
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



11 

Mesenchymal Stem Cells in CNS Regeneration 

Arshak R. Alexanian 
Medical College of Wisconsin, Neuroscience Research Laboratories,  
Department of Neurosurgery, VA Medical Center - Research 151,  

Milwaukee, Wisconsin,  
USA 

1. Introduction 

1.1 Mesenchymal stem cells as an ideal source of cells for regenerative medicine 

During the last two decades, stem cells have become recognized as a promising tool for 
various biomedical applications including disease modeling, drug development, and cell 
replacement therapies. However, identification of the reliable sources of stem cells that can 
be easily harvested, expanded on a large enough scale, and carry no risk of immune 
rejection still remains one of the important issues for regenerative medicine. 

Mesenchymal stem cells (MSCs) are promising tools for cell therapy (Zeidan-Chulia & 
Noda, 2009) by autologous and allogeneic transplantation for two significant reasons. 
Firstly, MSC can easily be isolated and expanded from different adult and postnatal tissues, 
such as BM (Prockop, 1997), peripheral blood (Kuznetsov et al., 2001), muscle (J. Y. Lee et al., 
2000), vasculature (Brighton et al., 1992), skin (Mizuno & Glowacki, 1996), adipose tissue 
(Zuk et al., 2001) and umbilical cord (O. K. Lee et al., 2004). Secondly, MSCs can differentiate 
into multiple cell types of mesodermal, endodermal, and epidermal origin such as bone 
(Pereira et al., 1995), cartilage (Pereira et al., 1998), fat (Umezawa et al., 1991), muscle 
(Ferrari et al., 1998), cardiomyocytes (Makino et al., 1999), and neurons (Kohyama et al., 
2001). Such a surprising high plasticity of MSCs might be explained by the expression of a 
variety of gene families in undifferentiated MSCs. Several recent studies have shown that 
MSCs express several embryonic stem cell markers (pluripotent markers) such as Oct4, 
Nanog, alkaline phosphatase and SSEA-4, and SOX2 (Park & Patel, 2010; Pierantozzi et al., 
2011; Riekstina et al., 2009). It also has been demonstrated that the translational and 
transcriptional machinery in MSCs responsible for the expression of multiple genes typical 
of several derivatives of three germ layers are not silenced, rather operating at the low level 
(Blondheim et al., 2006; Tondreau et al., 2008). Most importantly, at appropriate 
environmental conditions in vitro and in vivo MSCs can upregulate the expression of these 
genes and exhibit several characteristics of mature cells of different tissues such as heart 
(Choi, Kurtz, & Stamm, 2011; Hattan et al., 2005; Makino et al., 1999), lever (Stock et al., 
2010) and central nervous system (Alexanian, 2010). While it still many controversy 
concerning transdifferentiation of MSCs these recent data suggest that MSCs could be ideal 
autologous source of easily reprogrammable cells. Harboring such a high plasticity these 
cells, in contrast to adult and other tissue specific stem cells and progenitors, could be 
manipulated more easily (Niibe et al., 2011). 
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With the promise that MSCs present for the development of new cell therapies, researchers 
have pursued a broad range of investigations for their therapeutic utilization (Parekkadan & 
Milwid; Picinich, Mishra, Glod, & Banerjee, 2007; Stappenbeck & Miyoshi, 2009; Wang, Liao, 
& Tan, 2011). During the last two decades an overwhelming amount of basic and preclinical 
research has been accumulated that demonstrates the therapeutic usefulness of MSCs in the 
treatment of several diseases and injuries such as neurodegenerative diseases (Joyce et al.), 
spinal cord and brain injuries (Y. Jiang et al.), cardiovascular diseases (Trivedi, Tray, 
Nguyen, Nigam, & Gallicano), diabetes mellitus (Y. H. Zhang et al., 2009) and diseases of 
the skeleton (Chanda, Kumar, & Ponnazhagan). In most of these studies, treatment with 
MSCs results in substantial functional benefit and these pre-clinical studies have led to the 
initiation of a number of clinical trials worldwide.  

MSCs have been used in clinical trials since 1995 and, currently, more than 180 trials are 
registered with ClinicalTrials.gov for the treatment of several diseases including numerous 
neurological disorders and injuries such amyotrophic lateral sclerosis, stroke, parkinson‘s 
disease, Alzheimer’s disease, brain and spinal cord injuries. 

