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1. Introduction 

In 1968, Friedenstein et al. isolated clonogeneic spindle-shaped cells from bone marrow 

(BM) in monolayer cultures, which they called colony-forming-unit fibroblasts (Friedenstein 

et al., 1974). These cells showed the ability to self-renew and to differentiate toward a 

mesodermal lineage as adipocytes, chondrocytes, osteocytes and connective stromal cells. 

Several studies reported that BM-derived multipotential stromal precursor cells can also 

differentiate into lineages such as ectodermal cells and endodermal cells (Kopen et al., 1999; 

Pittenger et al., 1999). For this reason, BM-derived stromal cells were first considered to be 

stem cells by Caplan and were named mesenchymal stem cells (MSCs) (Caplan, 1991). The 

Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

Therapy proposed the following minimal criteria for defining human MSCs: (1) MSCs must 

be plastic-adherent when maintained under standard culture conditions, (2) MSCs must 

express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, 

CD79a or CD19 and HLA-DR surface molecules, (3) MSCs must differentiate into 

osteoblasts, adipocytes and chondroblasts in vitro (Dominici et al., 2006; Sensebe et al., 2010). 

MSCs have been obtained from adipose tissue, cord blood and many other tissues, and can 
differentiate into a variety of cells, including adipocytes, osteocytes, chondrocytes, 
endothelial cells and myocytes (Campagnoli et al., 2001; Kim et al., 2006; Zuk et al., 2001). 
MSCs secrete a variety of angiogenic, antiapoptotic and mitogenic factors, such as vascular 
endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth 
factor-1 (IGF-1) (Kinnaird et al., 2004; Nagaya et al., 2005). Among MSCs derived from 
various tissues, BM-derived MSCs (BM-MSCs) are widely used in the field of stem cell 
transplantation. We previously reported that autologous BM-MSC transplantation induced 
therapeutic angiogenesis in a rat model of hind-limb ischemia and improved cardiac 
function in rat models of dilated cardiomyopathy and acute autoimmune myocarditis 
(Iwase et al., 2005; Nagaya et al., 2005; Ohnishi et al., 2007). However, there are several 
limitations to using an autologous cell source for cell transplantation, such as the 
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invasiveness of the cell collection procedure, inadequate numbers of cells and donor-site 
morbidity, and the functionality of precursor cells in patients with cardiovascular risk 
factors has been questioned. The frequency and differentiation capacity of BM-MSCs 
decrease with age (D'Ippolito et al., 1999; Mareschi et al., 2006). An alternative source of 
MSCs that could provide large quantities of cells would be advantageous. One way to 
circumvent these limitations could be to use allogeneic MSCs. If allogeneic MSCs could be 
isolated from healthy young donors, and if they had a therapeutic effect similar to that of 
autologous MSCs, they would be considered a superior new cell source because it would be 
possible to overcome the problems noted above, and wider clinical applications of cell 
therapy would become available. Therefore, we focused on fetal membranes (FMs), which 
are generally discarded as medical waste after delivery, as an alternative source of 
autologous MSCs. Several studies reported that human FMs contain multipotent cells 

similar to BM-MSCs and are easy to expand (Alviano et al., 2007; Int Anker et al., 2004; 
Portmann-Lanz et al., 2006). If FM-MSCs could be used in allogeneic transplantation, FMs 
would be a useful source of cells for transplantation and regenerative medicine. 

In this review, we compare the cellular characteristics and utilization of FM-MSCs with 
those of BM-MSCs and discuss the potential of allogeneic FM-MSC transplantation therapy 
in the tissue regeneration (Ishikane et al. 2008, 2010). 

2. Fetal membrane-derived mesenchymal stem cells 

The two FMs, the amnion and the chorion, marginate outward from the basal surface of the 

placenta and encase the amniotic fluid in which the fetus is suspended during pregnancy. The 

FMs facilitate gas and waste exchange and play a critical role as defense barriers, in 

maintenance of pregnancy and in parturition (Bourne, 1962). Human FMs, which are generally 

discarded as medical waste after delivery, were recently shown to be rich sources of MSCs. 

Because fetal tissues are routinely discarded postpartum, FMs are inexpensive and easy to 

obtain and their availability is virtually limitless, avoiding the need for mass tissue banking. 

