894, 1895, 1897, 1898, 1899, 1900a, 1900b, 
1901, 1904, 1906a, 1906b, 1907, 1908, 1909 

Robinson, 1938, 1939, 1940, 1946, 1947 
Roth, 1851 
Ruiz, 1998 
Sahlberg, 1908 
Say, 1823, 1824, 1825, 1835 

Saylor, 1935, 1940 
Schaeffer, 1907 
Schmidt, A., 1906, 1907a, 1907b, 1908a, 1908b, 

1908c, 1908d, 1908e, 1908f, 1908g, 1909a, 1909b, 
1909c, 1909d, 1909e, 1909f, 1909g, 1909h, 1909i, 
1910, 1911a, 1911b, 1911c, 1911d, 1911e, 1912, 
1913, 1916, 1920, 1922a, 1922b 

Schmidt, W., 1840 
Schönherr, 1806 
Schoolmeesters & Vandenheuvel, 1999 
Scopoli, 1763 
Seidlitz, 1891 
Semenov, 1898a, 1898b, 1903a, 1903b, 1903c 
Semenov & Medvedev, 1927, 1928, 1929 
Sharp, 1878 
Sietti, 1903 
Skelley & Gordon, 1995, 2001 
Skelley & Woodruff, 1991 
Solsky, 1874, 1876 
Stebnicka, 1973, 1975, 1978, 1981a, 1981b, 1981c, 

1981d, 1982, 1983, 1985, 1986a, 1986b, 1988a, 
1988b, 1989, 1990, 1992, 1993, 1994, 1997, 1998 

Stebnicka & Galante, 1991, 1992 
Stebnicka & Howden, 1994, 1995 
Stebnicka & Skelley, 2005 
Sturm, 1800, 1805 
Tesaį, 1945, 1969 
Théry, 1918, 1925 
Thunberg, 1818 
Van Dyke, 1918, 1928, 1933 
Veiga, 1984 
Villiers, 1950 
Všetečka, 1939 
Walker, 1858, 1871 
Walter & Endrödi, 1981 
Waltl, 1835 
Warner & Skelley, 2006 
Waterhouse, 1875 
Westwood, 1839 
Wickham, 1913 
Wiedemann, 1823 
Ziani, 2002 
Zinchenko, 2003 

Table 1. List of references consulted about original descriptions of Aphodiini species 
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also used to measure the degree of nestedness, which considers the number of discrepancies 
(absences or presences) that must be erased to produce a perfectly nested matrix (Brualdi & 
Sanderson, 1999). A third calculated index, NODF (nestedness based on overlap and 
decreasing fill), enabled me to differentiate between portions of overall nestedness introduced 
by species differences (NODFr) and site differences (NODFc) (Almeida-Neto et al., 2008). 

These calculations were carried out using NODF program (Ulrich, 2010). To measure these 
indexes, fixed row and column constraints (Gotelli, 2000) and 1000 matrices for computing 
confidence limits of the null model were chosen, while the rest of parameters were those 
recommended by the NODF program. 

2.4 Relationships among biogeographical traits 

The relationship between the number of biogeographical regions in which each species is 
present and its mean body size was analyzed. The independence between these variables 
was tested using a chi-squared test and the shape of the relationship was analyzed by a 
boundary test. Simulated random matrices were built by reshuffling the observed values of 
each pair of variables analysed with a similar number of data points, as in the original data 
set. Thus, the variances and distributions of the original variables were retained, while the 
covariance between them was eliminated. These analyses were accomplished using the 
Macroecology module of the EcoSim package (Gotelli & Entsminger, 2011) by selecting 1,000 
iterations, an asymmetrical data distribution with an upper left triangle shape, constraints 
defined by data, and upper right boundary tests, according to the relationship studied. 

2.5 Similarity analyses 

A sequential agglomerative, hierarchical and nested clustering (SAHN; Sneath & Sokal, 
1973) was carried out for a simple examination of the faunistic similarities among 
biogeographical regions. This analysis takes into account information on the presence-
absence of each species in the six biogeographical regions. A Jaccard similarity coefficient 
was calculated for regional pairs and Ward’s linkage rule was applied. An analysis of 
similarities (ANOSIM) was used to test statistically whether there was a significant 
difference between the groups derived from the cluster analysis. Primer v.6 software was 
used in these calculations (Clarke & Gorley, 2005). In this analysis, the statistic Global R 
measures the difference of mean ranks of distance between and within groups. The 
maximum number of possible permutations was selected (n = 60).  

A parsimony analysis of endemicity (PAE; Rosen, 1988; Rosen & Smith, 1988) was also 
carried out, which allows a grouping procedure of areas as if species were synapomorphies 
and regions were taxa. PAE offers an opportunity to assess relationships between different 
faunas in the absence of more comprehensive data. A hypothetical region containing no taxa 
was considered as an out-group. Winclada (Nixon, 2002) and TNT programs (Goloboff et al., 
2003) were used to search for the most parsimonious tree by means of a ratchet procedure 
and to determine confidence levels using bootstrap and Bremer support methods. 

2.6 Mantel tests 

Simple non-partial Mantel tests (Mantel, 1967) were carried out to check possible 
correspondences of Aphodiini species regional composition to other characteristics of the 
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biogeographical regions. A dissimilarity matrix for the six biogeographical regions based on 
Aphodiini species (APH) was built from the Aphodiini species-region matrix. Similarity 
among regions was based on the Jaccard index, and later changed to dissimilarity (1- 
similarity index). According to the indicated procedure of Cabrero-Sañudo & Lobo (2009), 
four other different dissimilarity matrices were obtained: two additional biological traits, 
Scarabaeinae genera (SCA; A.L.V. Davis et al., 2002) and mammal families (MAM; Smith, 
1983); one ecological trait, Bailey ecoregions (ECO; Bailey, 1998); and one historical trait, 
land continuity (LC; Sanmartín & Ronquist, 2004). Mantel tests were carried out to compare 
the five matrices using the PASSaGE program (Rosenberg & Anderson, 2011). Simple 
Bonferroni P-values adjusted for multiple statistical tests, sequential Bonferroni values and 
original probabilities were jointly examined in order to interpret correlation results (Moran, 
2003). 