2. In vitro neural differentiation potential of MSCs  

Demonstration of neural differentiation potential of MSCs in several in vitro and in vivo 
studies suggests the potential usefulness of MSCs in the treatment of various CNS disorders. 
This potential has led to extensive studies to further explore the neural plasticity of these 
cells (Azizi, Stokes, Augelli, DiGirolamo, & Prockop, 1998; Kopen, Prockop, & Phinney, 
1999; Munoz-Elias, Marcus, Coyne, Woodbury, & Black, 2004).  

During the last several years, numerous in vitro neural induction protocols to produce 
neural cells from MSCs have been reported. In most induction experiments, MSCs were 
simply exposed to growth factors, neurotrophic factors or factors favoring neural cell 
differentiation (Bi et al., 2010; M. Chen et al., 2000; Q. Chen et al., 2005; Joannides et al., 2003; 
B. J. Kim, Seo, Bubien, & Oh, 2002; S. S. Kim et al., 2005; Kondo, Johnson, Yoder, Romand, & 
Hashino, 2005; Lim et al., 2008; Long, Olszewski, Huang, & Kletzel, 2005; Padovan et al., 
2003; Sanchez-Ramos et al., 2000; Zeng et al., 2011). Other studies have used different 
culture media, supplemented with individual or various combinations of chemical and 
pharmacological agents, such as DMSO, b-mercaptoethanol, 5-bromo-2-deoxyuridine 
(BrdU), butylated hydroxyanisole, forskolin, and dibutyryl cyclic AMP (Ankeny, McTigue, 
& Jakeman, 2004; W. Deng, Obrocka, Fischer, & Prockop, 2001; Episkopou, 2005; Hermann 
et al., 2006; Jori et al., 2005; S. S. Kim et al., 2005; Lu, Blesch, & Tuszynski, 2004; Munoz-Elias, 
Woodbury, & Black, 2003; Tio, Tan, Lee, Wang, & Udolph, 2010; Yang, Wu, & Xiao, 2005; L. 
Zhang, Seitz, Abramczyk, Liu, & Chan, 2011). Other methods to induce MSCs into cells with 
neural characteristics include: transfection of MSCs with Noggin and Notch transcription 
factors (Dezawa et al., 2004; Kohyama et al., 2001); manipulation with surface proteins of 
culture substrate (Qian & Saltzman, 2004); co-culturing MSCs with NSCs or neural cells 
(Alexanian, 2005; Chu, Yu, Zhang, & Yu, 2008; Krampera et al., 2007; Wislet-Gendebien et 
al., 2005; Y. Q. Zhang et al., 2010); and growing MSCs as spheres in cultures (Shiota et al., 
2007), transfection of MSCs with microRNA-9 (Jing et al., 2011). In several other studies, 
MSCs were turned into multipotent stage and then induced into neural cell lineages, by 
exposing them to appropriate neural differentiation conditions (Alexanian, 2007; Kohyama 
et al., 2001; Qu et al., 2004). Recently, we proposed an original method for efficient 
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generation of neural cells from feline and human BM-derived MSCs (hMSC) (Alexanian, 
2010; Z. Zhang, Maiman, Kurpad, Crowe, & Alexanian, 2011). In these studies, neural 
induction was achieved by exposing cells simultaneously to inhibitors of DNA methylation 
and histone deacetylation and pharmacological agents that increased cAMP levels. The 
main idea of this methodological approach was the reactivation of pluripotency-associated 
genes in MSCs simultaneously exposing them to neural-inducing factors. Neurally modified 
MSCs by this methodology, in contrast to naïve MSCs, express several neural progenitor 
and mature neural markers demonstrated by real time RT-PCR, western blot, ELISA and 
immunocytochemistry Fig.1. and Fig.2.  
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Fig. 1. Expression of neural markers nestin, Sox2, A2B5, NCAM, B3T, GFAP, MAP-2, and 
NeuN in hMSCs (a-d) and NI-hMSC grown 24h, 1, 2, 3 weeks in neural induction medium 
(e-t). NI-hMSCs grown an additional week in neuronal induction medium were generated 
cells with long axon- and dendrite-like extensions (v-w). Bars 40um. 
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Fig. 2. Morphological and immunocytochemical characterization of unmodified and NI-
fMSCs. Expression of neural markers B3T, NCAM, A2B5, MAP2, NeuN, NF, Nurr1, TH and 
ChAT in unmodified fMSCs (a-f) and in NI-fMSCs grown for 72h in neural induction 
medium (g-r). 