Human amnion membrane-derived MSCs (hAM-MSCs) were isolated for the first time from 

second and third trimester AMs by In’t Anker et al., who demonstrated their potential for 

differentiation into osteogenic and adipogenic cells (In't Anker et al., 2004). Later, Portmann-

Lanz et al. demonstrated their capacity for differentiation into chondrogenic, myogenic and 

neurogenic lines (Portmann-Lanz et al., 2006). In 2007, Alviano et al. reported that hAM-MSCs 

are superior in proliferation and differentiation potential to adult hBM-MSCs, providing the 

first evidence of the angiogenic potential of hAM-MSCs (Alviano et al., 2007). A large quantity 

of MSCs was isolated from hFMs by serial passaging them prior to senescence at about 15 

passages (Kim et al., 2007; Soncini et al., 2007). The availability of a fetal tissue that is usually 

discarded without any ethical conflict and the high yield in stem cell recovery make FMs a 

truly exciting alternative source that offers new prospects for expanding the range of clinical 

applications for stem cells. 

In our study, FM-MSCs derived from Lewis rats did not express the hematopoietic or 
endothelial surface markers CD11b/c, CD31, CD34 and CD45, but stained positive for CD29, 
CD73 and CD90 (Ishikane et al., 2008). These rat FM-MSCs differentiated into adipocytes, 
osteocytes and chondrocytes (Figure 1). In culture medium, FM-MSCs secreted the angiogenic 
factors, VEGF and HGF. In an angiogenic gene polymerase chain reaction array analysis, FM-
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MSCs expressed compounds characteristic of several angiogenesis-related genes, including 
VEGF-C, platelet-derived growth factor-B, angiopoietins, chemokines and interleukins. These 
results show that FM-MSCs have properties similar to those of BM-MSCs and suggest that 
transplantation of FM-MSCs may induce therapeutic angiogenesis in cases of ischemic disease. 

 

 

Fig. 1. Characterization of FM-MSCs and BM-MSCs: (A) Morphology of FM-MSCs and BM-
MSCs derived from Lewis rats. In the early passages, FM- and BM-MSC derived cells 
appeared microscopically heterogeneous. After several passages, these cells formed a 
morphologically homogenous population of fibroblast-like cells, which was similar to BM-
MSCs. Scale bars: 100 m. (B) Multipotency of FM-MSCs and BM-MSCs. Differentiation into 
adipocytes was observed by oil red O. Differentiation into osteocytes was observed by 
alizarin red S. Differentiation into chondrocytes was observed by safranin O. Scale bars: 50 
m. (C) Flow cytometric analysis of FM-MSCs and BM-MSCs at passage 3. Closed areas 
indicate staining with a specific antibody, whereas open areas represent staining with 
isotype control antibodies. 
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FM-MSC Characteristic BM-MSC 

Noninvasive MSC harvest 
procedure 

Invasive 

Placenta Donor tissue Adult bone marrow 

High Number of obtained 
cells 

Low 

CD11, CD29, CD31, CD34, 

CD45, CD73, CD90, 

MHC class I, MHC class II 

Immunophenotype CD11, CD29, CD31, 

CD34, CD45, CD73, 

CD90, 

MHC class I, MHC class II 

Adipogenic 
Osteogenic 
Chondrogenic 

In vitro multipotency Adipogenic 
Osteogenic 
Chondrogenic 

VEGF, HGF Growth factor 
secretion 

VEGF, HGF, IGF-1, 
adrenomedullin 

In hind limb ischemia: induced 
In acute myocarditis: not  

Angiogenesis In hind limb ischemia: 
induced  
In acute myocarditis: induced 

Low Engraftment of 
transplanted cells 

Low 

Vascular endothelial cells: none 
Myocardium: none 

In vivo 
differentiation 

Vascular endothelial cells:  
very low or none 
Smooth muscle cells: very low 
Myocardium: very low 

Evade Alloreactive T cell 
activation (rejection) 

Evade 

Suppress CD4T cell activation 
(immunomodulatory 
effect) 

Suppress 

Suppress Fibrosis Suppress 

Suppress Inflammatory cell 
infiltration  

Suppress 

Table 1. Comparison of the characteristics of FM-MSCs and BM-MSCs observed in our 
studies. Abbreviations: BM-MSC, bone marrow-derived mesenchymal stem cell; FM-MSC, 
fetal membrane-derived mesenchymal stem cell; HGF, hepatocyte growth factor; IGF-1, 
insulin-like growth factor-1; MSC, mesenchymal stem cell; MHC, major histocompatibility 
complex; VEGF, vascular endothelial growth factor.  

