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1. Introduction 

Articular cartilage is an avascular tissue covering articulating surfaces of bones and it 

functions to bear loads and reduce friction in diarthrodial joints. The cartilage can be 

regarded as a porous gel, mainly composed of large proteoglycan (PG) aggregates having a 

negative fixed-charge density (nFCD), a water-swollen network of collagen fibrils, and 

interstitial water, all of which play important roles in load-bearing properties (Lee et al., 

1981; Mow et al., 1980).  

Although articular cartilage may function well over a lifetime, traumatic injury or the 

degenerative changes associated with osteoarthritis (OA) can significantly erode the 

articular layer, leading to joint pain and instability. Because of its avascular nature, 

articular cartilage has a very limited capacity to regenerate and repair. It is well-known 

that the natural response of articular cartilage to damage is variable and, at best, 

unsatisfactory.  

Therefore, numerous studies have reported tissue-engineering approaches to restore 

degenerated cartilage and to repair defects; these approaches involve culturing autologous 

chondrocytes in vitro to create three-dimensional tissue that is subsequently implanted. In 

these tissue engineering approaches, it is important to assess the biomechanical and 

biochemical properties of the engineered cartilage. These material properties of the 

engineered constructs are detectable only via direct measurements that are invasive and 

require destructive treatments such as histological analysis, biochemical quantification, and 

mechanical testing. The application and utilization of these tissue-engineering approaches in 

a clinical setting requires a non-invasive method of evaluating biomechanical and 

biochemical properties of the actual regenerated cartilage for transplantation. Moreover, the 

method should be applicable to various aspects of cartilage regenerative medicine, 

including the characterization of the regenerated tissue during in vitro culture and in vivo 

evaluation after transplantation.  

Magnetic resonance imaging (MRI) of articular cartilage is well accepted and has become 

common in recent years. Quantitative MRI techniques have been successfully developed to 

measure the macromolecular state within cartilage tissue. For example, the relationship 

between the water content of the degenerated cartilage and water self-diffusion has been 
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reported (Shapiro et al., 2001), while the transverse relaxation time T2 has been related to 

collagen concentration (Fragonas et al., 1998) and the spatial distribution of collagen, 

including both fibril orientation and organization (Nieminen et al., 2001; Xia et al., 2002).  

The gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA2–)-enhanced T1 imaging 
technique has been used to predict PG content (Bashir et al., 1996) and spatial distribution 
(Bashir et al., 1999). Furthermore, nFCD can be estimated from consecutive T1 relaxation 
time measurements using Gd-DTPA2–-enhanced MRI and related to PG concentration. This 
MRI technique is already well-known as the “delayed Gadolinium Enhanced Magnetic 
Resonance Imaging of Cartilage” (dGEMRIC) technique. This technique is based on the 
utilization of the two-negative charge of the MRI contrast agent (i.e., Gd-DTPA2–). Sulfated 
glycosaminoglycans (sGAG) in the PGs are negatively charged in the cartilage, giving rise to 
nFCD; the electric exclusion force between this nFCD and the negatively charged contrast 
agent result in the inverse distribution of the contrast agent to the PG distribution in the 
cartilage. Consequently, relaxation time (T1) and nFCD—as determined by dGEMRIC 
technique —correlate with PG concentration.  

Previous studies have reported that, in tissue-engineered cartilage, MR measurements of 
regenerated cartilage showed correlations with biochemical properties (Potter et al., 2000) 
and biomechanical properties (Chen et al., 2003). Additionally, the sGAG content and the 
compressive modulus—the latter of which was determined by unconfined compression 
tests—showed a trend toward correlation with the nFCD, as determined by the Gd-
DTPA2–-enhanced MRI technique (Chen et al., 2003; Ramaswamy et al., 2008). In our 
earlier study, we reported that the nFCD of tissue-engineered cartilage determined by 
GD-DTPA2–-enhanced MRI has been found to correlate with sGAG content (Miyata et al., 
2006).  

Although the non-invasive assessment of tissue integration and the non-destructive 

evaluation of molecular structure of the engineered cartilage are important, we believe no 

previous study has fully evaluated the relationships between the biomechanical properties 

and MRI measurements of regenerated cartilage consisting of articular chondrocytes. 