Despite these studies, there is an intense ongoing debate about the nature of these 
differentiation responses. For example, some recent reports suggested that cell fusion could 
account for transdifferentiation (Terada et al., 2002). However, spontaneous cell fusion is a 
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very rare event and, therefore, can not be account for massive transdifferentiation 
demonstrated in numerous recent studies. In addition, MSCs can be induced into neural-like 
cells with several neural inducing factors, without being grown in co-cultures with NSCs.  

A few other reports suggested that some of these investigations suffered from artifacts 
created by in vitro chemical stress (Lu et al., 2004; Neuhuber et al., 2004). Nevertheless, 
Tondreau and colleagues have recently found significant upregulation of neural genes and 
downregulation of chondrogenic, osteogenic, adipogenic and myogenic genes in neurally 
differentiated MSCs as demonstrated by microarray analysis (Tondreau et al., 2008). In 
addition, a numerous studies suggest that with appropriate neural induction protocols, 
MSCs could produce mature neuron-like cells that exhibit multiple neuronal properties and 
traits, such as action potential, synaptic transmission, secretion of neurotrophic factors and 
dopamine, and demonstration of spontaneous post-synaptic current (Alexanian, Maiman, 
Kurpad, & Gennarelli, 2008; Bonilla et al., 2005; Greco, Zhou, Ye, & Rameshwar, 2008; 
Hermann et al., 2004; Y. Jiang et al., 2003; S. S. Kim et al., 2008; Mareschi et al., 2009; Trzaska 
et al., 2009; Wislet-Gendebien et al., 2005). Whether these neurally modified MSCs can 
produce fully functional neural cells in vitro and vivo is still under intensive investigations. 

3. In vivo neural differentiation potential of MSCs  

One of the first discoveries that demonstrate the pluripotent nature of adult MSCs in vivo, 
came from Ferrari et al. who clearly showed that adult murine BM contained cells capable of 
differentiation into skeletal muscle (Ferrari et al., 1998). In the past decade or more, several 
other studies have documented the ability of adult BM-derived cells to differentiate into 
liver and epithelium (Petersen et al., 1999; Theise, Badve, et al., 2000; Theise, Nimmakayalu, 
et al., 2000), endothelium (Kawamoto et al., 2001; Kawamoto et al., 2003; Takahashi et al., 
1999), heart (Kucia et al., 2004; Orlic et al., 2001; Tomita et al., 1999), and brain (Brazelton, 
Rossi, Keshet, & Blau, 2000; Eglitis & Mezey, 1997; Mezey, Chandross, Harta, Maki, & 
McKercher, 2000). These striking observations indicate that there are BM cells that can 
migrate to distant sites and participate in repair of tissues across germ layer boundaries. In 
the most striking examples, BM cells injected in to the blastocyst contributed to most 
somatic cell lineages, including neural (Y. Jiang et al., 2002). These discoveries have led to 
extensive studies to further explore the neural differentiation potential of MSCs in intact, 
injured and diseased CNS.  

However, multiple studies conducted during the last decade showed that MSCs 
transplanted into the intact, injured or diseased CNS environments do not differentiate or 
only a small portion of cells produce neural phenotypes (Alexanian, Kwok, Pravdic, 
Maiman, & Fehlings, 2010; Castro et al., 2002; J. Deng, Petersen, Steindler, Jorgensen, & 
Laywell, 2006). In contrast, MSCs transplanted in developing embryonic brain or in 
neurogenic areas of the adult brain expressed heterogeneous traits characteristic of radial 
glia, subventricular zone progenitors, migratory cells, parenchymal neurons, and glia (Azizi 
et al., 1998; Kopen et al., 1999; J. M. Li et al., 2011; Munoz-Elias et al., 2004). The fate of MSCs 
consequently appeared to be regulated by multiple influences, presumably including 
different microenvironments. These are in close analogy with studies in which pluripotent 
or highly immature NSCs were used. In a similar way, transplanted cells generated different 
neural phenotypes when transplanted into one of the few neurogenic areas of the brain 
[35,36] but remained undifferentiated or differentiated predominantly into the glial cells 
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when transplanted into injured or non-neurogenic areas [37]. However, when late-stage 
precursors and immature neurons were transplanted into non-neurogenic or injured brain 
and spinal cord, more neural differentiation was observed [38,39]. This indicates that, while 
microenvironment can play a decisive role in determining the fate of engrafted MSCs or 
NSCs, the intrinsic state of these transplanted cells is another important factor for the 
commitment of cells to a particular phenotype. MSCs which presumably committed to 
mesodermal lineages most probably will not produce neural cells in intact, injured or 
diseased CNS and therefore, manipulation of cells into neural fate maybe required before 
transplantation. In fact, several recent studies showed that neurally modified MSCs 
transplanted into intact or damaged CNS exhibited higher ability to generate cells positive 
to various neural markers (Alexanian et al., 2008; Alexanian, Michael, Zhang, & Maiman, 
2011; Cho et al., 2009).  