3. Results 

3.1 Basic data by biogeographical region 

Table 2 lists the descriptive data for each biogeographical region worldwide, based on the 
information obtained for a total of 2,052 Aphodiini species described up to date. 

According to subtribes, these species are distributed into 1,958 Aphodiina, 45 Didactyliina 
and 49 Proctophanina. The Palaearctic region has the highest number of Aphodiini species 
(almost 41% of the total), followed by the Palaeotropical (more than 36%), Nearctic (around 
15%), Oriental (7%), Neotropical (6.7%) and Australian (more than 3%) regions. The 
Palaearctic region is the richest for Aphodiina species, while the Palaeotropical region is the 
richest for Didactyliina and Proctophanina species. 

A relationship between the number of species and area was observed. After examining 
different nonlinear procedures, a simple linear fit between the number of species and area 
(R = 0.81, R2 = 66.06%, F = 7.79, P < 0.05) was the best test. The linear relationship between 
the number of species and area shows that around 15.94 species are added per million 
square kilometres. Also, the Oriental and Palaeotropical regions have a comparatively 
higher number of species than predicted in relation to area, while the Palaearctic, 
Australian, Nearctic and Neotropical regions have comparatively lower numbers (Figure 1). 
The variation in the number of species among biogeographical regions differs significantly 
from a uniform distribution (expected species [mean] = 373.17, χ2 = 1498.70, d.f. = 5, P < 
0.00001), but also from the number of species expected according to the previously obtained 
area-species relationships (species: χ2 = 545.38, d.f. = 5, P < 0.0001). 

The mean percentage of species from genus varies among regions (Kruskal-Wallis ANOVA 
by ranks test; KW = 61.06, P < 0.0001), the Palaearctic and the Palaeotropical regions holding 
the highest values (more than 30% of species per genus). After applying Bonferroni criteria 
(P < 0.0033), the analyses show that the percentages are significantly different among the 
faunas of the Palaeartic and the Neotropical, Oriental and Australian regions, the Nearctic 
and the Oriental regions, and among the Palaeotropical and the Oriental and Australian 
regions. In fact, a significant positive relationship has been observed between the mean 
percentage of species from genus and the number of species (R = 0.97, R2 = 93.82%, F = 
60.68, P = 0.001), so that those regions with higher numbers of species also have a better 
representation of within-genus diversity. 
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 Palaeotropical Australian Nearctic Neotropical Oriental Palaearctic 

       
Approximate area  
(x 106 km2) 

22.1 7.7 22.9 19.0 7.5 54.1 

       
Species       
Aphodiini 748 68 306 137 145 835 
   Aphodiina 681 59 302 126 145 827 
   Didactyliina 26 0 3 10 0 8 
   Proctophanina 41 9 1 1 0 0 
Number of endemic 
species 

721 57 222 60 80 751 

Percentage of endemic 
species 

96.39 83.82 72.55 43.80 55.17 89.94 

Ratio of endemic/non-
endemic species 

26.70 5.18 2.64 0.78 1.23 8.94 

   Endemic Aphodiina 656 49 220 51 80 744 
   Endemic Didactyliina 25 0 2 9 0 7 
   Endemic Proctophanina 40 8 0 0 0 0 
Number of regions per 
species (± SD) 

1.06 ± 0.38 1.46 ± 1.15 1.32 ± 0.63 1.67 ± 0.80 1.59 ± 0.86 1.12 ± 0.43 

Body size per species 
(± SD) (mm) 

4.81 ± 2.19 5.90 ± 1.99 5.45 ± 1.54 5.19 ± 1.69 4.92 ± 2.07 5.39 ± 1.90 

Body size per endemic 
species (± SD) (mm) 

4.81 ± 2.21 5.95 ± 2.03 5.44 ± 1.53 4.98 ± 1.96 4.56 ± 1.93 5.39 ± 1.88 

Number of species per 
genus (± SD) 

7.79 ± 13.54 4.00 ± 7.93 4.94 ± 6.50 2.85 ± 3.79 3.54 ± 3.49 6.90 ± 9.64 

Number of species per 
endemic genus (± SD) 

4.08 ± 4.61 8.50 ± 12.77 3.00 ± 2.83 1.82 ± 1.40 1.00 ± 0.00 3.79 ± 5.40 

Percentage of species 
from genus (± SD) 

30.64 ± 42.83 2.90 ± 15.26 18.73 ± 36.99 12.15 ± 30.74 5.14 ± 16.12 42.20 ± 46.09 

Percentage of endemic 
species from genus (± SD)

74.57 ± 34.75 33.08 ± 44.69 57.25 ± 46.61 41.87 ± 47.57 17.83 ± 24.50 79.42 ± 32.52 

Table 2. Characteristics of worldwide regional faunas of Aphodiini according to species 
(unless specified, values are referred to species numbers). 

The mean body size of species also varies among regions (Kruskal-Wallis ANOVA by ranks 
test, KW = 125.01, P < 0.0001), and considering Bonferroni criteria (P < 0.0033) the size of 
species present in the Palaeotropical and Oriental regions is smaller and significantly differs 
from species size at the Palaearctic, Nearctic, Australian and Neotropical (only for the 
Palaeotropical) regions. Also, the mean body size of endemic species is different among 
regions (Kruskal-Wallis ANOVA by rank test, KW = 125.43, P < 0.0001): Palaeotropical and 
Oriental endemic species are significantly (Bonferroni corrected) smaller than those in 
Nearctic, Australian and Palaearctic (only those Palaeotropical) regions. 