Previous study has indicated that MR images of autologous chondrocyte transplants may 

show clinically significant variations; neither biochemical properties nor the FCD of 

regenerated articular cartilage has been evaluated.  

In this chapter, we introduce our evaluation technique for tissue-engineered cartilage using 
quantitative-MRI. We tested the hypothesis that MRI measurements of tissue-engineered 
cartilage correlate with biomechanical and biochemical properties and that these novel 
approaches can be used to evaluate cartilaginous matrix material properties during tissue 
regeneration. 

2. Quantitative Magnetic Resonance Imaging (MRI) of tissue engineered 
cartilage 

2.1 Isolation of chondrocytes and preparation of chondrocyte-seeded agarose 
constructs 

We used agarose gel culture for tissue-engineered cartilage model, because agarose is a 
biocompatible, thermosensitive hydrogel that offers superior homogeneity and stability for 
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assessing both biomechanical and biochemical properties during in vitro culture, and has 
been used widely in cartilage mechanobiology. Chondrocyte-seeded agarose gels were 
prepared as described previously (Miyata et al., 2006; Miyata et al., 2004). 

Articular chondrocytes were obtained from the glenohumeral joints of freshly slaughtered 4- 

to 6-week-old calves, from a local abattoir. Articular cartilage was excised from the humeral 

head, diced into ~1 mm3 pieces, then shaken gently in Dulbecco’s Modified Eagle’s 

Medium/Ham’s F12 (DMEM/F12) supplemented with 5% fetal bovine serum (FBS), 0.2% 

collagenase type II, and antibiotics-antimycotics, for 8–10 h at 37°C. Cells were then isolated 

from the digest by centrifugation and rinsed twice with phosphate buffered saline (PBS). 

Finally, after the isolated cells were resuspended with feed medium (DMEM/F12 

supplemented with 20% FBS, 50 g/mL L-ascorbic acid, and antibiotics-antimycotics), and 

the total number of cells was counted with a hemocytometer.  

The isolated chondrocytes in the feed medium were mixed with an equal volume of PBS 

containing agarose with a low melting temperature (Agarose type VII, Sigma, MO) at 37°C, 

to prepare 1.5 × 107 cells/mL in 2% (wt/vol) agarose gel; it was then cast in a custom-made 

mold to make a large gel plate. After gelling at 4°C for 25 minutes, approximately 50 disks of 

8-mm diameter, 1.5-mm thickness were cored out from the large gel plate with a biopsy 

punch. The chondrocyte-seeded agarose disks were fed 2.5 mL feed medium/disk, every 

other day and maintained in a 5% CO2 atmosphere at 37°C.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Histological appearance of tissue-engineered cartilage at day 3 (a), day 10  

(b), and day 28 (c), stained with alcian blue (Miyata et al., 2010). Scale bar = 100 m.  

Alcian blue-stained sections of the cultured specimens are shown in Fig. 1. Over the culture 
period, the chondrocytes in the agarose gel appeared rounded in shape, similar to those in 
the “native” articular cartilage. As shown in Fig. 1, the chondrocytes synthesized a thin shell 
of pericellular matrix (~day 10) and expanded the volume of the cartilaginous matrix  
(~day 28).  
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2.2 Magnetic Resonance Imaging (MRI) of cultured chondrocyte-seeded agarose gel 

Quantitative MRI evaluations were performed on a 2.0-T Biospec 20/30 System with a B-
GA20 Gradient System (Bruker, Karlsruhe, Germany) with a maximum gradient strength of 
100 mT/m. The MRI data acquisition and reconstruction were performed using the 
ParaVision (Bruker) software system. In all MRI experiments, three or four sheets of the 
disks were stacked in layers and placed into glass tubes containing phosphate buffered 
saline (PBS) (Fig. 2). The measured parameters included longitudinal (T1) and transverse 
(T2) relaxation time and water self-diffusion coefficient (Diff). A longitudinal relaxation time 
map (T1-map) was obtained with a short echo time (TE: 15 ms) spin-echo sequence with 
different repetition time values (TR: 100 ms to 15 s, 16 steps). A transverse relaxation time 
map (T2-map) was obtained with a long repetition time value (TR: 15 s) spin-echo sequence 
with different echo time values (TE: 30 ms to 450 ms, 29 steps). A diffusion coefficient map 
(Diff-map) was calculated from the images obtained using a conventional diffusion 
weighted spin-echo (SE-DWI, TR: 15 s, TE: 35 ms) sequence with different b values (0, 74, 
275, 603, 1059 s/mm2). All sequences were performed with a field of view (FOV) of 50 × 50 
mm2, matrix size 64 × 64, and slice thickness 3 mm. The values of the relaxation time (T1 and 
T2) and the relative diffusion coefficient (Diff*) were calculated as the average of the 
specimen from the obtained T1-, T2-, and Diff-maps. The value of Diff* (= DiffS/DiffP) was 
calculated by normalizing the diffusion coefficient of the sample (DiffS) by the diffusion 
coefficient of PBS (DiffP) around the sample. All MRI measurements were carried out with 
no contrast agent at room temperature (23°C).  

