
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



18 

Endochondral Bone Formation as  
Blueprint for Regenerative Medicine  

Peter J. Emans, Marjolein M.J. Caron,  
Lodewijk W. van Rhijn and Tim J.M. Welting 

Department of Orthopaedic Surgery, Maastricht University Medical Center,  
The Netherlands   

1. Introduction 

During our life moving, walking, sport, etc., are essential for our health and quality of life. 

Both bones and cartilage enable us to do so. Bones support us, allow muscles to move them, 

and protect vital internal organs. At the end of most bones articular joints are situated. The 

side where 2 bones form an articular joint, the ends of these bones are covered with hyaline 

cartilage. This articular cartilage is able to withstand very high mechanical forces with  very 

low friction and thereby enables easy movement. A large number of bones are formed by a 

process called endochondral ossification. During this process a cartilage template is replaced 

by bone, in contrast with the cartilage in newly formed joints which remains cartilage. Both 

articular cartilage and bone mature and this leads to a well organised architecture and 

specialisation. The arcade-like architecture of cartilage is capable to withstand an enormous 

amount of intensive and repetitive forces during life. However, the British surgeon William 

Hunter made the now famous statement that “From Hippocrates to the present age it is 

universally allowed that ulcerated cartilage is a troublesome thing and that once destroyed it is not 

repaired” (Hunter 1743). In contrast, bone has a very high regenerative capacity. This 

difference in self-healing capacity may partially be explained by the access to progenitor 

cells which contribute to tissue repair. For bone repair, progenitor cells of three different 

sources have been identified. These sources are: (i) progenitor cells form the blood stream 

since bone is a highly vascularised tissue, (ii) progenitor cells from the overlying periosteum 

and (iii) progenitor cells from the bone marrow. Cartilage is not vascularised, is not covered 

by periosteum, nor has a specialized tissue such as bone marrow and this might be part of 

the explanation for the limited self-repair capacity of cartilage. Although both tissues start 

from the same mesenchymal cell condensations, the contrast in self-repair is striking 

(Hunziker, Kapfinger et al. 2007).  

From a clinical point of view there is a need for repair of both bone and cartilage. Bone and 
cartilage were both identified as tissues for which it was thought to be  possible  to recreate 
them in a laboratory setting, using the combination of cell isolation culture techniques and 
carrier materials. The science of combining cells with carrier materials to reproduce tissues 
in the laboratory is called Tissue Engineering (TE). The collaboration of scientists of different 
disciplines such as cell biology, biomaterials, biomechanics, engineering and translational 
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medicine has already led to fruitful scientific achievements. However, initial expectations of 
tissue engineering have not been reached completely. Although some treatments which 
apply to the principles of TE have reached clinical practice, TE-created tissues are not 
generated on a large scale (Brittberg, Lindahl et al. 1994; Oberpenning, Meng et al. 1999; 
Macchiarini, Jungebluth et al. 2008). In addition, time consuming and expensive culture 
procedures and logistics, multiple operations and quality of the repair that is initiated by TE 
constructs remain important drawbacks.  

Upon implantation of a TE-created construct the introduction of cells, biomaterials, growth 
factors, etc. in the body will have an effect on the local environment and natural repair 
mechanisms at the implant site.  Since it is largely unknown what this local effect is and how  
these factors contribute to it, a clear shift is observed in the attempts to repair tissue. This 
shift includes more specific natural stimuli which trigger and enhance the regenerative 
capacity of the tissue itself. Injection of stem cells or progenitor cells (cell therapies), and the 
induction of regeneration by biologically active molecules can all be regarded as an example 
of Regenerative Medicine (RM). For both TE and RM it becomes more and more evident that 
studying the underlying natural and developmental processes of cartilage and bone can 
serve as a blueprint to identify important cell sources, biochemical, biomechanical, 
structural stimuli and timing thereof. It is expected that insight in these biological 
mechanisms and the process of endochondral ossification will enhance the progress in the 
field of both TE and RM.  

This chapter describes the first phases of endochondral ossification, bone and cartilage 

(defects) and current approaches in TE and RM. Parallels with RM and endochondral 

ossification are identified from where endochondral ossification can serve as a blueprint for 

future RM approaches.  

2. Endochondral ossification 

Endochondral ossification is a multistage process that determines the major part of 

mammalian skeletal development and starts in embryogenesis with condensation of 

mesenchymal stem cells. The formation of cartilage, a process called chondrogenesis, is a 

key event in developing limb buds beginning in the center of the condensed mesenchyme. 

The earliest form of cartilage development is suggested to be 300 million years ago (Urist 

1976). In humans, the first skeletal rudiments develop during the 5th week of gestation. In 

the eight week of the embryological life relatively cell-poor intermediate zones begins to 

develop, which  will form the joint cavities (Gray and Gardner 1950; Anderson 1962; 

Aydelotte and Kuettner 1992).  The diaphyseal cartilage, which is located at the center of the 

shaft of future long bones, is replaced by bone before birth (primary ossification). However 

most of the cartilaginous epiphysis at the end of long bones turns into bone after birth 

(secondary ossification). The remaining cartilage between the primary and secondary 

ossification centers is called the epiphyseal plate, more commonly known as the growth 

plate, and it continues to form new cartilage, which is replaced by bone, a process that 

results in increased length of the bones. Eventually all the cartilage in the growth plate will 

be converted into bone leaving cartilage only at the articulating surfaces of joints. Although 

bone and cartilage develop from the same mesenchyme, they have completely different 

structures, compositions and functions. 
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Chondrogenesis in both the primary and secondary ossification center and growth plates is 

characterized by highly proliferative chondrocytes, vectorially dictated to differentiate into 

hypertrophic chondrocytes before dying from apoptosis. The remaining mineralized extra 

cellular matrix provides a scaffold for infiltrating blood vessels and for bone cells to adhere 

to and remodel, setting the stage for de novo bone deposition (Kronenberg 2003) (Figure 1). 

The bone forming cells, osteoblasts, arise from progenitor cells from the overlying periosteal 

tissue and will form the bone collar (later the cortex) and primary spongiosa (later 

trabecular bone). In the adult, bone and overlying articular cartilage are attached by an 

interface of calcified cartilage (Schenk, Eggli et al. 1986). This interface distributes forces and 

stresses applied during load bearing and acts as a barrier to nutrients. Nutrients for the 

growing epiphyseal cartilage are supplied by two sources: (i) the synovial cavity and (ii) the 

vascularized cartilage canals (McKibbin and Maroudas 1979; Kuettner and Pauli 1983). 

Cartilage and synovium merge at a transitional zone which persists in the adult and is the 

site of osteophyte formation (Blaney Davidson, Vitters et al. 2007). This osteophyte 

formation is one of the first examples of endochondral ossification which takes place after 

growth. Another example is endochondral ossification during fracture healing where a 

cartilage callus is formed which will be remodelled into new bone. Studying endochondral 

ossification in normal growth and in healing processes will improve our understanding of 

both chondrogenesis and osteogenesis and as such may serve as a blueprint for 

Regenerative Medicine purposes of these tissues. 

 

Fig. 1. The different steps of endochondral ossification; mesenchymal progenitor cells 
condense and undergo chondrogenesis. After maturation these chondrocytes undergo 
hypertrophy and die by apoptosis leaving a scaffold as a template for bone formation (these 
last steps are not illustrated nor discussed in this chapter). 