3.2 Endemic species 

Within Aphodiini, Proctophanina is the subtribe with the highest percentage of endemic 
species (98%), followed by Didactyliina (96%) and Aphodiina (92%). Both Palaearctic and 
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Fig. 1. Linear regression between area and richness of Aphodiini species, according to 
biogeographical regions (rs = 0.81; P = 0.05). Number of sps. = 19.11 + 15.94�area (km2 x 106) 

Palaeotropical regions have the highest numbers of endemic Aphodiina species. The 
Palaeotropical region contains the maximum numbers of endemic species from Didactyliina 
and Proctophanina subtribes. Most of the Aphodiini species are only present in one 
biogeographical region (90%, 1,851 species), with the Palaearctic (751 species) and 
Palaeotropical (721 species) regions having the highest percentage (around 80%) of total 
endemic species (Figure 2). 

The number of endemic and total species richness are related (rs = 0.996, P < 0.0001), while 
the number of endemic and non-endemic species are not related (rs = 0.04, P = 0.94). The 
ratio between endemic and non-endemic species is low in the Australian, Nearctic, 
Neotropical and Oriental regions, but is high in the Palaeartic region and very high in the 
Palaeotropical region (Table 2). Around 90% or more of total species in each of these two 
latter regions are endemic. As expected, the numbers of endemic species are significantly 
different from a uniform distribution among regions (expected species [mean] = 315.17, χ2 = 
1746.36, d.f. = 5, P < 0.0001). 

Body size differs significantly between endemic and non-endemic species (Mann-Whitney 
U-test, U = 136.768, n1 = 1,891, n2 = 161, P < 0.05, endemic species size = 5.15 ± 2.01 mm, non-
endemic species size = 5.36 ± 1.84 mm), with non-endemic species usually larger than 
endemic species. Moreover, the boundary test shows that 2,048 (out of 2,052) data points 
have been observed within the left triangle of the relationship between species body size 
and number of biogeographical regions (Figure 3). However, this test confirms that the 
upper right-hand corner of the space is not unusually empty, and the observed number of 
points is not significantly lower than the number of randomly estimated points (P = 0.61). 
There is a tendency for endemic Aphodiini species to have more variable body sizes while 
non-endemic species are progressively smaller as biogeographical range increases; however, 
this pattern is not statistically significant. 
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Fig. 2. Distribution of Aphodiini species in each biogeographical region, according to 
categories representing the number of regions in which each species occurs 

 
Fig. 3. Relationship between number of biogeographical regions in which Aphodiini species 
are present and their body size. The broken line represents a possible constraint on this 
relationship, according to a boundary test (upper-right corner of space, observed points not 
significantly lower than the number of simulated points, P = 0.61) 
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The mean percentage of endemic species from genus also varies among regions (Kruskal-
Wallis ANOVA by ranks test, KW = 54.66, P < 0.0001): again the Palaearctic and the 
Palaeotropical regions showed the highest numbers (more than 74% of endemic species 
from each genus). Taking into account Bonferroni criteria (P < 0.0033), Palaearctic, 
Palaeotropical, Nearctic and Neotropical percentages differ significantly from those of the 
Oriental region. A positive and significant relationship between the mean percentage of 
species from genus and the mean percentage of endemic species from genus also exists (R2 = 
0.76, F = 12.51, P < 0.05), meaning that regions with a higher number of species from a genus 
will have more endemic species from that genus. 

The number of species per endemic genus does not differ significantly among regions 
(Kruskal-Wallis ANOVA by ranks test, KW = 9.18, P = 0.10), but the number of species per 
genus differs among regions (Kruskal-Wallis ANOVA by rank test, KW = 17.64, P < 0.005): 
both Palaeotropical and Palaearctic have the highest values and differ significantly from the 
Neotropical region. The number of species per genus and per endemic genus is not related 
due to the Australian region supporting a great number of species in most of its endemic 
genera (R2 = 0.03, F = 0.12, P > 0.05). However, when Australian data are omitted, a 
significant and positive relationship is detected (R2 = 0.85, F = 17.57, P < 0.05), indicating 
that regions with high numbers of species per genus normally have more species in endemic 
genera. 

The number of non-endemic Aphodiini species is not correlated to the number of species 
per genus (P = 0.79), but a marginally negative relationship exists between the number of 
non-endemic species and the mean number of species per endemic genus (R2 = 0.56, F = 
5.03, P = 0.09). So, those regions with more widely distributed species tend to have fewer 
species in each of its endemic genera. 

3.3 Non-random patterns of species distribution 

The number of regions in which each species occurs (its biogeographical extent) was 
calculated and the distribution of the different extent categories was estimated for each 
biogeographical region (Fig. 2). The mean number of regions per species is reported in Table 
2. The biogeographical extent of the species (Kruskal-Wallis ANOVA by ranks test, KW = 
391.33, P < 0.0001) differed significantly among biogeographical regions. Paired post hoc 
comparisons using Bonferroni criteria (P < 0.0033) show that biogeographical extent differs 
significantly among the faunas of all regions (P < 0.001), except those of the Palaearctic and 
Australian regions, the Nearctic and the Australian regions, and the Neotropical and the 
Oriental regions. The mean biogeographical extent is negatively and statistically 
significantly related to the number of species (R2 = 0.83, F = 18.90, P < 0.05) and the number 
of endemic species (R2 = 0.86, F = 24.62, P < 0.01) present in each region. These results 
suggest that regions with higher numbers of Aphodiini species usually support narrowly 
distributed species, and vice versa. 

The total number of possible paired relationships among the six biogeographical regions is 
63. However, only 22 different species distributions were detected (Figure 4A). For example, 
no species are distributed simultaneously and exclusively in the Palaeotropical and 
Australian regions, or in the Palaearctic and Neotropical regions. Therefore, observed 
frequencies do not fit the expected supposition that all possible combinations of 
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relationships among regions are equally probable (χ2 = 165.64, d.f. = 5, P < 0.0001). This 
result highlights the existence of concrete and non-random distribution patterns for the 
Aphodiini species. In fact, the co-occurrence analysis provided an observed C-score that was 
significantly higher than randomly expected (Cobserved = 0.78, Cexpected = 0.75, P = 0.001). This 
indicates that some groups of species were repeatedly present in specific biogeographical 
regions, and therefore showed coincident diversity patterns (Figure 4B). 