 

Fig. 2. Schematic diagram of MR Imaging (Miyata et al., 2007).  

Figure 3−5 shows the MRI maps of the engineered cartilage. At the first stage of the culture 

(day 1), T1 and Diff of the engineered cartilage showed values similar to those of the PBS 

around the cartilage; hence, it was difficult to distinguish the boundaries between the 

engineered cartilage and the bath solution (PBS) in the MRI maps (Fig. 3a and 5a). By the 

end of the culture (day 28), the boundaries were distinguished in both T1- and Diff-maps 

(Fig. 3a−3c and 5a−5c). In contrast, the boundary between the specimen and the PBS 

remained clear in the T2-map during the culture time (Fig. 4a−4c). The T1, T2, and Diff 
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values of the engineered cartilage were averaged, and the results are summarized in Figure 

6. T1 and Diff* of the tissue-engineered cartilage had decreased with an increase in the 

culture time (Fig. 6a and 6c). On the other hand, T2 of the engineered cartilage showed 

considerably lower values than those of the PBS in the glass tube throughout the culture 

time, and these values tended to increase slightly with the culture time (Fig. 6b).  

 

 

Fig. 3. T1-maps of day 1 (a), day 7 (b), and day 28 (c) post-inoculation specimens, and 
histograms of the T1 values derived from the MR images on day 1 (d), day 7 (e), and day 28 
(f) (Miyata et al., 2007).  

 

 

 

Fig. 4. T2-maps of day 1 (a), day 7 (b), and day 28 (c) post-inoculation specimens, and 
histograms of the T2 values derived from the MR images on day 1 (d), day 7 (e), and day 28 
(f) (Miyata et al., 2007).  
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Consistent with the results of previous studies (Chen et al., 2003; Potter et al., 1998), our 

results showed that both T1 and Diff* decreased with an increase in the culture time. On the 

other hand, T2 tended to increase slightly by the end of the culture time. To understand the 

MRI properties of the tissue water protons, we have to understand the behavior of water 

molecules in the tissue at different stages of tissue maturity. With tissue growth and 

development, proteoglycan and collagen molecules accumulate in the agarose gel, resulting 

in a large fraction of macromolecule-associated water, which is known as “bound” water. 

Generally, the water molecules in the “bound” condition show short T1 and T2 relaxation 

times due to a reduced mobility as compared to “free” water. Thus, water proton relaxation 

curves, which were described by a single exponential, are derived from the weighted sum of 

the relaxation behavior of the “free” and “bound” water molecules in the engineered 

cartilage. This is consistent with our results that the T1 relaxation time and Diff* decreased 

with an increase in the content of cartilaginous matrix in the agarose gel. In the case of 

transverse relaxation, the T2 relaxation time of the engineered cartilage showed a value 

similar to that of the “native” articular cartilage (75–90 ms measured by our MRI system) 

from the early phase of the culture; further, T2 tended to increase slightly with tissue 

maturation. Based on this result, we speculate that the transverse relaxation of the water 

molecules in the engineered construct might be mainly affected by its association with the 

agarose molecules.  

 

 

 

 

 
 

Fig. 5. Diff-maps of day 1 (a), day 7 (b), and day 28 (c) post-inoculation specimens, and 
histograms of the Diff values derived from the MR images on day 1 (d), day 7 (e), and day 
28 (f) (Miyata et al., 2007).  
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(a) 

 
(b) 

 
(c) 

Fig. 6. Longitudinal relaxation time (a), transverse relaxation time (b), and relative diffusion 
coefficient (c) of the tissue-engineered cartilage during the culture time (Miyata et al., 2007). 
The values represent mean +/– S.D. (n = 3).  