2.1 Bone and bone defects 

Bone can be formed by 2 different processes, while endochondral bone formation drives 
most of the skeletal bone formation, bone can also be formed by another process called 
intramembranous bone formation. During intramembranous bone formation, no cartilage 
phase is found and progenitor cells directly differentiate into bone. Intramembranous bone 
formation is largely responsible for the formation of flat bones  as can be found in the skull 
and pelvis. Endochondral bone formation is largely responsible for the formation of bones 
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of the axial skeleton. While in cartilage only one type of cell (chondrocyte) can be found, 
multiple cell types can be found in bone. Generally the bone forming cells are called 
osteoblasts and the cells which resorb bone are called osteoclasts. Osteoblasts produce the 
bone matrix (osteoid) which consists mainly of the organic collagen type I which is 
mineralized by inorganic hydroxyapatite (calcium phosphate). This gives bones a high 
compressive strength combined with significant elasticity. When osteoblasts become 
entrapped in their matrix they become osteocytes; the mature bone cells (Harada and Rodan 
2003).  Osteoclasts, on the other hand, are multinucleated cells that arise from the monocyte 
stem-cell lineage and are located at bone surfaces in Howship’s lacunae. The cells are 
equipped with phagocytic-like mechanisms and are characterized by high expression of 
tartrate resistant acid phosphatase (TRAP) and cathepsin K which are able to break down  
bone matrix (Boyle, Simonet et al. 2003).  The process of bone formation and bone resorption 
is able to adapt to mechanical forces and as such remodel into the desired architecture 
(Wolff’s law). This process is mostly found in trabecular bone and while no evidence has 
been found that cartilage adapts/remodels after growth, bone is replaced constantly 
(Hunziker, Kapfinger et al. 2007). Another important function of bone resorption and 
formation is controlling homeostasis of important minerals such as calcium and phosphate.  

Different specialized structures can be identified in bone; the bone attached to the joint 
cartilage is called subchondral bone. The zone directly beneath the subchondral bone is 
called the metaphysis. The metaphysis is characterized by a thin cortex and a highly 
vascularised trabecular bone. Within this trabecular bone bone marrow can be found. Bone 
marrow is also present at the inside of long bones where it enables hematopoiesis.  In the 
center of long bones lies the diaphysial bone. Here, trabeculi become more sparse and the 
cortex thickens. The outer site of all bones is covered by periosteum. This periosteum is 
largely responsible for appositional growth of long bones as it contains a lining of 
osteoprogenitor cells. Bone defects. In the field of Orthopaedic and Trauma Surgery a large 
demand exists for autologous or allogenic bone. Clinical problems which fuel this demand 
are; large segmental bone defects (after infection, trauma or tumor resection), fracture non-
unions (e.g. tibia, femur, humerus, carpal bones, and talus), bone defects in the increasing 
field of prosthesis related revision surgery, and spinal fusions (e.g. spondylolisthesis, 
discopaty, etc)(Glowacki 1998; Stevenson 1998; Huitema, van Rhijn et al. 2006). Although 
bone from the iliac crest is the golden standard, it is limited in source and donor site 
morbidity is a major concern. Alternatively, allografts are expensive and pose the risk of 
viral infection. While the inorganic part of bone (e.g. TriCalcium Phosphate (TCP), 
Hydroxyapatite (HA)) is widely explored as ceramics and combined with cells in the field of 
TE, this approach is not successful in  generating a satisfying bone substitute (Petite, Viateau 
et al. 2000; Kim, Park et al. 2006; Zhao, Grayson et al. 2006). Main drawbacks are mechanical 
features and handling properties of these ceramics. Combining ceramic with polymers may 
overcome this problem, but toxic degradation products often affect healing and remodeling 
of the bone defect (Martin, Shastri et al. 2001; Kim, Park et al. 2006; Zhao, Grayson et al. 
2006). In addition, these materials are often inert for Matrix Metallo-Proteins (MMPs) and 
often interfere with  biomechanical signaling which is essential for repair and remodeling of 
loaded structures such as bone (Wolff’s law). Furthermore, increased infection risk in 
implanted tissue-engineered devices is recently described (Kuijer, Jansen et al. 2007) and 
supply of oxygen and nutrients is the final aspect of concern when treating bone defects 
(Shastri 2006). Cells in autologous bone are transplanted from a highly vascularized 
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environment to a hypoxic environment while cells residing in allografts are frozen and 
stored before transplantation, it is therefore likely that these cells do not contribute to the 
repair process (Emans, Pieper et al. 2006). Seeding of these materials with bone marrow cells 
is promising, however also costly, time consuming and infection prone during isolation and 
expansion (Shastri 2006). Among the disadvantages listed here lies the reason why this topic 
is currently studied extensively by many groups worldwide.  

2.2 Cartilage and cartilage defects 

Joint motion is possible by a both structurally and functionally truly remarkable material 
called hyaline cartilage (Buckwalter and Mankin 1998; Hasler, Herzog et al. 1999; Poole, 
Kojima et al. 2001). Hyaline cartilage is predominantly found in articular cartilage. Next to 
hyaline cartilage, two other types of cartilage can be found in the human body; elastic and 
fibrocartilage. Elastic cartilage is found in the ear, nose-tip and respiratory tract, whereas the 
menisci and intervertebral discs contain fibrocartilage.  

The only cell type found in articular cartilage is the chondrocyte. In contrast to other tissues, 
the chondrocyte contributes to a relatively low percentage of the cartilage volume in human 
(1-5 percent). Articular chondrocytes are formed by chondrogenic differentiation of 
chondroprogenitor cells as described above and in Figure 1, however these cells arrest in the 
mature chondrocyte phase and normally do not become hypertrophic cells. Each 
chondrocyte is a metabolically active unit which expands and maintains the extracellular 
matrix (ECM) in its immediate vicinity (Aydelotte, Greenhill et al. 1988). In adults 
chondrocytes lack cell-cell contact; therefore communication between cells has to occur via 
ECM. Furthermore, cartilage is characterized by the absence of blood vessels, lymphatics 
and nerve fibers. Due to the lack of vascularisation in cartilage the environment is 
dominated by low oxygen levels and therefore the chondrocytes have an anaerobic 
metabolism (Schenk, Eggli et al. 1986). This also implicates that chondrocytes have to obtain 
their nutrients and oxygen via diffusion from the synovial fluid, through the ECM and from 
the underlying bone. 

Structure. In articular cartilage four zones can be distinguished (see Figure 2), based on 
collagen type II orientation and chondrocyte shape and distribution (Buckwalter and 
Mankin 1998; Mankin, Mow et al. 2000; Poole, Kojima et al. 2001). In the superficial or 
tangential zone, chondrocytes are disc shaped and form a layer of several cells thick. The 
long axis of the cells are parallel to the joint surface and the cells are surrounded by a thin 
layer of ECM. Thin collagen fibers are oriented parallel with the articular surface. This 
orientation and the relatively low content of proteoglycans results in high tensile stiffness 
and the ability to distribute load over the surface. The cells in the transitional or middle zone 
are more spherical and appear dispersed randomly (Aydelotte and Kuettner 1992; Hunziker 
1992), also collagen fibers in this zone are organized randomly. At this zone and at the deep 
zone, high concentrations of proteoglycans enable the tissue to bear compressive forces. In 
the radial or deep zone, chondrocytes are ellipsoid, grouped radially in columns of 2-6 cells 
with their long axes perpendicular to the joint surface. The thicker collagen fibres are also 
arranged perpendicular to the articular surface. In the calcified zone, chondrocytes are 
distributed sparsely and remain surrounded by a calcified matrix. The calcified cartilage is 
less stiff than the subchondral bone. At this calcified zone shear stresses are converted into 
compressive forces which are in turn transmitted to the subchondral bone (Radin, Martin et 
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al. 1984). The junction between uncalcified and calcified cartilage is called the “tidemark”, a 
line which can be seen on histology (Figure 2).  Therefore mechanical forces also change at 
the tidemark which provides a definite boundary for the uncalcified layer (Donohue, Buss et 
al. 1983; Aydelotte and Kuettner 1992). 