2.1 Immunomodulatory effect of fetal membrane-derived mesenchymal stem cells 

MSCs have received renewed interest, particularly for their use in transplantation medicine. 
Although the main driving force responsible for interest in the regenerative capacity of 
MSCs in the past was their presumptive plasticity, their ability to modulate the immune 
response is now attracting greater interest. MSCs are positive for major histocompatibility 
complex (MHC) class I but negative for MHC class II and for costimulatory factors such as 
CD40, CD80 and CD86, and are therefore considered nonimmunogenic (Chamberlain et al. 
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2007). Allogeneic BM-MSC transplantation has been used in several preclinical and clinical 
studies, in which allogeneic MSCs were not rejected in the absence of immunosuppression 
(Amado et al., 2005; Hare et al., 2009; Le Blanc et al., 2008). 

The use of BM-MSCs not only avoids allogeneic rejection but also may confer 

immunosuppressive effects. Several studies demonstrated that MSCs modulate the function 

of T cells, major executors of the adaptive immune response (Krampera et al., 2003; Le Blanc 

et al., 2003). Di Nicola et al. showed that BM-MSCs strongly suppressed T cell proliferation 

in a mixed lymphocyte culture (MLC) test (Di Nicola et al., 2002). 

In our study of rats, FM-MSCs had immunological properties similar to those of BM-MSCs. 

In an MLC test with haplotype-mismatched allogeneic cells, FM-MSCs did not provoke 

alloreactive lymphocyte proliferation. Interleukin (IL)-2 plays a role in the activation and 

proliferation of T cells. IL-2 concentrations in supernatants of FM-MSC and allogeneic 

lymphocyte co-cultures and in the MLC were lower than those in lymphocyte and 

allogeneic lymphocyte co-cultures. 

To investigate T cell alloreactivity to transplanted allogeneic FM-MSCs, FM-MSCs, BM-

MSCs or splenic lymphocytes obtained from GFP-transgenic Lewis rats were injected into 

the hind-limb tissue of MHC-mismatched August–Copenhagen Irish (ACI) rats. One week 

after cell injection, slight T cell infiltration was observed at the injection site of allogeneic 

FM-MSC-injected hind-limb muscles, but the degree of infiltration was less marked than 

that after allogeneic splenic lymphocyte transplantation and was equivalent to that induced 

by allogeneic BM-MSCs. Use of non-autologous cells for transplant also requires that one 

consider the possibility of graft rejection. Although most clinical applications of FM-MSC 

transplantation apply to allogeneic transplantation, our results suggest that FM-MSCs evade 

T cell alloreactivity and may be successfully transplanted across MHC barriers.  

2.2 Therapeutic angiogenesis in allogeneic fetal membrane-derived mesenchymal 
stem cell transplantation in a hind-limb ischemia model 

Therapeutic angiogenesis, a strategy to treat tissue ischemia by promoting the proliferation 

of collateral vessels, has emerged as one of the most promising therapies developed to date 

(Carmeliet, 2003). In a rat model of hind-limb ischemia, autologous BM-MSC transplantation 

enhanced angiogenesis and peripheral blood flow in the ischemic limb, and these cells were 

incorporated into sites of angiogenesis after tissue ischemia (Iwase et al., 2005). MSC 

transplantation was shown to be a promising approach for restoring tissue vascularization 

after ischemic events (Moon et al., 2006; Nakagami et al., 2005). 

In a previous study, we demonstrated that allogeneic transplantation of FM-MSCs induced 

angiogenesis in a rat model of hind-limb ischemia (Ishikane et al., 2008). One day after left 

common iliac artery resection, FM-MSCs obtained from Lewis rats were transplanted into 

the ischemic thigh muscle of MHC-mismatched ACI rats with hind-limb ischemia (5  105 

cellsanimal). The blood perfusion of the ischemic limb and the capillary density of the 

ischemic muscle were increased 2 and 3 weeks, respectively, after allogeneic FM-MSC 

transplantation (Figure 2). It is noteworthy that the therapeutic gain was similar to that of 

allogeneic BM-MSC transplantation. 
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Fig. 2. Comparison of angiogenesis after allogeneic FM-MSC and BM-MSC transplantation 
in rats with hindlimb ischemia 
(A) Representative examples of serial A laser doppler perfusion image (LDPI). Blood 
perfusion of the ischemic hindlimb was markedly increased in the allogeneic FM-MSCs and 
BM-MSCs transplanted group 3 weeks after cell injection (red to orange). (B) Quantitative 
analysis of hindlimb blood perfusion. LDPI index was significantly higher in the allogeneic 
FM-MSCs and BM-MSCs transplanted groups than in the phosphate-buffer saline (PBS) 
treated control group 3 weeks after cell injection. The LDPI index was determined as the 

ratio of ischemic to nonischemic hindlimb blood perfusion. Data are mean ± S.E.M. *P  0.05 

FM-MSC vs. PBS; †P  0.05 BM-MSC vs. PBS. 