2.3 Evaluation of fixed charge density of tissue-engineered cartilage 

For ‘native’ articular cartilage, the gadolinium-diethylene triamine pentaacetic acid (Gd-
DTPA2-) -enhanced T1 imaging technique has been used to predict the PG content (Bashir et 
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al., 1996) and spatial distribution (Bashir et al., 1999). Furthermore, the negative fixed charge 
density (nFCD) can be estimated from consecutive T1 relaxation time measurement using Gd-
DTPA2--enhanced MRI and be related to the PG concentration. In this study, we used this 
dGEMRIC technique to monitor and evaluate tissue integration of the engineered cartilage.  

The MRI measurements were performed with a 2.0-Tesla Bruker Biospec 20/30 system 
using Gd-DTPA2- contrast agent. In all MRI measurements, the specimens were put into 
glass tubes filled with PBS (Fig. 7). The longitudinal relaxation time map, T1-map, was 
obtained with a short-echo time (TE: 15 ms), spin-echo sequence with different repetition 
time values (TR: 100 ms to 15 s, 16 steps). Subsequently, the specimens were balanced in PBS 
containing 1 mM Gd-DTPA2– (Magnevist®, Nihon Schering, Osaka, Japan) for 10−12 hours; 
the longitudinal relaxation time map in the contrast agent, T1Gd-map, was obtained again 
with a short-echo time (TE: 15 ms), spin-echo sequence with different repetition time values 
(TR: 30 ms to 5 s, 13 steps). Finally, using the relaxivity (R) value of Gd-DTPA2– in saline 
(5.24 in our MRI system), the concentration of the contrast agent was estimated using the 
formula [Gd-DTPA2–] = 1/R(1/T1Gd – 1/T1). The negative fixed charge density (FCD) was 
calculated as follows 

 

2 2[Na ] [Gd DTPA ] [Na ] [Gd DTPA ]
nFCD

2 2[Gd DTPA ] [Gd DTPA ]

b t b b

b t

    
 

  
 (1) 

where subscript b stands for bath solution and subscript t stands for cartilaginous 
tissue(Bashir et al., 1996). All MRI measurements were performed at room temperature 
23°C.  

In the gadolinium-enhanced MR imaging measurements, longitudinal relaxation time of the 
bulk PBS containing Gd-DTPA reagent showed 0.179 ± 0.06 seconds in our MRI system. The 
T1Gd of the cultured specimen increased as a function of tissue maturation (0.197 ± 0.001 to 
0.222 ± 0.003 seconds). At the first stage of the culture (day 3), T1Gd of the tissue-engineered 
cartilage showed values proximate to those of the PBS containing the Gd-DTPA2– agent 
around the engineered cartilage; hence, it was difficult to distinguish the boundaries 
between the engineered cartilage and the bath solution in the T1Gd-maps (Fig. 8a). By the 
end of the culture (day 28), the boundaries had become distinct in the T1Gd-maps (Fig. 8). 
The [Gd-DTPA2–] in the engineered cartilage decreased with increases in culture time. The 
nFCD, as determined from the [Gd-DTPA2–] in the specimen and bath solution, increased 
with culture time (Fig. 9). 

As time in culture lengthened, the gross appearance of the cultured disk became 
increasingly opaque. The DMMB assay (Farndale et al., 1986) revealed that the sGAG 
content of the chondrocyte/agarose disks increased as a function of tissue maturation (0.19 
± 0.27 to 13.2 ± 1.9 mg/mL-disk-vol). Finally, the sGAG content of the reconstructed 
cartilaginous disk reached approximately 20% of the “native” articular cartilage (data not 
shown).  