Cartilage defects can arise due to trauma or cartilage degeneration. Although patient’s 
history may differentiate between traumatic and degenerative lesions, the exact cause of 
cartilage defects often remains difficult to diagnose. Since cartilage has no nerve fibers, 
cartilage lesions often present with only (minor) effusion of the affected joint or without 
symptoms. Diagnosis of structures likely to be damaged upon trauma (e.g. subchondral 
bone, ligaments or menisci), may reveal a cartilage lesion. An X-ray indicates a cartilage 
lesion in the minority of the cases and Magnetic Resonance Imaging (MRI) is the best non-
invasive technique available for diagnosis of cartilage lesions. Important developments are 
new protocols such as delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) and 
sodium MRI which can visualize cartilage on the Collagen and GAG content level (Gold, 
Burstein et al. 2006). Overall the MRI is expected to diagnose cartilage lesions in an early 
stage and will become more important in evaluation of progression of cartilage 
degeneration and cartilage repair techniques. 

As early as 1743 it was recognized that articular cartilage, once destroyed, does not heal 
spontaneously (Hunter 1995; Hunziker 1999). Whereas the progenitor cells of bone marrow 
and periosteum contribute to bone formation during fracture healing, articular cartilage is 
deprived of these progenitors. Although it has been shown that the superficial layer of 
cartilage and the synovium contain progenitor cells (Dowthwaite, Bishop et al. 2004; Park, 
Sugimoto et al. 2005), cartilage has a limited ability for self repair (Mankin, Mow et al. 2000; 
Emans, Surtel et al. 2005).  Therefore cartilage and tissue engineering approaches are studied  
in an attempt to overcome the inability of cartilage to repair itself.  

 

Fig. 2. Architecture of articular cartilage. Four zones can be distinguished with respect to (A) 
orientation of collagen fibers and (B) cell shape and orientation  
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3. Tissue engineering and regenerative medicine 

Combining technologies from material science, cell biology, and clinical needs has led to the 

rise of the field of TE and RM. In the 1960’s researches proposed the idea of creating tissues 

in a laboratory which may replace damaged or diseased tissues and cell biologists observed 

that cells could sort themselves in vitro to populations with tissue-like characteristics 

(Steinberg 1962). Adding a structure (material) such as a collagen gel to fibroblast cultures 

was shown to further resemble structural characteristics of skin. Later the work of Brittberg 

and co-workers showed that chondrocytes could be cultured and successfully be 

transplanted for the repair of cartilage defects (Brittberg, Lindahl et al. 1994). This technique 

is entitled Autologous Chondrocyte Transplantation or Implantation (ACT or ACI). The 

combination of specific tissue features and the early findings of culturing and transplanting 

chondrocytes and fibroblasts, skin, cartilage and bone were identified as tissues which 

potentially could be repaired by engineering these tissues in the laboratory by combining 

cells and supporting scaffolds. In the beginning of ACT no artificial structures were used to 

keep the chondrocytes in the cartilage defect. Optimization of ACT has led to the 

introduction of collagen meshes to support and maintain chondrocytes which were 

transplanted into the defect. Already earlier, in the mid-1980s, Langer and co-workers 

proposed that biodegradable polymers could serve as a scaffold for the organisation and 

maturation of cells into the desired tissues. As such it was proposed that this approach 

would enable engineering of thicker and hard tissues such as cartilage. Although cell 

therapies based on TE for skin are commercially available, which apply to the definition of 

TE such as Carticel® and Epicel® of Genzyme, the initial expectations of TE and RM have 

not been met. Although some examples of successful treatment by engineered tissues such 

as bladder and trachea can be found in the clinic, engineering tissues is not performed on a 

large scale (Oberpenning, Meng et al. 1999; Macchiarini, Jungebluth et al. 2008). 

In the approach to engineer tissues in a laboratory setting and subsequently transplanting 

them into the body lies the key question; “until what level should we engineer tissue and when 

should nature take over?”. It is often the aim of many researchers to engineer a mature tissue 

which is directly able to take over the function of the diseased tissue or organ. Per example 

it is often a goal that engineered cartilage and bone should be able to bear mechanical forces 

directly after implantation. In contrast, in nature a cascade of interactions occur during the 

process of tissue repair. During this process both the environment as well as the reparative 

tissue adapt to each other and the biomechanical requirements. In such a manner both 

integration of repair tissue and tissue remodelling is achieved. The capacity of a mature TE 

tissue to adapt to the local needs such as integration, remodelling, etc. is lower than a 

relatively less mature tissue. In addition, in order to create a robust and thicker tissue, the 

use of scaffolds, growth factors and more differentiated cells may be inevitable. However 

the question remains whether the local environment is able to adapt in an appropriate 

manner to all non-physiological stimuli which are introduced. Per example how does the 

normal tissue remodelling, repair and integration respond to a scaffold which alters local 

biomechanical stimuli which are known to be essential for tissue remodelling? How do 

transplanted and environmental cells respond to material properties such as material 

surface, breakdown products, architecture etc? How does the normal fine-tuned orchestra of 

tissue repair respond to transplanted cells which are normally not present at a certain phase 
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of tissue repair? Finally, the use of cells in RM and TE approaches often implies the use of 

two surgical procedures as well as costly and time consuming culture procedures and 

logistics. 