The matrix fill (number of occupied cells divided by total number of cells) given by the 
NODF program was only 18.18%. Nestedness temperature in the data matrix was 38.62°, 
which was statistically higher (P < 0.001) than the estimated temperature of 34.84° (± 0.68°). 
Furthermore, the observed BR index was also higher than the expected value (BRobserved = 
1,360, BRexpected = 1,280.27 ± 5.76, P < 0.001). In addition, the observed NODF index was 
significantly lower from the estimated value (NODFobserved = 5.37, NODFexpected = 8.10 ± 0.15, P 
= 0.001). Although NODFr sub-index values were similar to global NODF, observed NODFc 
(nestedness based exclusively on sites) was significantly higher than the expected value 
(NODFcobserved = 11.24, NODFcexpected = 8.34 ± 0.38, P = 0.001). These results suggest that a 
genuine pattern of nestedness exists among regional faunas, although this pattern is 
concealed as a consequence of non-nested endemic species. 
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Fig. 4. Patterns of distribution for Aphodiini species. (A) Expected (left) vs. observed (right) 
numbers of combinations of shared regions according to genera distributions; (B) 
Representation of the different regional relationships for Aphodiini species. Region size is 
proportional to the number of endemic Aphodiini species, whereas arrow and box widths 
are proportional to the number of species with similar patterns for each relationship 

3.4 Similarity among biogeographical regions 

The dendrogram of faunistic similarity based on Aphodiini species revealed that the 
Nearctic and the Neotropical regions are most similar (Figure 5A). The Palaearctic and the 
Oriental regions also are similar, and together are closer to the Australian region, and 
narrowly followed by the Palaeotropical. The ANOSIM test shows that the Neotropical-
Nearctic and the Palaearctic-Oriental pairs are statistically significant. According to this 
analysis, the most probable similarity configuration is made up of the following three 
groups (Global R = 0.68, P = 0.08): i) Nearctic-Neotropical; ii) Palaearctic-Oriental-
Australian; and, iii) Palaeotropical. 
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The dendrogram of faunistic similarity based on parsimony and shared species showed a 
unique tree (length = 2085, consistency index = 0.98, retention index = 0.80, autapomorphies 
included; Figure 5B). The Palaearctic-Oriental and Nearctic-Neotropical region pairs again 
are observed. The Palaearctic-Oriental clade is closer to the Palaeotropical region, and 
together are joined in a clade that is closer to the Australian region. Bootstrap validation 
confirmed the Palaearctic-Oriental (100%), the Palaearctic-Oriental-Palaeotropical-
Australian (76%), and the Nearctic-Neotropical clades (100%). Bremer support also showed 
highest number of steps (>30) for the Palaearctic-Oriental and the Nearctic-Neotropical 
clades. Although the Palaeotropical region appears to be closer to the Palaearctic-Oriental 
clade than the Australian region; however, there was insufficient data for bootstrapping or 
Bremer supports to confirm similarity. 
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Fig. 5. Dendrogram of faunistic similarity among worldwide regions based on distributions 
of Aphodiini species. (A) Sequential agglomerative, hierarchical, and nested clustering 
analysis. Dotted clades are well supported, according to the ANOSIM test; (B) Parsimony 
analysis of endemicity. Left values refer to bootstrap support; right values to Bremer 
support. Regions: PTR, Palaeotropical; AUS, Australian; NEA, Nearctic; NEO, Neotropical; 
ORI, Oriental; PAR, Palaearctic 

3.5 Independence of regional traits 

The dissimilarity in the Aphodiini species composition among biogeographical regions was 
significantly and positively related to the genera composition of the Scarabaeinae dung 
beetles (Mantel test correlation coefficient (ρ) = 70.13%, P < 0.005; when both simple and 
sequential Bonferroni corrections are considered). A positive correlation between Aphodiini 
species composition and the geological time of separation among the biogeographical 
regions approaches significance (ρ = 43.83%, P = 0.059). 

As showed in Cabrero-Sañudo & Lobo (2009), regional distribution of Scarabaeinae was 
positively related with mammal composition (ρ = 68.45%, P = 0.005) and the geological time 
of separation among biogeographical regions (ρ = 76.68%, P = 0.002; when both simple and 
sequential Bonferroni corrections are considered). Regional mammal distribution also was 
positively related with the geological time of separation among biogeographical regions (ρ = 
62.78%, P = 0.006; when a sequential Bonferroni correction was used). The regional 
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dissimilarity in ecoregions did not show any significant correlation with any biological or 
historical trait. 

4. Discussion 

4.1 Existence of non-random distribution patterns 

These results imply that the faunistic composition of Aphodiini species present in different 
biogeographical regions follows a geographically structured pattern. Co-occurrence and 
nestedness analyses suggest that there is a reliable relationship among Aphodiini faunas, 
although each biogeographical region is singular on its own and holds more endemic 
species than shared ones (except for the Neotropical region, with most of its species also 
distributed in the Nearctic region, particularly at the Mexican Transition Zone). The most 
frequent distribution patterns of shared species are related to the ‘Old World faunas’ 
(Palaearctic, Oriental, Palaeotropical and Australian regions) or the ‘New World faunas’ 
(Nearctic and Neotropical regions), being these two groups of regions also supported by the 
similarity analyses. Mantel test revealed a nearly significant relationship between historical 
and biological traits, so long-term land continuity and proximity may play a unifying role in 
regional faunas. In fact, when higher taxa are tested (for example, genera, as in Cabrero-
Sañudo & Lobo, 2009), this relationship turns significant. 

The Palaearctic and Palaeotropical regions have the highest numbers of species and endemic 
species. These two regions have a considerable singular faunistic composition (for example, 
presence of more endemic lineages or genera; Cabrero-Sañudo & Lobo, 2009), or many more 
species than expected (as in the Palaeotropical region). This result may be partly due to the 
area or the environmental heterogeneity of these regions, although results show that the 
compositional differences do not seem to be related to ecoregional dissimilarity. This points 
to historical reasons that could have influenced current distribution patterns. 