The allogeneic FM- and BM-MSCs in the ischemic hind-limb tissue survived for 3 weeks 

after transplantation, but the number of engrafted cells decreased significantly in both cases 

(Figure 3). In a previous trial, intramuscularly transplanted allogeneic BM-MSCs were 

observed 6 months after transplantation (Dai et al., 2005). In other studies, the number of 

engrafted autologous and allogeneic MSCs gradually decreased, and MSCs were absent 

after several weeks (Fouillard et al., 2007; Kraitchman et al., 2005; Shake et al., 2002). Muller-

Ehmsen et al. reported the observed transplanted MSC loss was predominantly caused by 

cell death rather than migration of cells to other organs (Muller-Ehmsen et al., 2006). 

To investigate differentiation of transplanted FM-MSCs into blood vessel endothelial cells, 
we performed immunofluorescent staining of MSC-transplanted ischemic hind-limb 
sections. GFP-positive transplanted FM-MSCs and BM-MSCs and lectin-positive endothelial 

cells were observed in hind-limb tissue, but GFPlectin double-positive cells were not 
observed. Some studies reported that transplanted BM-MSCs directly differentiated into the 
vascular endothelial cells and vascular smooth muscles in ischemic models (Al-Khaldi et al., 
2003; Moon et al., 2006). However, recent studies demonstrated that the direct contribution 
of grafted MSCs is minimal or even absent, and that paracrine actions are of major 
importance in mediating their regenerative effects (Aranguren et al., 2008; Au et al., 2008; 
Muller-Ehmsen et al., 2006). MSCs were considered to induce neovascularization by 
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secreting large amounts of humoral factors involved in angiogenesis, such as VEGF and 
HGF (Kinnaird et al., 2004; Nagaya et al., 2005). VEGF is one of the more powerful 
angiogenic cytokines and can also mobilize endothelial progenitor cells (EPCs) from BM and 
inhibit EPC apoptosis (Asahara et al., 1999). HGF plays important roles in tissue 
regeneration, morphogenesis and angiogenesis (Zarnegar and Michalopoulos, 1995). HGF is 
thought to stimulate endothelial cell proliferation and to induce angiogenesis, and is a key 
signaling factor that promotes infiltration of circulating stem cells from the peripheral 
circulation to an ischemic area (Morishita et al., 1999; Weimar et al., 1998). Further studies 
are needed to improve the availability of transplanted MSCs for engraftment, but allogeneic 
FM-MSC transplantation could provide a new therapeutic strategy for the treatment of 
severe peripheral vascular disease. 

2.3 Immunomodulatory effect of allogeneic fetal membrane-derived mesenchymal 
stem cell transplantation in an autoimmune myocarditis model 

Several studies reported that MSCs have immunomodulatory effects mediated by secretion 
of soluble factors such as prostaglandin E2, indoleamine 2,3-dioxygenase, IL-6, IL-10, heme 
oxygenase-1 and galectin (Aggarwal and Pittenger, 2005; Chabannes et al., 2007; Meisel et 
al., 2004; Sioud et al., 2011). Based on the immunomodulatory property of MSCs, allogeneic 
FM-MSC transplantation may be an attractive treatment for autoimmune myocarditis. 

Experimental autoimmune myocarditis (EAM) is induced by injecting porcine cardiac 

myosin in Lewis rats. Allogeneic FM-MSCs obtained from MHC-mismatched ACI rats 

(5  105 cellsanimal) were transplanted intravenously into EAM rats 1 week after myosin 

injection. Two weeks after transplantation, the intravenous allogeneic transplantation of 

FM-MSCs reduced fibrosis, edema, necrosis, granulation and eosinophil infiltration in hearts 

exhibiting EAM and significantly attenuated infiltration of inflammatory cells (CD68-

positive monocytes and macrophages) and MCP-1 expression in the myocardium (Figure 

4A and B). Hemodynamic and echocardiographic tests showed a significant improvement in 

cardiac function as a result of allogeneic FM-MSC transplantation (Ishikane et al., 2010). The 

extent of the improvement ranged from 30% to 60 according to various indices of the level 

of dysfunction, which is equivalent to that observed in our previous study on autologous 

BM-MSC transplantation in EAM (Ohnishi et al., 2007). Allogeneic transplantation of FM- 

MSCs significantly reduced infiltration of T cells (CD3-positive cells) into EAM hearts 

(Figure 4C). In a T lymphocyte proliferation assay, splenic T lymphocytes collected from 

allogeneic FM-MSC-transplanted EAM rats had a reduced proliferative response to myosin 

compared with the response of splenic T lymphocytes from untransplanted EAM rats. In 

addition, proliferation of activated T lymphocytes was suppressed by co-culture with 

allogeneic FM-MSCs in vitro. 