3.1 Bone repair 

Natural bone healing. As described above, endochondral ossification drives skeletal 
growth. Similar sequential steps of endochondral ossification are largely responsible for 
fracture healing of long bones (Bostrom, Lane et al. 1995; Einhorn 2005). Periosteum is the 
main source of progenitor cells capable of creating large volumes of non-vascularized 
cartilage surrounding a fracture (Hall and Jacobson 1975). This first phase of endochondral 
bone formation is called soft callus. During the second phase chondrocytes become 
hypertrophic, mineralize (hard callus) (Figure 1), secrete pro-angiogenic factors such as 
VEGF and finally bone is deposited. In the final phase the newly formed bone is 
vascularized and will remodel under influence of mechanical forces. Bone healing by 
endochondral ossification is influenced by many regulatory mechanisms. However, while 
interaction of Indian hedgehog (Ihh) and Parathyroid hormone related protein (PTHrP) is 
one of  the best known regulatory mechanism in the growth plate, such an interplay is yet 
unknown for fracture healing (Wu, Ishikawa et al. 1995; Vortkamp, Lee et al. 1996; Volk and 
Leboy 1999). The role of growth factors during bone healing processes is better studied. 
Chondrocytes at different stages of maturation release cytokines and growth factors such as 
Fibroblast Growth Factor (FGF), Transforming Growth Factor (TGF)-┚, Bone Morphogenetic 
Proteins (BMPs) and Vascular Endothelial Growth Factor (VEGF) (Gibson 1998; Gerber, Vu 
et al. 1999; Blunk, Sieminski et al. 2002). For instance FGF-2 and TGF-┚ control endochondral 
ossification by inhibition of chondrocyte proliferation, hypertrophy and apoptosis (Gibson 
1998) and in addition from our own findings we know that TGF-┚ is important for osteo- 
and chondrogenesis both in ex vivo and in vivo models (Kuijer, Emans et al. 2003). In vivo, in 
the Osteoarthritic (OA) joint TGF-┚ is produced. Under the influence of this TGF-┚ 
osteophytes are formed which are derived from periosteum adjacent to the joint via  
endochondral bone formation (van der Kraan and van den Berg 2007). BMPs are also 
positively involved in ectopic cartilage and bone formation, partly by opposing the actions 
of the FGF pathways (Yoon and Lyons 2004; Miyazono, Maeda et al. 2005; Yoon, Pogue et al. 
2006). Neo-vascularization under influence of VEGF ensures blood vessel formation which 
supply oxygen and nutrients to osteoblast and osteoclasts. The latter produce MMP-9 and -
13 which degrade the matrix surrounding terminally hypertrophic chondrocytes (Gerber, 
Vu et al. 1999). Blocking VEGF in the hypertrophic zone of the growth plate prevents 
degradation of this zone which in turn enlarges (Gerber, Vu et al. 1999).  

Current approaches for bone repair. Multiple causes may lead to impaired healing of large 

bone defects. As mentioned before, nature has a good regenerative capacity for fractures, 

however from a clinical perspective the need for bone is not in fracture repair but mostly for 

the filling of large bone defects after revision arthroplasty and spondylodesis. These bone 

defects can be regarded as “non-natural” occurring bone defects and  bone healing or filling 

is impaired at these sites because endochondral ossification does not occur. To deal with this 

problem a scaffold is introduced as a template for bone ongrowth, ingrowth and 

remodelling. Currently many bone fillers (scaffolds) and growth factors are available for 

treatment of bone defects. Taking the scaffold which is formed during endochondral 
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ossification (also see chapter “scaffolds”) as a blueprint, bone fillers need to be further 

optimized; next to being expensive, these aids only address one or a few aspects of the 

cascade of tissue responses which are necessary for bone repair. Most bone fillers are 

osteoconductive (supportive) and they lack the timing and onset of essential growth factors 

to be osteoinductive (stimulating bone growth). Growth factors by themselves have been 

shown to be osteoinductive but addition of one of the essential growth factors does not 

necessarily recapitulate the physiological, initial tissue response which leads to 

fracture/bone repair.  

Inflammation is the first and essential phase of tissue repair in general and bone repair in 
particular. Mimicking this inflammatory response may be a method to enhance bone 
fracture healing. Several clinical examples such as spondylodesis after infection of the 
intervertebral disc (e.g. after discography) and the method described by Masquelet confirm 
that inflammatory responses contribute to osteogenesis (Guyer, Collier et al. 1988; 
Masquelet and Begue 2010). However, in contrast, from an engineering perspective, the aim 
is often to create bone which has comparable mechanical features as native bone. The initial 
mechanical properties of currently used bone chip auto or allografts are incapable of 
withstanding the mechanical forces to which they are exposed. During impaction of these 
chips the mechanical properties of the impacted bone as a whole are capable to withstand 
mechanical forces in a non-loadbearing environment. After vascularisation, bone ingrowth 
and remodelling of the repaired bone defect adapts to finally bear full loading. As such 
surgical handling properties, osteoconduction, and most important osteoinduction are 
features one should aim for rather than engineering mature bone with biomechanical 
properties comparable to native bone. As mentioned before during endochondral 
ossification large amounts of cartilage are generated. This cartilage does not have the 
required mechanical features of the bone it should repair, but does have strong 
osteoconductive and osteoinductive features. Another challenge when aiming for creation of 
bone is the scale to which should be generated. During fracture healing bone defects can be 
repaired by deposition of large amounts of bone which is formed by endochondral 
ossification. In the pre-remodelling phase of endochondral ossification, the generated bone 
histologically resembles the metaphysial bone chips which are used on a large scale for bone 
impaction grafting. In conclusion, regarding endochondral ossification as a blueprint for 
engineering or regeneration of bone, it has the potential to generate vast amounts of bone, 
with good handling properties, and is osteoinductive and osteoconductive. 

3.2 Cartilage repair 

Treatment of damaged cartilage can be grouped to four concepts of principle: the four R’s 
(O'Driscoll 1998). The joint surface can be: (i) resected, (ii) relieved, (iii) replaced or (iv) 
restored. A joint prosthesis is an example of joint replacement; joint distraction and 
osteotomies can induce joint relieve. Osteotomies are used to re-align the axis of loading in 
patients with a malalignment of the leg. By transferring the load to the less affected cartilage 
(e.g. previously less loaded/damaged cartilage) the damaged part is relieved. Arthodesis is 
an example of joint resection. For TE and RM techniques the focus is on cartilage restoration. 

Restoration implies methods to heal or regenerate the joint surface with or without the 
subchondral bone into healthy hyaline articular cartilage. Three strategies can be considered 
when attempts are made to heal or restore cartilage.  
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i. Subchondral Drilling, Abrasion or Microfracture are techniques to allow penetration of 
bone marrow through the subchondral bone into the damaged cartilage (Meachim and 
Roberts 1971; Insall 1974; Mitchell and Shepard 1976; Furukawa, Eyre et al. 1980; 
Vachon, Bramlage et al. 1986; Bradley and Dandy 1989; Rae and Noble 1989; Kim, 
Moran et al. 1991; Altman, Kates et al. 1992; Aglietti, Buzzi et al. 1994). These techniques 
improve the clinical well being of the patient and the joint surface defect may be healed 
to some extent. However the healing process is inadequate since no functional hyaline 
cartilage but fibrocartilage is formed (Vachon, Bramlage et al. 1986; Altman, Kates et al. 
1992). Nonetheless, these methods are cheap and easy to perform and are therefore seen 
as the currently best option to relieve the complaints. Other clinical studies have 
suggested that any beneficial effect is related to the arthroscopic procedure itself. A 
nonspecific effect might be related to joint lavage rather than the penetration of the 
subchondral bone (Jackson 1986; Ogilvie-Harris and Fitsialos 1991). In conclusion, these 
techniques may have some benefit with regard to small defects but no effect has been 
proven in relation to large defects, osteoarthritic joints or older patients (Kim, Moran et 
al. 1991).  

ii. Implants vary from non-degradable and degradable, cells, periosteum or 

perichondrium, Osteochondral Autograft Transfer System (OATS or Mosaicplasty) and 

Osteochondral Allografts  (Elford, Graeber et al. 1992; Freed, Vunjak-Novakovic et al. 