To correlate gadolinium-enhanced MRI and biochemical properties, the sGAG content of the 
tissue was plotted as a function of the FCD. From the linear regression analysis, the FCD 
correlated significantly with the sGAG content (r = 0.95, n = 30, P < 0.001) (Fig. 10), and the 
tissue [Gd-DTPA2–] correlated with the sGAG content by r = 0.83, n = 30, P < 0.001.  
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Fig. 7. Schematic diagram of gadolinium-enhanced MRI. In all MRI measurements, the 
cultured specimens were put into glass tubes filled with phosphate buffered saline (PBS) or 
1 mM Gd DTPA2– (Miyata et al., 2010).  

(a) (b) 
 

(c) 

Fig. 8. Quantitative water proton T1 maps in the presence of Gd-DTPA2– at day 3 (a), day 7 
(b), and day 28 (c) (Miyata et al., 2010).  

 

Fig. 9. Tissue fixed-charge density, with time in culture, for tissue-engineered cartilage  
(Miyata et al., 2010). * indicates significant difference from day 0 (P < 0.05).  
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Fig. 10. Scatter plots relating the tissue fixed charge density (FCD) to the sulfated 
glycosaminoglycan (sGAG) content (Miyata et al., 2006).  

2.4 Static and dynamic biomechanical testing of cultured agarose/chondrocyte 
constructs 

Mechanical testing of the disk-shaped specimens was performed with unconfined 
compression, using impermeable stainless platens in PBS at room temperature. Static 
compressive properties were measured in a custom-made chamber attached to a material 
testing device (Autograph 5kNG, Shimadzu, Kyoto, Japan). Stress relaxation tests were 
performed by applying a ramp displacement at 0.05 mm/min to a 20% static compressive 
strain, followed by relaxation to equilibrium (2,400 s). The equilibrium compressive 
modulus (Eeq) was calculated from the imposed compressive strain and the equilibrium 
load, divided by the cross-sectional area of the specimen.  

Dynamic compression tests were carried out using a viscoelastic spectrometer (DDV-MF, 

A&D, Tokyo, Japan) (Miyata et al., 2005). For preconditioning, a 20% static compressive 

strain was loaded and a sinusoidal displacement of 0.5% compressive strain was then 

superimposed at a frequency of 1 Hz. After equilibrium had been reached (approximately 

20 min), a sinusoidal displacement of 0.5% compressive strain was applied at frequencies 

ranging from 0.01 to 5.0 Hz. The dynamic compressive modulus (Edyn) was calculated from 

the ratio of the measured stress amplitude and the applied strain amplitude.  

Figure 11 shows the means and standard deviations of the equilibrium compressive 

modulus Eeq and dynamic compressive modulus Edyn versus time in culture, for the tissue-

engineered cartilage. With respect to the static compressive property, significant differences 

were observed in the equilibrium compressive modulus. With increases in culture time, the 

Eeq of the specimens increased and reached approximately 10% of that of “native” cartilage 

from which the chondrocytes were harvested (0.45 ± 0.12 MPa, n =3). With respect to the 

dynamic compressive property, significant differences were also observed for testing 

conditions. The dynamic compressive modulus Edyn of the engineered cartilage depended 

on both testing frequency and culture time. For each time point, Edyn increased nonlinearly 

with increases in frequency. The engineered cartilage also exhibited marked stiffening with 

time in culture. The value of Edyn increased with culture time at each testing frequency (0.01–

2.0 Hz).  
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(a) 

 
(b) 

Fig. 11. Equilibrium compressive modulus Eeq (a) and dynamic compressive modulus Edyn 
(b), with time in culture, for the cultured chondrocyte/agarose disks  (Miyata et al., 2010).  
* indicates significant difference from day 0 (P < 0.05).  

2.5 Relationships between MRI measurements and biomechanical properties of 
cultured chondrocyte-seeded constructs 

To determine the correlations between the quantitative MRI measurements and the 
biomechanical and biochemical properties of the tissue-engineered cartilage, we performed 
linear regression analyses among the MRI-derived parameters (T1, T2, Diff, and FCD), the 
biochemical composition (sGAG content), and the biomechanical properties (Eeq, Edyn) of the 
engineered cartilage.  