Taking into account all these results, two main types of regions for Aphodiini may be 
considered: macroevolutionary sources – those with a long history as producers or 
distribution centres for many lineages – and sink regions, which are those with colonization 
processes and recent radiations as important shapers of current faunas (Goldberg et al., 
2005). Within the first type, both the Palaearctic and Palaeotropical regions may be included, 
although the Nearctic region to some extent and the nexus between the Nearctic and the 
Neotropical regions (the Mexican Transition Zone) should not be neglected. On the contrary, 
the Australian, Neotropical and Oriental regions, although with singular faunas, could be 
included within the second type, based on the lower numbers of species, endemic species 
and lineages (Cabrero-Sañudo & Lobo, 2009). 

4.2 Diversification and distribution range 

Regions with a lower Aphodiini diversity usually have widely distributed species. This may 
be due to the fact that the greatest percentage of regional Aphodiini faunas consists of 
endemic species, so those regions with fewer species will have a proportionately greater 
representation of widespread species. Widely distributed species are able to colonize more 
biogeographical regions because they usually have greater environmental tolerances. This 
could be interpreted as a variation of Rapoport’s rule (the size of species distributional 

www.intechopen.com



 
Global Advances in Biogeography 

 

344 

ranges increases with latitude; Rapoport, 1975), as one explanation for this rule is that 
seasonal variability fosters a greater climatic tolerance, and therefore wider latitudinal 
ranges (Letcher & Harvey, 1994; Stevens, 1996). 

Moreover, the phylogenetic relationships among species in a biogeographic region are likely 
higher within the region than with species from other regions. This has been indicated by 
the fact that regions with large numbers of species carry a greater number of species per 
genus and a higher percentage of species per genus. Thus, those regions with favourable 
environmental conditions to accommodate a greater number of Aphodiini species also could 
have functioned as speciation centers (macroevolutionary source regions, as the Palaearctic 
and Palaeotropical).  

It has been pointed that the environmental tolerance of species may be related to 
ecophysiological adaptations at higher taxonomic levels (Hawkins et al., 2006; Ricklefs, 
2006). Although the geographic distribution of a lineage (genus) could then be related to its 
tolerance at a large scale, favourability and diversity of environmental conditions could 
promote an ecological diversification (spatial, seasonal, altitudinal, feeding, etc.) even 
among related species (Del Rey & Lobo, 2006; Finn & Gittings, 2003; Gittings & Giller, 1997; 
Hanski, 1991b). This ecological diversification would act on endemic or non-endemic 
lineages equally, as it has been noted that the number of species per genus within a region 
and the number of species per endemic genus are positively related. 

4.3 Endemic and non-endemic species 

The total species richness and the number of endemic species are related; this is probably 
due to a greater percentage of endemic species versus non-endemic ones. Actually there is a 
significant difference in regional species numbers between endemic and non-endemic 
species. A total of 1,891 out of the 2,052 Aphodiini species (92%) are endemic to a single 
region; less than one tenth of species are shared among regions. Widely distributed species 
usually correspond to those of a known wide ecological spectrum and opportunistic nature. 
For example, the three most widely distributed species, Calamosternus granarius (Linnaeus, 
1767) (present in all biogeographical regions), and Aphodius fimetarius (Linnaeus, 1758) and 
Labarrus pseudolividus (Balthasar, 1941) (present in five biogeographical regions), show a 
higher climatic tolerance, are not strictly coprophagous, and can alternatively behave as 
saprophagous, fungivorous or cleptoparasites (Cabrero-Sañudo et al., 2010; Veiga, 1998). 

The correlation between total numbers of endemic and non-endemic species is almost 
nonexistent, probably because world biogeographical regions have partially independent 
evolutionary histories. In fact, regions with the least number of non-endemic species are the 
Palaeotropical and the Australian (27 and 11 non-endemic species, respectively), while the 
other regions have from 65 to 84 non-endemic species registered. This may indicate that 
recent continental isolation of these two regions could have prevented introduction of many 
broadly distributed species. Moreover, regions with a lower number of non-endemic 
Aphodiini tend to have more species per endemic genus. This fact could point to 
competition between widespread, better adapted and more competitive species and 
endemic, more specialized species (although see Finn & Gittings, 2003) or certain speciation 
process that could occur in isolated territories (Gillespie & Roderick, 2002). 
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Another observed relationship is the positive relationship between the percentage of species 
from a genus and the percentage of endemic species from a genus, so regions with a greater 
number of species per genus do so at the expense of having a greater number of endemic 
species for that lineage. This again relates to the role as species generators of those regions 
that have showed favourable conditions for Aphodiini along the time. 

4.4 Body size 

Among Aphodiini genera, body size is a trait that shows no significant pattern with respect 
to geographical distribution, although it may be noted that some large genera are endemic 
to a single region (Cabrero-Sañudo & Lobo, 2009). However, species mean body size does 
significantly vary among different biogeographic regions. Thus, both Aphodiini species and 
endemic species from Palaeotropical and Oriental regions are smaller than those in other 
regions, especially the Australian, Nearctic or Palaearctic regions. Those species distributed 
in areas of temperate or cold climates (Nearctic or Palaearctic) may be larger, as a variation 
of Bergmann’s rule for endotherm animals (Bergmann, 1847) which has also been observed 
for some insects (Blanckenhorn & Demont, 2004). Yet a large size also could be a 
consequence of the presence of ancient lineages (a possible variation of Cope’s rule: taxa 
increase in body size over evolutionary time; Cope, 1887) or insularity (Gould & 
MacFadden, 2004). The first of these alternatives may occur among Palaearctic Aphodiini, as 
it has also been observed for Scarabaeinae in the Palaeotropical region (A.L.V. Davis et al., 
2002). On the other hand, ‘island’ gigantism may have occurred among Australian 
Aphodiini, as indicated by the giant wetas of New Zealand, Madagascan cockroaches and 
millipedes, deep sea gastropods (McClain et al., 2006), and island vertebrates (Lomolino, 
2005; but also see Meiri et al., 2008). 