4. Therapeutic effects of naïve and neurally modified MSCs in CNS disorders 
and their underlying mechanisms 

Experimental treatments of CNS disorders can be broadly grouped into the two distinct 

but interrelated strategies of neuroprotection and neurorepair/neuroregeneration. 

Neuroprotection refers to inhibition of the death of CNS parenchymal cells in traumantic 

and neurodegenerative CNS, neurorepair/neuroregeneration refers to the replacement of 

lost neural cells, stimulation of endogenous neural progenitors and/or regeneration of 

severed axons or sprouting of intact axons to innervate denervated targets in injured or 

diseased CNS. MSCs have been used for all of these strategies and exhibited beneficial 

therapeutic effect in several animal models of CNS injury and neurodegenerative 

diseases. 

4.1 MSC in CNS injury (traumatic spinal cord and brain injury, ischemia/stroke) 

Recent multiple studies demonstrated that naïve or neurally modified MSCs derived from 
different tissue sources exerted therapeutic effect in several animal models of spinal cord 
injury (SCI). However, the precise mechanisms by which transplantation of MSCs promote 
functional recovery after SCI is still unclear. A number of mechanisms have been suggested, 
including the promotion of axon regeneration, neuroprotection, modulation of the immune 
responses, and trans-differentiation into neural cell types (Chamberlain, Fox, Ashton, & 
Middleton, 2007; Dezawa, 2002; Enzmann, Benton, Talbott, Cao, & Whittemore, 2006; 
Keilhoff, Goihl, Stang, Wolf, & Fansa, 2006). The immunosuppressive properties of MSCs 
(Bartholomew et al., 2002a; Corcione et al., 2006; Di Nicola et al., 2002; X. X. Jiang et al., 2005) 
may combine to reduce the acute inflammatory response to SCI and hence reduce cavity 
formation as well as decrease astrocyte and microglia/macrophage reactivity (Abrams et al., 
2009; Himes et al., 2006; Neuhuber, Timothy Himes, Shumsky, Gallo, & Fischer, 2005) in 
injured spinal cords. The therapeutic effect of MSCs on axonal growth could be exerted by 
creation of a favorable environments such as cellular bridges, guiding strands and scaffolds, 
secretion of trophic factors, cytokines and production of extracellular matrix (Fuhrmann et 
al., 2010; Gu et al., 2010; Hofstetter et al., 2002; Neuhuber et al., 2004). The neuroprotective 
mechanism of MSCs could be multifactorial, such as modulation of immune response and 
provision of trophic factors (Uccelli, Benvenuto, Laroni, & Giunti, 2011). Whether MSCs 
therapeutic effect can be exerted via cell replacement is still one of the most debated issues. 
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In most reported studies, transplanted MSCs either do not differentiate, or only very small 
percentage of cells survive and produce neural cells in vivo. This led to studies to elucidate 
whether neural modification of MSCs will promote cell survival and neural differentiation 
of transplanted cells in intact and injured CNS.  

Several recent studies suggest that neural modification of MSC prior to their transplantation 

can exhibit even higher beneficial therapeutic effect then naïve MSCs. In one of these studies 

Sung-Rae Cho et al. showed that transplantation of neurally differentiated MSCs derived 

from bone marrow promoted functional recovery in spinal cord injured rats and the latency 

of somatosensory evoked potentials were significantly improved compared with those of 

naïve MSCs and PBS controls (Cho et al., 2009). Furthermore, transplanted cells prelabeled 

with BrdU also differentiated into neural lineage cells that expressed specific markers for 

astrocytes and oligodendrocytes 4 weeks after transplantation, even though the number of 

integrated cells was not abundant. However, these differentiated cells did not survive 

longer than 8 weeks post transplantation, which was similar to what was reported in a 

previous studies (4). Because injured rats showed significant motor recovery at a relatively 

early stage after transplantation, and only a small number of transplanted cells survived in 

the injured spinal cord for a limited period, authors concluded that trophic or paracrine 

support could be the main factors for functional improvement. 