1993; Nixon, Sams et al. 1993; Hendrickson, Nixon et al. 1994; Reddi 1994; Chu, Coutts 

et al. 1995; Grande, Halberstadt et al. 1997). The biomaterials and periosteum can be 

combined with cells or growth factors. Periosteal Arthroplasty is an interesting way of 

treating cartilage defects since many have reported the chondrogenic potential of 

periosteum (O'Driscoll, Keeley et al. 1986; O'Driscoll, Keeley et al. 1988; Zarnett and 

Salter 1989; Nakahara, Bruder et al. 1990; Nakahara, Dennis et al. 1991; Nakahara, 

Goldberg et al. 1991; Nakata, Nakahara et al. 1992; Iwasaki, Nakata et al. 1993; Gallay, 

Miura et al. 1994; Iwasaki, Nakahara et al. 1994; Iwasaki, Nakahara et al. 1995; 

O'Driscoll, Saris et al. 2001; Emans, Surtel et al. 2005). Over 90 percent of collagen type II 

in the hyaline cartilage formed in the cartilage defects treated with periosteal grafts has 

been reported (O'Driscoll, Keeley et al. 1986; O'Driscoll, Keeley et al. 1988). 

Perichondrial Arthroplasty used for human cartilage repair was first described by 

Skoog et al. (Skoog and Johansson 1976). This technique has been reported to give an 

initial cartilage repair (Homminga, Bulstra et al. 1990; Homminga, Bulstra et al. 1991). 

On the long term poor results related to overgrowth of the graft and calcification are 

reported by Bouwmeester et al. (Bouwmeester, Beckers et al. 1997). These authors 

concluded that a better fixation of the graft might improve the results. In a study 

comparing periosteum with perichondrium, chondrogenesis was observed significantly 

more using periosteal grafts (Vachon, McIlwraith et al. 1989). This finding and the 

accessibility make periosteum to be preferred over perichondrium.  

iii. Osteochondral Grafts can be divided in autologous and allogenic. Mosaicplasty or 

OATS involves harvesting one or more osteochondral plugs from a relatively less 

weight-bearing region of the joint and subsequent implantation of these plugs into an 

articular defect. Possible donor site morbidity is bypassed if osteochondral allografts 

are used (Gross, McKee et al. 1983; Garrett 1986; Czitrom, Keating et al. 1990; Convery, 

Meyers et al. 1991; Garrett 1994; Ghazavi, Pritzker et al. 1997; Garrett 1998; Horas, 

Schnettler et al. 2000; Gross, Aubin et al. 2002).  
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The role of endochondral ossification in cartilage repair. When using progenitor cells for 
cartilage repair, ossification of the repaired tissue may impair clinical results. Examples 
hereof are ossification and formation of interlesional osteophytes when applying techniques 
such as microfracture and periosteum or perichondrium plasty (Bouwmeester, Beckers et al. 
1997; Cole, Farr et al. 2011). These findings illustrate that maintaining differentiated 
progenitor cells in their chondrogenic state remains challenging in cartilage repair. It 
appears that in contrast to chondrocytes, progenitor cells have the tendency to follow the 
different phases of endochondral ossification towards hypertrophy and mineralisation when 
triggered to differentiate into cartilage. As such, locking cells in their desired differentiation 
state is of the utmost importance when applying these cells for RM purposes. Findings of 
Hendriks and co-workers showed that chondrocytes stimulate progenitor cells towards 
chondrogenesis when both cell types are co-cultured (Hendriks, Riesle et al. 2007). These 
findings were later bolstered by Fisher and co-workers showing that human articular 
cartilage-derived soluble factors and direct co-culture are potent means of improving 
chondrogenesis and suppressing the hypertrophic development of mesenchymal stem cells 
(Fischer, Dickhut et al. 2010). In this study and other work of the group of Richter the PTHrP 
is an important candidate soluble factor involved in this effect. PTHrP is primarily known as 
a key regulator in the process of endochondral ossification. Furthermore, we have recently 
shown that cyclooxygenase (COX) inhibitors are also able to decrease hypertrophy of 
chondrocytes (unpublished data). Thus studying the process of endochondral ossification 
and further unravelling how and why articular chondrocytes maintain their phenotype as 
well as prevention of hypertrophy may enhance cartilage repair techniques by generating 
stable cartilage which does not lead to intra-lesional osteophytes. Finally, cartilage defects 
lead to early OA, also in the process of OA more evidence is found that articular 
chondrocytes loose their capacity to maintain their phenotype and seem to undergo 
endochondrogenesis since they become hypertrophic and express collagen type X (Saito, 
Fukai et al. 2010). As such understanding and controlling the process of 
endochondrogenesis may be of relevance for future insight and treatment of OA. 

3.3 Scaffolds  

Scaffold or carrier material refers to a wide variety of artificial 2D or 3D structures that are 
designed for the purpose of tissue engineering. Scaffolds may be seeded with cells before 
implantation or are designed to recruit or retain cells at the desired place. (Bentley and 
Greer 1971; Wakitani, Kimura et al. 1989). For bone and cartilage regeneration, relevant cells 
are (mesenchymal) stem cells of different origins (bone marrow, adipose tissue, dental pulp, 
iPS etc.) as well as differentiated cells like chondrocytes. Different variables are important 
parameters for scaffold design: pore diameter, shape, kind of material, (bio)degradability, 
implantation site, functionalization, mechanical stability and others. Several materials have 
been and are being explored for this purpose. Generally scaffold materials can be divided in 
natural or synthetic. Examples of natural material-based scaffolds for cartilage and bone 
regeneration are: fibrin, hyaluronan, alginate, agarose, demineralized bone matrix, collagen 
etc. Synthetic scaffold materials include ceramics and copolymers PolyGlycolic Lactic acid 
(PGLA) and PolyethyleneGlycol-terephthalate/PolyButylene Terephthalate (PEGT/PBT) 
(Figure 3) etc. When applying a collagen as carrier material, some authors find enhanced 
cartilage healing, while others conclude that collagen scaffolds have a limited usefulness for 
chondrocyte grafting in large defects (Wakitani, Kimura et al. 1989; Nixon, Sams et al. 1993; 
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Sams, Minor et al. 1995; Sams and Nixon 1995). The use of fibrin as carrier material was 
reported to give superior cartilage healing compared to controls (empty defect) 
(Hendrickson, Nixon et al. 1994). Within time an ideal scaffold should degrade or allow the 
populated cells to take over functionality of the artificial tissue implant. Breakdown 
products and biomechanical features of the scaffold should not negatively interfere with 
differentiation towards this tissue. It is therefore challenging to design a scaffold with all the 
optimal characteristics; proper initial mechanical stability, timed release of required growth 
factors, timed degradation which allows biomechanical stimuli to remodel the formed 
tissue, no release of degradation products which interfere with tissue repair, good handling 
properties, etc. Next generation scaffolds will be so called “smart scaffolds”. These scaffolds 
will be loaded with bioactive factors (e.g. TGF-┚1 and members of its superfamily such as 
BMPs) that can directly influence the differentiation pathways (Sellers, Peluso et al. 1997; 
Sellers, Zhang et al. 2000; Huang, Goh et al. 2002). Effort is being put in e.g. functionalized 
scaffolds with specific affinity peptides to retain cells (Dong, Wei et al. 2009). Also, the 
release of e.g. growth factors may be regulated by “on demand” smart systems that depend 
on incorporated microspheres or proteolytic degradation of linker-peptides. Unfortunately, 
an ideal material for artificial scaffolds for cartilage and bone regeneration has not been 
identified yet, as the biological processes involved are far more complex than anticipated.  