To confirm the correlation, the Eeq of the engineered cartilage were plotted as functions of 
the T1, T2, and Diff, respectively. The Eeq of the engineered cartilage (Fig. 12a) showed a 
strong correlation with T1 and Diff but a weak correlation with T2 (Fig. 12b and 12c). 
Similarly, the tissue sGAG concentration (Fig. 13a and 13c) and were found to be strongly 
correlated with T1 and Diff. Consistent with the results of the previous investigation (Potter 
et al., 2000), our results showed that T1 relaxation time and Diff showed a significant 
correlation with the biomechanical properties and the sGAG content of the tissue-
engineered cartilage. The results of recent studies have shown that the articular cartilage 
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degeneration induced by collagenase treatment resulted in changes in T2 relaxation time 
and the equilibrium modulus (Nieminen et al., 2000). In the present study, slight increase in 
T2 values was observed during the culture.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12. Scatter plots for the relationship between the equilibrium compressive modulus Eeq 
and longitudinal relaxation time (a), transverse relaxation time (b), and relative diffusion 
coefficient (c) (Miyata et al., 2007). Solid line represents the linear regression line.  
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(a) 

 
(b) 

 
(c) 

Fig. 13. Scatter plots for the relationship between the equilibrium compressive modulus Eeq 
and longitudinal relaxation time (a), transverse relaxation time (b), and relative diffusion 
coefficient (c) (Miyata et al., 2007). Solid line represents the linear regression line.  

One possible explanation is that the changes in the biophysical properties might be mainly 
due to the altered sGAG content, and the synthesis of collagen and the reorganization of 
collagen network might be insufficient in the agarose gel culture.  
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(a) 

 
(b) 

Fig. 14. Typical scatter plots relating the tissue fixed-charge density to equilibrium 
compressive modulus Eeq (a) and dynamic compressive modulus Edyn at 0.5 Hz (b) (Miyata 
et al., 2010).  

 R2 P 

FCD vs. Eeq 0.81 < 0.001 
FCD vs. Edyn, 0.01 Hz 0.79 < 0.001 
FCD vs. Edyn, 0.02 Hz 0.73 < 0.001 
FCD vs. Edyn, 0.05 Hz 0.73 < 0.001 
FCD vs. Edyn, 0.5 Hz 0.70 < 0.001 
FCD vs. Edyn, 2.0 Hz 0.71 < 0.001 

Table 1. Linear Pearson correlations between biomechanical and Gd-DTPA2–-enhanced MRI 
parameters in tissue-engineered cartilage (Miyata et al., 2010).  

To evaluate the relationship between Gd-DTPA2–-enhanced MRI parameters and 
biomechanical properties, the Eeq and Edyn of the engineered cartilage were plotted as 
functions of the nFCD, respectively. From the linear Pearson correlation analysis, it was 
found that nFCD correlated significantly with Eeq and Edyn (Table 1, Fig. 14). The equilibrium 
compressive modulus showed a higher correlation than the dynamic compressive modulus 
of all testing frequencies, and the dynamic compressive modulus tended to show a slightly 
higher correlation at low frequencies (0.01–0.05 Hz). The sGAG of articular cartilage plays a 
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crucial role in static compressive behavior, while collagen bears a dynamic compressive load 
(Korhonen et al., 2003). Therefore, the nFCD—which is to say, the sGAG content—might 
show a higher correlation with the equilibrium modulus than with the dynamic modulus. 
Moreover, the dynamic modulus showed a trend toward correlation with the nFCD at lower 
frequencies than that of higher frequencies. That might reflect the collagen network levels 
regenerated in the agarose gel. Nonetheless, the results of recent studies have shown that 
variations in collagen architecture among varieties of articular cartilage decreased the 
significance of correlations between Gd-DTPA2–-enhanced MRI and mechanical properties, 
because the architecture of the collagen network, as well as PGs, plays an important role in 
the mechanicalproperties of articular cartilage (Nissi et al., 2007). In the present study, the 
chondrocytes in agarose gel reconstructed the immature collagen network, prompting a 
low-level effect on the compressive property compared to “native” articular cartilage; 
therefore, significant correlations might be found between Gd-DTPA2–-enhanced MRI and 
compressive properties. From these facts, our evaluation methods using Gd-DTPA2–-
enhanced MRI could be applicable at the earlier stage of tissue regeneration.  