Recently, we also demonstrated that transplanted neurally induced hMSCs (NI-hMSCs) 

promoted tissue preservation and improved locomotor recovery of injured animals 

(Alexanian et al., 2011). Motor recovery that consisted of hindlimb weight support and 

consistent hindlimb stepping was significantly different at 2-12 weeks post-recovery in the 

group that was transplanted with NI-hMSCs when compared with the control groups that 

received hMSCs and PBS (Fig.3).  

Histological studies of spinal cord sections at specified distances rostral and caudal to the 

epicenter demonstrated that at the epicentre and 1mm caudal and rostral from it the 

percentage of the eriochrome cyanine-positive spared white matter was significantly 

larger in NI-hMSCs treated group than that in the PBS group (Fig.4.A,B). While there was 

no significant difference between naïve hMSCs and PBS groups, there was a modest trend 

for increased white matter sparing in hMSCs-treated versus PBS-treated spinal cords 

(Fig.4.B).  

Stereological assessments of injured spinal cord tissues demonstrated a modest reduction in 

the percentage of cystic cavities in the NI-hMSCs and hMSCs treated groups versus PBS 

group (Fig.4.C) (Fig.5). Although no statistically significant difference had been noticed 

between groups (Fig.4.C), the difference found between NI-HMSCs and PBS was very close 

to the significance level adopted in the study (p<0.05). 

Immunohistochemistry data showed that NI-hMSCs were survived at post transplantation 

weeks 1-12. Analysis of the spinal cord slices of two weeks treated animals revealed that 

85% percent of survived cells were positive to B3T (Fig.6.a,b,c,d). A small percentage of cells 

(2%) was positive to GFAP (Fig.4.e) and 5% to Sox2 (Fig.6.f). By 12 weeks the number of 

surviving cells declined to 15-20% of that at week 2 and only 10% of survived cells were 

positive to B3T (Fig.6.g,h,i). 
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Fig. 3. Locomotor recovery (BBB) scores for the post spinal cord injury (DPI-days post 
injury) behavioral analysis. The asterisks (*) and (**) indicates a significant differences 
between the NI-hMSCs transplanted group compaired to the PBS and PBS+HMSCs groups 
respectively. Asterisk (***) indicates a significant differences between the hMSCs 
transplanted group compaired to the PBS. 

 

Fig. 4. Analysis of white matter sparing and lesion cavity volumes in NI-hMSCs, hMSCs, 
and PBS treated groups. (A) Representative spinal cord cross-sections extending 500um 
rostral and caudal from the lesion epicenter. (B) Graph representing the percentages of 
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spared white matter through the entire T8 spinal cord segment. (C) Graph representing 
comparison of the volumes of lesion cavities. 

 

Fig. 5. Representative three-dimensionally reconstructed images of the lesion cavities 
through T8 injured spinal cord segments of NI-hMSCs and PBS treated animals. 

 

Fig. 6. Transplanted NI-hMSCs survived 2 weeks after transplantation and expressed neural 
markers such as B3T (a-c, b and c are the higher magnifications of the marked area in the 
image a), and GFAP (d-f). By 12 weeks the number of surviving cells declined to 15-20% of 
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that at week 2 and only 10% of survived cells were positive to B3T (g,h,i). The images h and i 
are higher magnifications of g. HM stands for human anti-mitochondrial antibody. 

Thus, MSCs, either neurally modified or not, may provide an alternative source of 

autologous adult stem cells that could be useful for replacing damaged neural cells in 

injured spinal cord and/or providing support to spinal cord tissue cells.  

Over the last decade or so, MSCs have been also used in experimental repair of the injured 

brain. Chopp and Li initially demonstrated transplanted MSCs promote functional recovery 

in rats with traumatic brain injury and attributed the beneficial effects of MSCs to the 

enhancement of endogenous restorative and regenerative processes (Chopp & Li, 2002). 