Nevertheless, non-endemic species are generally significantly larger than endemic ones, 
although endemic Aphodiini species have a greater diversity of body sizes. Aphodiini are 
not very good dispersers (Roslin, 2000; Roslin & Koivunen, 2001), so larger species would 
probably have a greater advantage to move and occupy new territories than smaller ones. In 
other species groups (for example, mammals or birds), larger species tend to occupy broader 
distributional areas (Brown, 1995). 

4.5 Regional characteristics 

The Palaearctic region presents the highest number of total and endemic Aphodiini species; 
however, while the Palaearctic has the highest number of species and endemics of 
Aphodiina, it does not support any Proctophanina. Together with the Palaeotropical region, 
it also shows the highest ratio of endemic/non-endemic species, indicating the great 
importance of endemics to the composition of its fauna. In fact, the species inhabiting the 
Palaearctic show the second lowest mean number of regions per species compared with 
those of other regions. The mean percentage of species from genus is the highest, whereas 
the number of species per genus is the second highest with respect to the other regions; this 
may be pointing to a possibly greater speciation rate for Palaearctic lineages. Also, the mean 
percentage of endemic species from genus is the highest in relation to the other regions. 
Aphodiini are usually the most common species group in dung beetle communities in the 
Palaearctic (Hanski, 1991b). In this region, they display the highest diversity of lineages and 
endemic genera (Cabrero-Sañudo & Lobo, 2009) and the greatest abundance of individuals 
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in northern communities compared with other scarabaeid taxa (Hanski, 1991b; Gittings & 
Giller, 1997, 1998; Roslin & Koivunen, 2001; Finn & Gittings, 2003). The best studied area in 
the world has traditionally been the Western Palaearctic, in which Aphodiini taxonomy has 
attracted much attention, although many Aphodiini species may still remain undiscovered 
(Cabrero-Sañudo & Lobo, 2003). The only phylogenetic studies conducted on Aphodiini 
evolution were based on Iberian species within the Palaearctic (Cabrero-Sañudo & Zardoya, 
2004; Cabrero-Sañudo, 2007) and showed that most of the earlier branches of Aphodiini are 
of Palaearctic or Holarctic in distribution. While this may support the hypothesis of a 
Laurasian origin of Aphodiini, the geographical and taxonomic scope of those studies was 
limited. Nevertheless, the oldest known fossil evidence for Aphodiini is from the Paleocene, 
with many other fossils from subsequent epochs (Figure 6; Krell, 2007). 
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Aphodius mediaevus Wickham, 1914

Aphodius praeemptor Wickham, 1913

Aphodius restructus (Wickham, 1912)

Aphodius senex Wickham, 1914

Aphodius shoshonis Wickham, 1912

Oxyomus nearcticus Wickham, 1914

Aphodius precursor Horn, 1876

Aphodius charauxi Piton, 1940

Aphodius theobaldi Krell, 2000

Aphodius anteactus Krell, 2000

Aphodius brevippenis Heer, 1862

Aphodius meyeri Heer, 1847

Aphodius boryslavicus Łomnicki, 1894

Aphodius rhinocerontis Łomnicki, 1894

Aphodius ruthenus Łomnicki, 1894

Aphodius subater Łomnicki, 1894
Aphodius bosniaskii Handlirsch, 1907

Aphodius helvolus Statz, 1952

Aphodius krantzi Heyden & Heyden, 1866

Aphodius schlickumi Statz, 1952

 
Fig. 6. Sites where extinct Aphodiini fossil species have been found, according to Krell 
(2007). For each site, a list of described species is provided. In most cases, the genus of the 
species is Aphodius Illiger, 1758, as they have not been yet classified into suitable genera. 
Geologic epoch of lagerstätten represented by geometric figures: i) triangle, Paleocene; ii) 
square, Eocene; iii) pentagon, Oligocene; and, iv) circle, Pleistocene. 

The Palaeotropical region also shows important numbers of total and endemic species of 
Aphodiini. Its endemic/non-endemic species ratio is the highest and almost three times that 
of the next highest region, the Palaearctic. Thus, the mean number of regions per species is 
the lowest compared with other regions. Aphodiina is well represented, with both second 
highest numbers of species and endemic species. Also, both Didactyliina and Proctophanina 
show the highest species and endemic species richness in this region. Although 
Palaeotropical dung beetle communities tend to be dominated by Scarabaeinae individuals 
(Cambefort, 1991; A.L.V. Davis et al., 2002; Doube, 1991), some studies show that the 
abundance of Aphodiini in some localities can sometimes be very high, or even the highest 
(Bernon, 1981; Krell et al., 2003; D. Rougon & C. Rougon, 1991). However, the mean body 
size of Palaeotropical species is the lowest in relation to other regions, and the mean body 
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size of endemic species is also the second lowest. The Palaeotropical region holds the second 
highest mean percentage of species from genus, the second highest mean percentage of 
endemic species from genus, and the highest mean number of species per genus. In 
addition, the relatively recent isolation of the Palaeotropical region with respect to other 
regions could explain its having the second lowest number of non-endemic species and the 
largest number of species per endemic genus. So, together with the Palaearctic region, the 
Palaeotropical region can be considered as a macroevolutionary source region, possibly 
acting as a refuge and/or a recent diversification centre for Aphodiini species. However, 
there is as yet no record for Tertiary or Quaternary Aphodiini fossils within the 
Palaeotropical region (Krell, 2007), possibly a consequence of limited preservation, 
prospecting efforts, and/or recent Aphodiini species diversification.  