 

Fig. 3. A PolyethyleneGlycol-terephthalate/PolyButylene Terephthalate (PEGT/PBT) 
scaffold produced by using a three dimensional rapid prototyping technique. 
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The endochondral scaffold. During endochondral ossification nature creates its own 
scaffold. Hypertrophic chondrocytes die and leave a large scaffold. During this process 
multiple growth factors are released in an orchestrated manner. The scaffold itself is used as 
a template for invading cells to deposite bone and provide vascularisation. The scaffold 
itself is resorbed by osteoclasts which in turn respond to biomechanical and biochemical 
stimuli. As such the scaffold degrades and simultaneously the proper factors are released. 
The repair tissue remodels to the appropriate architecture as defined by Wolff’s law. 
Studying this process in detail reveals the challenge when “artificial” scaffolds are designed 
from a material science point of view, and so far no scaffolds have been created with the 
same properties capable to dictate the same processes of endochondral remodelling. 

3.4 Cells 

Cells for “orthopaedic” tissues, such as bone and cartilage, originate from the mesenchymal 
cell lineage and may be derived from different autologous or allogenic sources. 
Interestingly, cells used for bone regeneration are almost always progenitor cells, whereas 
for cartilage regeneration also differentiated cells are used, next to progenitor cells. Some 
authors prefer the use of chondrocytes for transplantation while others prefer the use of 
undifferentiated multipotent cells (Skoog and Johansson 1976; O'Driscoll, Keeley et al. 1986; 
Homminga, Bulstra et al. 1991; Brittberg, Lindahl et al. 1994; Lindahl, Brittberg et al. 2003; 
Nathan, Das De et al. 2003; Emans, Surtel et al. 2005; Park, Sugimoto et al. 2005).Mature 
chondrocytes can be released from their cartilaginous matrix, selected and expanded in vitro. 
In this way a relatively small amount of autologous tissue can be used as an appropriate cell 
source. Both chondrocytes and progenitor cells originating from different cell sources have 
been studied in combination with various biomaterials (Bentley and Greer 1971; 
Haynesworth, Baber et al. 1992; Freed, Marquis et al. 1993; Freed, Vunjak-Novakovic et al. 
1993; Iwasaki, Nakata et al. 1993; Brittberg, Lindahl et al. 1994; Bruder, Fink et al. 1994; 
Freed, Grande et al. 1994; Gallay, Miura et al. 1994; Wakitani, Goto et al. 1994; Iwasaki, 
Nakahara et al. 1995). Bone marrow, adipose tissue, synovium, dental pulp, perichondrium 
and periosteum can serve as a source for multipotent cells (Skoog and Johansson 1976; 
Homminga, Bulstra et al. 1991; Bouwmeester, Beckers et al. 1997; Chu, Dounchis et al. 1997; 
O'Driscoll, Saris et al. 2001; Nathan, Das De et al. 2003; Emans, Surtel et al. 2005; Park, 
Sugimoto et al. 2005). Numerous publications described subpopulations of progenitor cells 
in these donor tissues that might be more optimal cell sources than e.g. whole cell pool 
isolates. However, lots of these studies were only performed in vitro and one can question 
whether selection of subtypes based on cell surface markers may bias the outcome of the 
intervention in a difficult to predict way. The involvement of subchondral bone may play a 
role in cell source selection as chondrocytes are capable of producing cartilage under the 
appropriate conditions, but in a situation where simultaneous bone formation is required 
(involvement of the subchondral bone), multipotent cells might be a better cell source. After 
selection and expansion, the main challenge is to keep these cells in the damaged area of the 
joint and this challenge becomes even bigger in larger defects (Bentley and Greer 1971). 
Grande et al. reported that only 8 percent of the total number of cells in the healing tissue 
originated from transplanted chondrocytes (Grande, Pitman et al. 1989). Chondrocytes can 
be maintained in the defect by suturing a periosteal flap or a collagen mesh over the defect 
(Grande, Pitman et al. 1989; Brittberg, Lindahl et al. 1994; Bartlett, Skinner et al. 2005). As 
discussed above, chondrocytes can also be seeded in a matrix or scaffold. This matrix can be 
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implanted in a cartilage defect. This Matrix Assisted Chondrocyte Transplantation (MACT) 
is technically less demanding and has shown identical results compared to Autologous 
Chondrocyte Transplantation on the short term (Bartlett, Skinner et al. 2005) The use or 
allogenic chondrocytes has been reported to be successful in rabbits but experiments in 
horses do not support this finding (Wakitani, Kimura et al. 1989; Freed, Grande et al. 1994; 
Sams, Minor et al. 1995; Sams and Nixon 1995). Immunological rejection or allogenic 
chondrocytes upon implantation in rabbits has been reported and this remains a major 
concern when applying allogenic cells. The use of periosteal tissue or cells has been 
suggested by several authors and is one of the most clear examples of the use of 
endochondral ossification as a blueprint for cartilage and bone regenerative medicine. The 
periosteum is populated with mesenchymal progenitor cells that normally contribute to 
endochondral bone fracture healing. The differentiation capacity of these cells can also be 
used to create cartilage or bone for regenerative purposes. This principle is further explained 
below (see paragraph 3.6). 

When using differentiated or undifferentiated cells for cartilage, bone or osteochondral 

repair it is a challenge to differentiate these cells into their desired state and maintain their 

desired phenotype. As cells from the mesenchymal lineage, once differentiated into 

chondrocytes, have a natural tendency for terminal differentiation via the endochondral 

pathway. This is a big concern for regenerative applications. Much effort is being put in 

technologies that prevent hypertrophic differentiation of transplanted chondrocytes, while 

on the other hand for bone regeneration hypertrophic differentiation may be a prerequisite 

for success (Fischer, Dickhut et al. 2010; Scotti, Tonnarelli et al. 2010). 

3.5 Biochemical signaling pathways 

Growth factors. In growth plate development, homeostasis of articular cartilage as well as 
bone formation and maintenance, several signaling pathways are interacting or shared 
between the different tissues. Indian hedgehog (Ihh) and Parathyroid hormone related 
peptide (PTHrP) coordinate chondrocyte proliferation and differentiation in the so-called 
PTHrP-Ihh feedback loop (Kronenberg 2003). This coordination influences the length of 
proliferative chondrocyte columns as well as chondrocyte hypertrophy. Next to the Ihh and 
PTHrP loop, fibroblast growth factor crucially regulates chondrocyte proliferation and 
differentiation. Many of the 22 distinct FGF genes and their four receptor genes are 
expressed at every stage of endochondral bone formation (Ornitz and Marie 2002). Also 
Bone Morphogenic Proteins (BMPs) have multiple roles during bone and cartilage 
formation, as well as growth plate development. Interestingly, BMPs were discovered 
because of their remarkable ability to induce endochondral bone formation when injected 
subcutaneously in mice. In a cartilage context, BMPs are involved in early chondrogenesis, 
cartilage maintenance and hypertrophic differentiation. In a bone context they drive 
differentiation of progenitor cells to osteocytes and induce alkaline phosphatase activity in 

osteocytes. TGF- isoforms are also involved in similar processes and interestingly were 
found to trigger the formation of osteophytes upon intra-articular injection and during OA 
(Elford, Graeber et al. 1992; van Beuningen, van der Kraan et al. 1993; van Beuningen, van 
der Kraan et al. 1994; Hunziker 2001). As osteophyte formation itself is an example of 