Later, Chopp and his group showed that MSCs treated with neurotrophins NGF and BDNF 

in vitro led to a higher number of engrafted cells after transplantation into the adult rat 

brain and improved motor function. A small number of cells stained for either astrocytic or 

neuronal markers (Mahmood, Lu, Wang, & Chopp, 2002), but were far too few to provide 

cellular replacement. This group also reported that i.v. administration of MSCs 1 day after 

brain injury in the rat brain resulted in an increase in BDNF and NGF (Mahmood et al., 

2002). Both intracerebral and i.v. MSC administration promoted endogenous progenitor cell 

proliferation after traumatic brain injury (Mahmood, Lu, & Chopp, 2004), and functional 

recovery was dose dependent and persisted for at least 3 months (Mahmood, Lu, Qu, 

Goussev, & Chopp, 2006). Recently another group confirmed the therapeutic effect of 

human MSCs (hMSCs) in a rat model of TBI and demonstrated that expression of 

neurotrophic growth factors was induced by MSC treatment (H. J. Kim, Lee, & Kim, 2010). 

Furthermore, they observed an increase in phosphorylation of the cell survival signaling 

molecule, Akt, followed by decreased caspase-3 activation. These results suggest that the 

therapeutic effects of hMSCs transplantation may involve promotion of antiapoptotic 

activity as a result of secreted growth factors (H. J. Kim et al., 2010). 

A single Phase I study using bone marrow-derived MSCs in children after isolated TBI has 

recently been completed (Cox et al., 2011). In this study, 10 children age 5–14 years with a 

Glasgow coma scale score of 5–8 were treated with 6 × 106 bone marrow-derived 

mononuclear cells per kg body weight delivered intravenously within 48 hours of an 

isolated TBI. To determine the safety of administration, systemic and cerebral 

hemodynamics, laboratory parameters, chest radiographs, and serial clinical assessments 

were monitored. Additionally, serial cerebral magnetic resonance imaging 

neuropsychologic evaluation, and functional outcome measures were obtained as 

preliminary measures of efficacy. There were no identifiable adverse events with close 

monitoring of the neurologic, pulmonary, renal, hepatic, and hematologic systems. 

Functional and neuropsychological testing, including the Glasgow Outcome Scale, the 

Pediatric Injury Functional Outcome Scale, and the Wechsler Abbreviated Scale of 

Intelligence, revealed recovery consistent with (or improved from) expected baselines. 

Magnetic resonance imaging volumetric data revealed no significant change in grey matter, 

white matter, intracranial volume, or CSF space at 1 and 6 months as measured relative to 

expected norms. Authors concluded that bone marrow harvest and intravenous 

mononuclear cell infusion as treatment for severe TBI in children is logistically feasible and 

safe. 
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The therapeutic effect of MSCs was also demonstrated in animal models of stroke. Several 
recent studies showed that transplantation of MSCs, derived from bone marrow, into rodent 
cerebral ischemia models can reduce infarct size and improve functional outcome 
(18,27,50,52,83,85,106,110,111,139,144). MSCs derived from adipose tissue (ADSCs) also 
showed therapeutic effect in rat model of cerebral ischemia (150). Importantly, treatment of 
ischemic animals with neurally induced ADSCs resulted in better functional recovery and 
more reduction in hemispheric atrophy in comparison to unmodified ADSCs (150).  

To test the clinical relevance of these observations, recently, a phase I clinical trial was 
conducted. A feasibility and safety of transplantation of autologous human MSCs in stroke 
patients was the main objective of this trail (51). In this study the autologous MSCs were 
delivered intravenously 36–133 days post-stroke. All patients had magnetic resonance 
angiography to identify vascular lesions, and magnetic resonance imaging prior to cell 
infusion and at intervals up to 1 year after. Neurological status was scored using the 
National Institutes of Health Stroke Scale and modified Rankin scores. The results of this 
study showed that the median daily rate of National Institutes of Health Stroke Scale change 
was 0.36 during the first week post-infusion, compared with a median daily rate of change 
of 0.04 from the first day of testing to immediately before infusion. No central nervous 
system tumors, abnormal cell growths or neurological deterioration was observed, and there 
was no evidence for venous thromboembolism, systemic malignancy or systemic infection 
in any of the patients following stem cell infusion. Thus the stroke is another potential target 
for MSCs therapy. 

4.2 MSCs in neurodegenerative diseases  

There is currently a great deal of interest in the use of MSCs to treat several neurological 
diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and 
multiple sclerosis.  