3. Conclusion 

In conclusion, we evaluated the changes in the quantitative MRI parameters and matrix FCD 
of tissue-engineered cartilage that consisted of articular chondrocytes and hydrogels. We 
found significant linear correlations between the quantitative MRI measurements and the 
biomechanical and biochemical properties of the engineered cartilage. Finally, we suggest that 
the quantitative MRI technique can be a useful, non-invasive approach to evaluate the 
biomechanical properties of regenerated cartilage during in vitro culturing process. 

4. Acknowledgment  

This research was supported in part by a Grant-in-Aid for Young Scientists (B) (No. 
18700414) from the Ministry of Education, Science, Sports and Culture of Japan. 

5. References 

Bashir, A.; Gray, M. L. & Burstein, D. (1996). Gd-DTPA2- as a Measure of Cartilage 
Degradation. Magnetic Resonance Medicine, Vol.36, pp.665-673 

Bashir, A.; Gray, M.L.; Hartke, J. & Burstein, D. (1999). Nondestructive Imaging of Human 
Cartilage Glycosaminoglycan Concentration by MRI. Magnetic Resonance in 
Medicine, Vol.41, pp.857–865 

Chen, C. T.; Fishbein, K.W.; Torzilli, P. A.; Hilger, A.; Spencer, R. G. & Horton, W. E., Jr. 
(2003). Matrix Fixed-Charge Density as Determined by Magnetic Resonance 
Microscopy of Bioreactor-Derived Hyaline Cartilage Correlates with Biochemical 
and Biomechanical Properties. Arthritis and Rheumatism, Vol.48, pp.1047-1056 

Farndale, R. W.; Buttle, D. J. & Barrett, A. J. (1986). Improved Quantitation and 
Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene 
Blue. Biochimica et Biophysica Acta, Vol.883, pp.173-177 

Fragonas, E.; Mlynárik, V.; Jellús, V.; Micali, F.; Piras, A.; Toffanin, R.; Rizzo, R. & Vittur, F. 
(1998). Correlation between Biochemical Composition and Magnetic Resonance 
Appearance of Articular Cartilage. Osteoarthritis and Cartilage, Vol.6, pp.24–32 

Korhonen, R.K.; Laasanen, M.S.; Töyräs, J.; Lappalainen, R.; Helminen, H.J. & Jurvelin, J.S. 
(2003). Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical 

www.intechopen.com



 
Tissue Regeneration – From Basic Biology to Clinical Application 

 

488 

Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular 
Cartilage. Journal of Biomechanics, Vol.36, pp.1373–1379 

Lee, R. C.; Frank, E. H.; Grodzinsky, A. J. & Roylance, D. K. (1981). Oscillatory Compressional 
Behavior of Articular Cartilage and Its Associated Electromechanical Properties. 
Journal of Biomechanical Engineering, Vol.103, pp. 280-292 

Miyata, S.; Tateishi, T.; Furukawa, K. & Ushida, T. (2005). Influence of Structure and 
Composition on Dynamic Visco-Elastic Property of Cartilaginous Tissue: Criteria 
for Classification between Hyaline Cartilage and Fibrocartilage Based on 
Mechanical Function. JSME International Journal: C, Vol.48, pp.547–554 

Miyata, S.; Homma, H.; Numano, T.; Furukawa, K; Tateishi, T. & Ushida, T. (2006). 
Assessment of Fixed Charge Density in Regenerated Cartilage by Gd-DTPA - 
Enhanced MR Imaging. Magnetic Resonance and Medical Science, Vol.5, No.2, pp. 73-78 

Miyata, S.; Numano, T.; Homma, H.; Tateishi, T. & Ushida, T. (2007). Feasibility of 
Noninvasive Evaluation of Biophysical Properties of Tissue-Engineered Cartilage 
by Using Quantitative MRI. Journal of Biomechnaics, Vol.40, pp. 2990-2998 

Miyata, S.; Homma, H.; Numano, T.; Tateishi, T. & Ushida, T. (2010). Evaluation of Negative 
Fixed-charge Density in Tissue-Engineered Cartilage by Quantitative MRI and 
Relationship with Biomechanical Properties. Jounal of Biomechanical Engineering, 
Vol.132, No.7, pp.071014 

Mow, V.C.; Kuei, S. C.; Lai, W.M. & Armstrong, C.G. (1980). Biphasic Creep and Stress 
Relaxation of Articular Cartilage in Compression? Theory and Experiments. Journal 
of Biomechanical Engineering, Vol.102, pp.73-84 