endochondral ossification, the role of TGF- isoforms in endochondral ossification is 
supported by this finding. Remarkably, some characteristics of OA resemble chondrocyte 
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differentiation processes during skeletal development by endochondral ossification. 
Resemblances are: chondrocyte proliferation, chondrocyte hypertrophic marker expression 
(e.g. Collagen type X and MMP-13), vascularisation and focal calcification of joint cartilage. 
This suggests that during OA the articular cartilage is terminally differentiating via 
“normal” endochondral pathways. However, how the mature articular cartilage is kept in 
its cartilaginous state and why it starts a terminal differentiation program in OA is currently 
poorly understood. In the final stage of endochondral bone formation secretion of pro-
angiogenic factors such as VEGF is essential. Sox9 and RunX2 are important transcription 
factors. Sox9 is the master regulator of chondrogenesis and acts as a negative regulator for 
chondrocyte hypertrophy, cartilage vascularisation and bone marrow formation (Hattori, 
Muller et al. 2010). Amongst others it does this via negatively regulating expression of 
RunX2 via Nkx3.2 (also known as BapX1) (Yamashita, Andoh 2009). RunX2 is a central 
regulator for the transition from proliferating to hypertrophic chondrocytes, as it drives the 
transcription of Collagen type X. Interestingly, RunX2 also drives multiple osteogenic 
developmental programs. Inflammatory pathways are other key players in endochondral 
ossification (Einhorn, Majeska et al. 1995; Mountziaris and Mikos 2008). Bone fracture 
healing by endochondral ossification depends on a haematoma-induced inflammatory 
environment (Grundnes and Reikeras 1993) and several inflammatory molecules (e.g. IL-6, 
TNF┙, COX-2 and iNOS) are involved in bone fracture repair (Einhorn, Majeska et al. 1995; 
Mountziaris and Mikos 2008) by influencing chondrocyte maturation and osteogenic 
development. An important chondrogenic growth factor is Insulin Growth Factor 1 (IGF-1). 
Together with its receptors and several IGF binding proteins it determines chondrocyte 
proliferation and differentiation. Importantly IGF-1 appears to play a role in preventing 
chondrocyte apoptosis. Hence, it determines the pace of hypertrophic differentiation and 
thus growth plate development and fracture callus maturation. It was shown that IGF-1 
exerts its action via NF-κB/p65 signaling (Wu, Gong et al. 2008). Furthermore, IGF-1 also 
directly influences osteocyte biology. It has been reported that IGF-1 stimulates cancellous 
bone formation and increases the activity of resident osteoblasts (Zhao, Monier-Faugere et 
al. 2000). RANK is crucially important for bone homeostasis and remodelling. Activation of 
RANKL on monocytic cells by RANK on osteoblasts induces osteoclastogenesis of 
committed monocytic cells. Multinucleation is induced, ultimately leading to the generation 
of mature bone resorbing osteoclasts (Novack and Faccio 2011). This process is 
counterbalanced by the soluble factor osteoprotegerin (OPG), thereby preventing bone loss 
due to osteoclast activation. Activation of the RANKL system is potentiated by 
prostaglandins. PGE2, one of the main cyclooxygenase metabolites is reported to increase 
bone resorption.  

In conclusion, the process of endochondral ossification is dictated by spatiotemporal 
expression and use of variable interacting growth factors and other molecules. It is clear that 
mimicking this complex, yet incompletely known, tissue formation in an in vitro setting on 
the same scale as TE was expected to do is quite challenging. Several findings such as 
endochondral ossification after subcutaneous injection of BMPs show that, in vivo, this 
process may be triggered using stimuli which trigger and enhance the regenerative capacity 
of the tissue itself. In such an approach the amount of unknown stimuli is expected to be 
limited and the body’s own regenerative capacity is used to generate cartilage or bone, 
which in turn can be transplanted into the damaged site. As such, this approach applies 
more to the principles of RM than to the principles of TE. The application of a specific in vivo 
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trigger to stimulate endochondral bone formation has many advantages; no expensive 
culture procedures, no more harvesting of cells, and no introduction of factors which 
possibly conflict with the natural tissue repair and integration. Table 1 summarises the 
differences in tissue features, currently applied (TE) techniques for restoration, and 
remaining challenges. 

3.6 Examples of endochondral ossification as blueprint for regenerative medicine 

Currently for TE purposes cells are harvested during the first operation and the 

implantation of the graft/cells is performed during the second procedure. A question that 

remains is the amount of cells that survives the transplantation. It has been shown that 

periosteal cells show a much poorer survival compared to chondrocytes after 

transplantation into the hostile environment of a fresh osteochondral defect (Emans, Pieper 

et al. 2006). However, the disadvantage of using chondrocytes is the fact that the joint is 

further damaged. It would be ideal to generate cartilage in an ectopical place which does not 

further interfere with the joint homeostasis, survives the transplantation and is capable to 

adapt and repair the defect. In line with this, an interesting variation for cartilage repair is a 

reported by Takahashi et al. who used the early fracture callus, induced at the iliac crest 

(Takahashi, Oka et al. 1995). The early fracture callus was implanted into osteochondral 

defects of rabbit knees with excellent results. A paper of our group also reported excellent 

results after transplantation of periosteum derived cartilage callus into osteochondral 

defects (Emans, van Rhijn et al. 2010). Stevens et al. published an interesting paper on 

inducing chondrogenesis by subperiosteal injection of a hyaluronan-based gel containing 

the antiangiogenic factor Suramin. The resulting tissue also resembled cartilage of early 

fracture callus (Stevens, Marini et al. 2005). The main advantage of this approach is that the 

body is used as its own “in situ incubator”; cells provide their own matrix and complex and 

costly isolation, selection and culturing procedures are bypassed. After this first report 

focussing on bone, we aimed to control the local environment by injecting a gel into the 

space between bone and periosteum which would initiate endochondrogenesis. Both 

agarose and a gel loaded with TGF-┚1 were successful to trigger endochondrogenesis. This 

tissue was harvested during its first chondrogenic phase and successfully implanted into an 

osteochondral defect where an excellent lateral integration and no calcification of the 

cartilage adjacent to the joint was observed (Emans, van Rhijn et al. 2010).   

It was recognised by the group of Martin that TE and RM attempts to create bone using the 

intramembranous pathway (Scotti, Tonnarelli et al. 2010). In contrast, during development 

most bones are formed by endochondral ossification and the parts that do not ossify forms 

articular cartilage. In addition, during fracture healing bone gaps and defects are often 

repaired by endochondral bone formation, during which large amounts of callus can be 

formed. Depending on the phase in which specific tissue is generated by endochondrogenesis, 

this tissue can be harvested for different purposes. If tissue in the early chondrogenic phase is 

harvested this may be ideal to heal both bone and cartilage. If this tissue is harvested at a later 

stage it resembles trabecular bone which has the potential to be used for bone impaction 

grafting. Compared to the frequently used TE approach to create bone directly (intra-

membranous), it seems more logical that endochondral bone formation which is capable to 

produce large amounts of cartilage and bone, even in an ectopic site, may fuel further research  
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Challenges in Tissue Engineering 

Tissue characteristics 

 Bone Cartilage 

Function Weight bearing Weight bearing and joint articulation 

Cells Osteoblasts/osteocytes 

and osteoclasts 

Chondrocytes

Origin Mesenchymal and monocyte 

lineage 

Mesenchymal

ECM Collagen I and Calcium 

phosphate 

Collagen II, Proteoglycans, GAGs and Hyaluronic acid 

Functional ECM 

water content 
No Yes, important

Cell-cell contact Yes and important No, ‘communication’ via ECM

Vascularisation Yes No, hypoxic tissue

Nutrient/oxygen 

supply 
Via vascularisation Via diffusion 

Remodelling Constant (Wolff’s law) Low grade of remodelling?