Recently, a number of studies have examined the ability of MSCs to differentiate into 
dopamine-producing cells, re-innervate the striatum, and ameliorate behavioral deficits in 
Parkinsonian models. Varying degrees of success have been achieved in vitro, including 
dopaminergic marker expression, and dopamine secretion in response to depolarization 
(Dezawa et al., 2004; Fu et al., 2006; Guo et al., 2005; Suon, Yang, & Iacovitti, 2006; Trzaska, 
Kuzhikandathil, & Rameshwar, 2007; Trzaska & Rameshwar, 2011). In addition, 
engraftment and functional improvement were demonstrated following transplantation of 
undifferentiated (Hellmann, Panet, Barhum, Melamed, & Offen, 2006; Y. Li et al., 2001) and 
neurally differentiated MSCs (Dezawa et al., 2004; Fu et al., 2006) in hemiparkinsonian 
rodents. However, only relatively low efficiencies of dopaminergic differentiation were 
achieved, and comparisons between the varying methods have not been performed, 
resulting in difficulties with identifying the optimal methodology. These studies suggest 
that complex mechanisms might underline the therapeutic effect of MSCs in these animal 
parkinsonian models and neuroprotection could be the most important ones (P. H. Lee & 
Park, 2009). Despite all these promising data several issues remain to be resolved including 
the optimal method for inducing a dopaminergic phenotype from MSCs, engraftment and 
survival capabilities of MSCs, optimal sites for transplantation, potential immunological 
responses to MSC grafts, and whether neural differentiation prior to transplantation 
provides engraftment advantages.  
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Unlike Parkinson disease, which is a slower degenerative disease and affects a specific area 

of the brain, amyotrophic lateral sclerosis (ALS) presents quite a challenge for cellular 

therapy because of the distributed cell loss throughout the body and the requirement to 

properly reinnervate muscle tissue. Transplantation of wild-type BM cells into irradiated 

SOD1 transgenic mouse models of ALS demonstrated a delay in disease onset and an 

increase in life span (Corti et al., 2004). Minimal neural differentiation was detected, thus the 

authors concluded that functional improvement was likely due to trophic effects. Another 

study showed that transplantation of human MSCs into SOD1 ALS mice significantly 

delayed disease onset and progression, in addition to increasing lifespan (56). The human 

cells survived more than 20 weeks in the xenogenic model, and were able to migrate into the 

brain and spinal cord and differentiate into neuroglial cells (Zhao et al., 2007). Initial clinical 

studies began in 2003, when Mazzini et al took autologous MSCs from seven ALS patients 

and expanded them in culture (Mazzini et al., 2003). The cells were directly transplanted 

into the spinal cord, and did not result in toxicity or uncontrolled proliferation. Three 

months after transplantation, four patients experienced a mild reduction in muscle strength 

decline in the lower limbs. In a long term follow-up of the patients, the same group 

reported, after 36 months, that four of the seven patients showed a significant reduction in 

the linear decline of lung function and ALS functional rating scale (Mazzini et al., 2006). 

Though these preliminary clinical studies are encouraging, further studies are warranted. 

Research on the role of MSCs in Alzheimer's disease (AD) is in its infancy. However, a 

recent study showed positive results in an AD rat model (Wu, Li, Feng, & Wang, 2007). 

Transplantation of BM-derived MSCs into the hippocampus of rats injected with ß amyloid 

protein to mimic AD demonstrated significant improvement based on the Morris Water 

Maze test (Wu et al., 2007). The authors suggested that the MSCs transdifferentiated into 

cholinergic cells and improved the cognitive ability of the AD rat models. Another group 

recently showed that transplanted MSCs exerted anti-apoptotic effect in an acutely-induced 

AD mice model produced by injecting Abeta intrahippocampally (J. K. Lee, Jin, & Bae, 2010). 

The same group also showed that intracerebral transplantation of BM-MSCs into APP/PS1 

mice significantly reduced amyloid beta-peptide (Abeta) deposition (J. K. Lee, Jin, Endo, et 

al., 2010). Interestingly, these effects were associated with restoration of defective microglial 

function, as evidenced by increased Abeta-degrading factors, decreased inflammatory 

responses, and elevation of alternatively activated microglial markers. Furthermore, 

APP/PS1 mice treated with BM-MSCs had decreased tau hyperphosphorylation and 

improved cognitive function. Thus, BM-MSCs can modulate immune/inflammatory 

responses in AD mice, ameliorate their pathophysiology, and improve the cognitive decline 

associated with Abeta deposits. These results demonstrate that BM-MSCs are a potential 

new therapeutic agent for AD. Interestingly, Stroch A. et al and his group recently detected 

the functional induction of two genes upon neuroectodermal conversion of human adult 