Nieminen, M.T.; Rieppo, J.; Toyras, J.; Hakumaki, J.M.; Silvennoinen, J.; Hyttinen, M.M.; 
Helminen, H.J. & Jurvelin, J.S. (2001). T2 Relaxation Reveals Spatial Collagen 
Architecture in Articular Cartilage: a Comparative Quantitative MRI and Polarized 
Light Microscopic Study. Magnetic Resonance in Medicine, Vol.46, pp.487-493 

Nieminen, M.T.; Toyras, J.; Rieppo, J.; Hakumaki, J.M.; Silvennoinen, J.; Helminen, H.J. & 
Jurvelin, J.S. (2000). Quantitative MR Microscopy of Enzymatically Degraded 
Articular Cartilage. Magnetic Resonance in Medicine, Vol.43, pp.676-681.  

Nissi, M.J.; Rieppo, J.; Töyräs, J.; Laasanen, M.S.; Kiviranta, I.; Nieminen, M.T. & Jurvelin, 
J.S. (2007). Estimation of Mechanical Properties of Articular Cartilage with MRI—
dGEMRIC, T2 and T1 Imaging in Different Species with Variable Stages of 
Maturation. Osteoarthritis and Cartilage, Vol.15, pp.24–32 

Potter, K.; Butler, J.J.; Adams, C.; Fishbein, K.W.; McFarland, E.W.; Horton, W.E. & Spencer, 
R.G. (1998). Cartilage Formation in a Hollow Fiber Bioreactor Studied by Proton 
Magnetic Resonance Microscopy. Matrix Biology, Vol.17, pp.513-523 

Potter, K.; Butler, J.J.; Horton, W.E. & Spencer, R.G. (2000). Response of Engineered Cartilage 
Tissue to Biochemical Agents as Studied by Proton Magnetic Resonance 
Microscopy. Arthritis and Rheumatism, Vol.43, pp.1580-1590 

Ramaswamy, S.; Uluer, M.C.; Leen, S.; Bajaj, P.; Fishbein, K.W. & Spencer, R.G. (2008). 
Noninvasive Assessment of Glycosaminoglycan Production in Injectable Tissue-
Engineered Cartilage Constructs Using Magnetic Resonance Imaging. Tissue 
Engineering Part C: Methods, Vol.14, pp.243–249 

Shapiro, E.M.; Borthakur, A.; Kaufman, J.H.; Leigh, J.S. & Reddy, R. (2001). Water 
Distribution Patterns Inside Bovine Articular Cartilage as Visualized by 1H 
Magnetic Resonance Imaging. Osteoarthritis Cartilage, Vol.9, pp.533-538 

Xia, Y.; Moody, J.B. & Alhadlaq, H. (2002). Orientational Dependence of T2 Relaxation in 
Articular Cartilage: A Microscopic MRI (microMRI) Study. Magnetic Resonance in 
Medicine, Vol.48, pp.460–469 

www.intechopen.com



Tissue Regeneration - From Basic Biology to Clinical Application

Edited by Prof. Jamie Davies

ISBN 978-953-51-0387-5

Hard cover, 512 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

When most types of human tissue are damaged, they repair themselves by forming a scar - a mechanically

strong 'patch' that restores structural integrity to the tissue without restoring physiological function. Much

better, for a patient, would be like-for-like replacement of damaged tissue with something functionally

equivalent: there is currently an intense international research effort focused on this goal. This timely book

addresses key topics in tissue regeneration in a sequence of linked chapters, each written by world experts;

understanding normal healing; sources of, and methods of using, stem cells; construction and use of scaffolds;

and modelling and assessment of regeneration. The book is intended for an audience consisting of advanced

students, and research and medical professionals.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shogo Miyata (2012). Non-Invasive Evaluation Method for Cartilage Tissue Regeneration Using Quantitative-

MRI, Tissue Regeneration - From Basic Biology to Clinical Application, Prof. Jamie Davies (Ed.), ISBN: 978-

953-51-0387-5, InTech, Available from: http://www.intechopen.com/books/tissue-regeneration-from-basic-

biology-to-clinical-application/non-invasive-evaluation-method-for-cartilage-tissue-regeneration-using-

quantitative-mri



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