The Oriental region is the fourth most prominent in terms of number of species, all of which 
are from the subtribe Aphodiina. Although this region hosts a few more species than 
expected according to its area, it is the third lowest in terms of endemic species, has the 
second lowest endemic/non-endemic species ratio, and has one of the greatest mean species 
distribution ranges, sharing many species with the Palaearctic region (61 out of 65 non-
endemic species). This region has the second lowest mean body size per species, the lowest 
mean body size of endemic species, the second lowest percentage of species from genus, the 
lowest mean percentage of endemic species from genus, the second lowest number of 
species per genus, and the lowest number of species per endemic genus. The Oriental region 
may have had less environmentally favourable conditions for Aphodiini species, so that 
widely distributed species would have been proportionately more successful. This suggests 
the Oriental region to be mainly a macroevolutionary sink for Aphodiini species. Studies on 
dung beetle communities carried out in the Oriental region frequently omit results for 
Aphodiini or show that they represent a small proportion of local Scarabaeidae richness (c. 
4-10% of species; A.J. Davis, 2000; A.J. Davis et al., 2001; Hanski & Krikken, 1991; Shahabuddin 
et al., 2005). However, most of those studies were conducted on island communities, and there 
is a conspicuous lack of study of continental communities, particularly considering the likely 
species richness and abundances for Aphodiini. As for the Palaeotropical region, there is as yet 
no fossil evidence for Aphodiini in the Oriental region (Krell, 2007). 

The Nearctic region has the highest number of Aphodiini species and endemic species in the 
New World, hosting representatives from the three tribes, although only Aphodiina and 
Didactyliina contain endemic species. In relation to the other regions, the Nearctic has the 
third highest number of species and endemics. Moreover, the Nearctic region supports the 
third highest mean percentage of species from genus, endemic species from genus, and 
number of species per genus. These facts define the Nearctic as a mainly macroevolutionary 
source region for Aphodiini. Several Nearctic species are shared with the Neotropical region 
(77 out of 84 non-endemic species), and many of them are endemic to the Mexican 
Transition Zone, although with a Nearctic or Holarctic origin (Cabrero-Sañudo et al., 2007, 
2010). Aphodiini are usually the dominant species group in northern dung beetle 
communities in the Nearctic region (Lobo, 2000, and references therein). Also, Nearctic 
region total and endemic species have the second greatest mean body size per species, 
probably due to colder climates or presence of older lineages. This region also has displayed 
an ancient presence of Aphodiini, with the first Nearctic fossil records dating from the 
Oligocene, a little more recent than those of the Palaearctic (Krell, 2007). 
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The Neotropical region holds the second lowest richness for species and endemic species, 
and holds the least number of species on the basis of the region’s land area. Although it 
hosts species from the three different subtribes, there are only endemic representatives from 
the Aphodiina and Didactyliina. It shares several Aphodiini species with the Nearctic region 
(all its non-endemic species), mainly endemic from the Mexican Transition Zone (Cabrero-
Sañudo et al., 2007, 2010). Its ratio of endemic/non-endemic genera and the mean number of 
species per genus are the lowest, and the mean number of species per endemic genus is the 
second lowest. These facts point to the Neotropical having probably acted as a 
macroevolutionary sink region. Few studies on Neotropical dung beetle communities have 
taken Aphodiini into consideration. Although very few Aphodiini species are represented in 
those communities, they can be very abundant (Andresen, 2002). No Aphodiini fossil 
records have been found for this region. 

The Australian region shows the lowest numbers of Aphodiini species and endemic species, 
with only two subtribes (Aphodiina and Proctophanina) represented in the region. The 
mean percentage of species from genus is also the lowest, whereas the mean percentage of 
endemic species from genus is the second lowest, after the Oriental region. However, the 
number of species per endemic genus is the highest, in relation to other regions. Due to its 
isolation, the Australian region seems to have received occasional representatives (widely 
distributed, generalist species) of different lineages over time. Some of these colonizing 
species likely led to the emergence of endemic genera, which then diversified. 
Consequently, the Australian region appears to have acted as a macroevolutionary sink with 
regard to Aphodiini lineages, but has served as a source region with regard to species. 
Australian species also display the largest mean body size per species and per endemic 
species compared with other regions, indicating a possible island gigantism or the presence 
of ancient lineages. With regard to abundance and species richness, Scarabaeinae dominate 
northern Australian dung beetle communities, while southern Australian communities are 
dominated by endemic species of Aphodiini (Doube et al., 1991; Steinbauer & Weir, 2007). 
There is as yet no fossil record for Aphodiini in this region, due to causes similar to those of 
the Palaeotropical, Oriental and Neotropical regions. 

4.6 A synthesis of Aphodiini evolution and historical biogeography 

The main radiation of Scarabaeoidea dates from the Mesozoic and Cenozoic ages (A.L.V. 
Davis et al., 2002; Krell, 2000; Scholtz & Chown, 1995), but Aphodiini probably did not 
separate from the Scarabaeidae main lineage and from the other Aphodiinae subfamilies 
until the Jurassic or Cretaceous (Krell, 2000). The radiation of coprophagous beetles 
presumably happened as dung from vertebrates (dinosaurs and/or small mammals) 
increased (Arillo & Ortuño, 2008; A.L.V. Davis, 1990, 2002; Halffter & Matthews, 1966; 
Jeannel, 1942; Philips, 2011). The first Aphodiini probably developed before or around the 
early Jurassic age (200-170 Ma), when most continents were joined in Pangea. Most 
Aphodiini have temperate to temperate-cold and/or subalpine preferences, so they may 
have arisen at the northern territories of contemporary Eurasia (Cabrero-Sañudo & Zardoya, 
2004), where the climate was cool with temperate conditions, compared to the rest of the 
world, which was very arid and hot (Scotese, 2003). Some of the first lineages of Aphodiini 
could have spread later to other Pangean southern territories before their break-up. After 
the fragmentation of Pangea (middle Jurassic to early Cretaceous; 160-130 Ma), most 
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Aphodiini would have remained within Laurasia, although it is possible that a few 
Aphodiini lineages survived on Gondwanan continents, as shown by some genera and 
species distributions. 

Due to the extinction of dinosaurs (K/T boundary, late Cretaceous, c. 66 Ma) dung from 
mammals became increasingly more common, providing a resource that could be consumed 
gradually by new Aphodiini taxa. Eurasia and North America approached each other and 
were intermittently connected (from late Cretaceous to Eocene periods, 66-38 Ma; Scotese, 
2003), helping explain why the first Aphodiini fossils registered in North America date from 
these ages. The faunas from the rest of the regions probably had little contact in these 
periods. 