Regenerative capacity High Low

Access to progenitor 

cells 
Bloodstream, Periosteum, 

Bone marrow 

Superficial layer cartilage? Synovium? 

Endochondral 

ossification 
Complete Has to stop at chondrocyte-phase

Current approaches in TE

Bone Cartilage 

 Advantages Disadvantages Advantages Disadvantages 

Auto- and 

Allografts 
Osteoconductive

Osteoinductive?

Native bone  

Expensive

Host-vs-graft 

reaction Infection 

Freezing cells?  

Donor site morbidity

Osteochondra

l  

grafts 

Native cartilage

 

Expensive 

Host-vs-graft reaction 

(allografts) 

Infection 

Donor site morbidity 

Fixation 

Cell morbidity 

during storage 

 

Decellularized 
bone 

Osteoconductive

Resembles 

native bone  

 

Not osteoinductive

Host-vs-graft 

reaction 

Infection 

Subchondral 

drilling, 

abrasion, 

microfracture

 

Activation of 

bone marrow 

Very effective 

Cheap and easy 

Fibrocartilage 

HA/TCP/ 

Bonefillers 

Osteoconductive

Resembles 

native bone 

properties 

Can be loaded 

with 

cells/growth 

factors 

 

Not osteoinductive

Mechanical features 

Handling properties 

Interference with 

biomechanical 

signalling 

ACI/ACT 

MACT 

Good integration

Native cartilage 

Infection 

Time consuming 

Expansion of cells 

Fixation  

Expensive 

Growth 

factors 
Osteoinductive Not osteoconductive

Expensive 

Overload of growth 

factor 

Ectopic bone 

formation 

Implants/ 

biomaterials 
Can be loaded 

with 

cells/growth 

factors 

Initial cartilage 

repair 

Calcification of 

cartilage 

Fixation  

Toxic degradation 

products 
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Challenges  

Current advantages Remaining challenges 

Scaffolds Conductive 

Can be loaded with cells and/or 

growth factors to recruit, retain and/ 

or differentiate the cells 

Immediate initial mechanical stability 

 

 

 

 

 

Scaffold design: pore diameter and shape 

(bio)Material: natural or synthetic  

Biodegradability and degradation at right time 

Breakdown products 

Integration / fixation 

Release of growth factors at right time  

Interference with tissue environment 

Cartilage: Nutrient supply in scaffold 

                  Allow ECM formation,  

but prevent mineralisation 

                  Allow articulation, repetitive mechanical 

loading and load damping 

Bone: Nutrient and oxygen supply  

            Stimulate vascularisation 

            Allow bone mineralisation 

            Support high mechanical loading 

Endochondral: progenitors differentiate to 

hypertrophic chondrocytes which leave a natural 

‘scaffold’ for bone cells to adhere and remodel and 

provides in essential growth factors and 

vascularisation at appropriate time points.   

 

Growth 

factors  

(BMPs, TGF-

┚s, PTHrP, 

VEGF, etc) 

Inductive  

Can regulate differentiation of cells  

Easy 

Does not recapitulate total physiological repair 

response  

Keep growth factors at damaged area 

Effect on tissue in vivo incompletely known 

Still expensive 

 

Progenitor 

cells 
High potential to differentiate into 

required tissue 

Various origins (bone marrow, dental 

pulp, adipose tissue, periosteum, 

blood etc.) 

Have to differentiate and remain differentiated into 

required tissue 

Infection 

If allografts: host-vs-graft reaction 

Keep cells at damaged area 

Cartilage: Nutrient and oxygen supply 

                 Have to stop differentiating at chondrocyte 

phase 

Bone: Nutrient and oxygen supply  

           Vascularisation 

Cell isolation and culturing is still time  

consuming and expensive 

 

Adult cells Inductive of natural tissue 

Only for cartilage cells? 

Donor site morbidity 

Cells are out of natural environment, can lead to cell 

death or dedifferentiation 

If allografts: allogenic reaction  

Keep cells at damaged area 

Cartilage: Nutrient supply 

                 Prevent further differentiation towards 

hypertrophic chondrocytes 

Table 1. Differences in: tissue characteristics, currently applied Tissue Engineering, and 
remaining challenges for bone and cartilage. 
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for generating both bone and cartilage. Creating cartilage or bone by triggering 

endochondrogenesis in an ectopic site bypasses expensive and time consuming culture 

techniques, logistics, and when triggered by injection of a specific stimulus may even limit 

the total approach to one operation. 

4. Conclusion  

From nature it is known that vast amounts of cartilage are formed in the process of 

endochondrogenesis. Chondrocytes in this cartilage tissue are replaced by a matrix 

deposited by hypertrophic chondrocytes which die by apoptosis. This matrix is used as an 

active scaffold for cells that contribute to bone formation. Following embryonic joint 

formation and post natal growth, the adult skeleton maintains the cellularity and phenotype 

of articular cartilage, whereas growth plate cartilage completely disappears. This process 

entitled endochondral ossification can be recapitulated in other places than growth plates. 

Examples hereof are fracture healing, osteophyte formation and peri-articular ossifications. 

Even in the process of OA endochondrogenesis plays a role. Next to the formation of 

osteophytes in OA, evidence has been reported that during the process of OA, articular 

chondrocytes are triggered to follow the final phase of endochondral ossification (Saito, 

Fukai et al. 2010).  

A scaffold which serves as a template for tissue generation has also been introduced in the 
field of TE. Thusfar TE has not met initial expectations. Materials used as a scaffold to 
engineer bone are often engineered to be biocompatible and have good initial biomechanical 
properties. These properties may interfere with biomechanical stimuli needed for tissue 
organisation and degradation products from these artificial scaffolds may interfere with the 
natural healing response. In contrast to a natural endochondral scaffold, artificial scaffolds 
do not orchestrate ingress of progenitor cells, vascularisation etc.  

Periosteum seems to play an important role in postnatal endochondrogenesis. However 

subcutaneous injection of growth factors leads to generation of bone via the endochondral 

pathway. The first examples of successful generation of bone and cartilage by triggering the 

progenitor cells of periosteum are found in literature (Emans, Surtel et al. 2005; Emans, van 

Rhijn et al. 2010). Also repair of cartilage and bone has been reported to be successful in 

animal studies using this approach. Using the postnatal endochondrogenic capacity for 

generation of cartilage and bone has many advantages: expensive culture procedures and 

logistics are bypassed and sufficient amounts of tissue are likely to be generated. Depending 

on the stage in which endochondral tissue is harvested, different clinical needs could be 

treated varying from (osteo)chondral defects to bone defects (Scotti, Tonnarelli et al. 2010). 

Finally, studying the process of endochondrogenesis may not only be a logical direction for 

tissue generation, but is also expected to provide useful information how to lock progenitors 

in the desired phase and will contribute to our understanding of diseases like OA.  
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