MSCs, namely F-spondin and neprilysin (CD10), with a 4,992 + or - 697-fold and 692 + or - 

226-fold increase of mRNA levels in converted cells compared to MSCs, respectively 

(Habisch et al., 2010). These genes are known to be involved in the formation and 

degradation of Abeta peptides, respectively. Consistently, co-incubation of the 

neuroectodermally converted MSCs with HEK-293 cells stably expressing amyloid 

precursor protein (APP) lead to a significant cell dose-dependent decrease of Abeta 

peptides. These in vitro results indicate that neurally modified MSCs might be even more 
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useful vehicles for delivering anti-Abeta activity and thus exhibiting the maxium 

therapeutic effect on AD (Habisch et al., 2010). 

The potentials of MSCs as a therapy for autoimmune neurological diseases arose from some 
unexpected observations. Therapies with MSCs were originally based on their similarities to 
most adult stem cells and the possibility that they might regenerate tissues through their 
ability to differentiate into mesodermal tissues and perhaps other embryonic lineages. The 
unexpected observation that MSCs inhibited T cell proliferation both in vitro (Di Nicola et 
al., 2002) and in vivo (Bartholomew et al., 2002b) introduced the possibility that MSCs might 
be effective in experimental autoimmune encephalomyelitis (EAE), a model for multiple 
sclerosis (MS) halting the (auto)immune attack to myelin antigens and promoting nervous 
tissue repair through their integration in the central nervous system (CNS). During the last 
few years, animal experiments in the EAE mouse model of MS showed that intraventricular, 
intraperitoneal or intravenous injection of human or murine BM-MSCs significantly 
improved clinical outcomes (Bai et al., 2009; Gordon et al., 2008; Kassis et al., 2008; Zappia et 
al., 2005; J. Zhang et al., 2005) (Zappia et al., 2005, Bai et al., 2009, Gordon et al., 2008, Zhang 
et al., 2005, Kassis et al., 2008). Chopp’s group, in addition to observing functional recovery 
in EAE mice, demonstrated that small percentage of transplanted MSCs was integrated and 
expressed neural markers (J. Zhang et al., 2006). Their observations therefore suggested that 
some transdifferentiation had occurred. Overall, these pioneer studies demonstrated the 
therapeutic efficacy of MSCs in a model of CNS autoimmunity, but they left open the 
question whether their integration in the nervous system was essential for their therapeutic 
benefits. 

Recently, a phase I trial was initiated to evaluate the safety and feasibility of intrathecal 

injection of autologous BM-MSCs in MS patients (Karussis et al., 2010). The initial findings 

of this trial support the possibility of migration of MSCs from their site of injection (lumbar 

area of the cerebrospinal fluid) to the brain ventricles and spinal cord parenchyma. 

Preliminary data of this trail also demonstrated the immunomodulatory effect of MSC in 

human neurological diseases. The authors concluded that the early clinical stabilization and 

improvement in some of the patients could be related to these immunomodulating effects. 

The possibility of neuroprotection and neuroregeneration through transdifferentiation of 

MSCs into cells of the neuronal or glial lineage, although theoretically viable, has yet to be 

proved by neuroimaging studies.  

Promising results from this study will support further clinical trials to evaluate the long 
term safety and the potential clinical efficacy of MSC transplantation in the treatment of MS. 

5. Conclusions 

Although the curative effect of MSCs has been demonstrated in several animal models of 
CNS injury and neurodegeneration as well as in early human clinical trials of neurological 
disorders, the mechanisms that are responsible for these beneficial therapeutic effects are 
still poorly understood. Analysis of accumulated literature in this area suggest the following 
main mechanisms that may underlie the therapeutic effect of naive or neurally modified 
MSCs: 1) neurorepair (replacement of damaged or diseased neural cells by neurally 
transdifferentiated MSCs), 2) neuroprotection (modulation of immune response and 
inflammation, provision of trophic factors that could prevent neural cell apoptosis and 
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demyelination); 3) neuroregeneration (creation of a favorable environment such as cellular 
bridges, guiding strands and scaffolds, provision of of neurotrophines, growth factors or 
cytokines that could promote axonal growth and sprouting and endogenous neurogenesis, 
restoration of blood flow, repair of blood–brain barrier, angiogenesis). However, these 
mechanisms are not mutually exclusive and it is most likely that combination of several 
factors accountable for such therapeutic effects. 
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