During the Miocene (26-12 Ma), Eurasia and Africa collided and a secondary radiation of 
Aphodiini (similar to that of Scarabaeinae; A.L.V. Davis & Scholtz, 2001; A.L.V. Davis et al., 
2002) may have resulted as a consequence of mixing faunas and the establishment of new 
dispersal routes between the two continents (Potts & Behrensmeyer, 1993). This interchange 
culminated during the late Miocene period (12 Ma), when the Indian peninsula collided 
against Eurasia and several Aphodiini taxa probably colonized that territory. Also, prairies 
and savannas became more common as aridity and climate cooling increased (Cambefort, 
1991b; Scotese, 2003), and the radiation of Artiodactyla (Bovini) (30+ Ma; Cumming, 1982; 
Silva & Downing, 1995) brought new high-quality soft-fibrous droppings. Mantel tests 
results highlight the relationships between Aphodiini and Scarabaeinae, mammal faunas, 
and land connectivity, all of which are probably related to these events. 

An increase in prairie lands also occurred in North America, and the Beringian land bridges 
permitted the passage of Bovini and other mammals from Eurasia to the Nearctic region 
during the Miocene and Pliocene (Potts & Behrensmeyer, 1993). However, the most 
important American event was the closure of the Isthmus of Panama during the late 
Miocene and Pliocene (13-7 Ma; Coates et al., 2004), which caused the Great American 
Interchange of species (Webb, 1985), and also range expansions of many dung beetle taxa, 
such as the Scarabaeinae (A.L.V. Davis & Scholtz, 2001). A certain number of current 
Neotropical Aphodiini species are the likely survivors of a specialized and hardly 
diversified fauna previously present at this region. 

The principal characteristic of the Australian continent has been its prolonged isolation from 
the rest of the regions, and the lack of placental mammals until the Pleistocene (2.5 Ma-10 
ka; Cox, 2000). Hence, older Australian Aphodiini lineages would have been adapted to 
exploiting excrements from marsupials. Land connections during the Pleistocene between 
Eurasia and Australia probably allowed the dispersal of mammals towards the latter region, 
together with a number of Aphodiini species associated with them. The mass extinction of 
monotremes and marsupials (Murray, 1984) may have caused the extinction of some 
endemic Aphodiini, but newcomer Aphodiini species may have proliferated with the 
advent of soft-fibrous droppings. 

Middle-late Pleistocene (420-18 ka) glacial-interglacial cycles (Imbrie et al., 1993), could have 
played an important role as modifying factors of Aphodiini distributions and diversity, 
especially in the Holarctic regions (Hanski, 1991b). Fossil evidence (Coope, 1978, 1990; 
Coope & Angus, 1975; Lindroth, 1948) confirms that insects underwent range shifts during 
the Pleistocene in relation to changes in climate and vegetation. Thus, in the Northern 
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Hemisphere, Aphodiini should have shifted their distribution ranges southwards during 
glacial periods, and northwards during interglacials (Cabrero-Sañudo & Lobo, 2006). The 
mixing of fauna should then have been more frequent among Old World regions and 
between New World regions, as the ice sheets interrupted the interchanges across Beringia. 
The Oriental region probably was isolated by the glaciated ice sheets of mountain ranges, 
and therefore may not have served as a refuge for northern Aphodiini lineages. This 
possibly favoured the role of the Palaeotropical region as a refuge and recent diversification 
centre for a great number of Old World Aphodiini lineages, helping explain its high levels of 
endemism. 

During the Holocene (10 ka to the present), cattle, horses and other domesticated animals, as 
well as human movements, have contributed particularly to the dispersion of Aphodiini. 
Human-induced changes have been especially important in the Western Palaearctic during 
the late Quaternary (Birks, 1986; Hanski, 1991b) and over the past few centuries for the other 
regions (P.A. Delcourt & H.R. Delcourt, 1987; Doube et al., 1991; Kohlmann, 1991; Mirol et 
al., 2003). Recent changes in soil uses, modifications through livestock and agricultural 
practices, chemical contamination and urban development have negatively influenced 
Aphodiini diversity, distribution and populations (Barbero et al., 1999; Gittins & Giller, 
1999; Gittings et al., 1994; Hutton & Giller, 2003; Lobo et al., 1997, 2001, 2006; Lumaret, 1986, 
1990; Lumaret & Kirk, 1911; Lumaret & Martínez, 2005; Lumaret et al., 1993; Romero-
Samper & Lobo, 2006; Roslin & Koivunen, 2001). 

5. Conclusions 

Even when phylogenetic information is available, the lack of comprehensive fossil 
information and shifts in the distribution of species makes it extremely difficult to 
disentangle past dispersal patterns, complicating the formulation of reliable hypotheses that 
allow explanation of current distribution by means of past events (Gaston & Blackburn, 
1996; Losos & Glor, 2003; Pulquério & Nichols, 2007; Thomas et al., 2006). One of the main 
challenges for biogeographers continues to be the formulation of reliable hypotheses about 
the underlying historical processes based on present-day biogeographical data. In this 
chapter, through statistical tests and a simple methodology, I have attempted to show that it 
is possible to identify signatures of the processes from which current distributional patterns 
originated, and to elucidate a likely past biogeography of the Aphodiini. 

In relation to Aphodiini, it has been suggested that Palaeotropical and Palaeartic regions, 
together with the Nearctic, have been primary diversification centres after the break-up of 
Pangea. Consequently, these three regions may have acted jointly as macroevolutionary 
source regions in different times, also sustaining migration processes and extinctions that 
obscure linkage between past events and present-day distributions. Future phylogenetic 
data are needed to more completely resolve taxonomic issues and confirm internal 
relationships among the Aphodiini lineages. Such results also will help to confirm or to 
reject the hypotheses herein presented. 
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