Okada et al. reported that Th2-type cytokine expression in EAM was increased by HGF, 
whereas Th1-type cytokine expression was suppressed by intramyocardial transplantation 
of autologous BM-MSCs (Okada et al., 2007). An increase in HGF expression may reduce the 
severity of EAM by suppressing the Th1 response. Van Linthout et al. reported that MSCs 
improved murine acute coxsackievirus B3-induced myocarditis via their 
immunomodulatory properties in a nitric oxide-dependent manner (Van Linthout et al., 
2010). 
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Fig. 3. Engraftment of allogeneic FM-MSCs and BM-MSCs injected into ischemic hindlimb 
muscles. (A) Representative sections show that GFP-positive allogeneic FM-MSCs and BM-
MSCs were present in the hindlimb muscles of rats with hindlimb ischemia 1 and 3 weeks 

after cell injection (brown stain; black arrows). Scale bars: 50 m. (B) Quantitative analysis 
demonstrated that comparable numbers of GFP-positive allogeneic FM-MSCs and 
allogeneic BM-MSCs were observed in ischemic hindlimbs 1 week after cell injection. Three 
weeks after cell injection, a few GFP-positive allogeneic FM-MSCs and BM-MSCs were 
observed. Data are mean ± S.E.M. 
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Fig. 4. Histopathological changes in autoimmune myocarditis at 2 weeks after 
transplantation induced by transplantation of allogeneic FM-MSCs. (A) Myocardial sections 
showed markedly less inflammation in the allogeneic FM-MSCs transplanted group than in 
the untransplanted myocarditis group. Insets are transverse sections of the myocardium. 
The semiquantitative histological grade of edema and eosinophil infiltration were markedly 
decreased in the allogeneic FM-MSCs transplanted group. (B) CD68-positive 
macrophage/monocyte infiltration, and (C) CD3-positive T cell infiltration were markedly 

reduced by allogeneic FM-MSC transplantation. Scale bars = 50 m. Data are expressed as 
mean ± SEM. *P < 0.05 vs. the sham group; †P < 0.05 vs. the untreated myocarditis group. 
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Allogeneic transplantation of FM-MSCs may be an attractive therapy for the treatment of 
autoimmune myocarditis. Further studies are needed to elucidate the therapeutic 
mechanisms. 

3. Potential of mesenchymal stem cell sheet transplantation therapy 

As discussed above, MSC transplantation has attractive possibilities as a tool for cell 
transplantation therapy. However, further experiments are needed to develop data obtained 
with MSCs for application to humans because evidence of an ameliorating effect on 
angiogenesis and cardiac function is not necessarily sufficient to warrant clinical use. To date, 
intramuscular and intravenous injections have been used for cell transplantation therapy, but 
the engraftment rate of MSCs transplanted via these routes was very low (Ishikane et al. 2008, 
2010). Although intramuscularly transplanted allogeneic FM-MSCs survived in ischemic hind-
limb tissue for 3 weeks after transplantation, the number of engrafted cells decreased 
significantly. In EAM, some of the intravenously transplanted MSCs were found in the lung, 
heart, spleen and liver 1 week after transplantation, but these engrafted cells could not be 
detected 4 weeks after transplantation. Most homing and engraftment studies demonstrated 

little, if any, long-term (1 week) engraftment of MSCs after systemic administration 
(Parekkadan and Milwid, 2010). Studies showed that the majority of administered MSCs 

(80) immediately accumulate in the lung and are cleared with a half-life of 24 h. Although 
intravenous cell transplantation is very convenient, it is not suitable for transplantation of large 
numbers of cells. Thus, a more effective transplantation route is needed to enhance 
angiogenesis and cardiac functional improvement in MSC transplantation. 

Recently, cell sheet engineering received attention as a method for heart tissue repair. Okano 
et al. developed engineered cell sheets containing scaffoldless tissue using temperature-
responsive culture dishes (Yamada et al., 1990). These cell sheets enable cell-to-cell 
connections and maintain the presence of adhesion proteins. The cell sheets preserve 
extracellular matrix proteins deposited on the basal surface of the cultured cells. These 
adhesive proteins play an important role in enhancing attachment between stacked cell 
sheets and between cell sheets and the myocardial surface, thereby enabling stable fixation 
of the cell sheet constructs to the target tissues. The cell sheets can readily be transferred and 
grafted to scarred myocardium without additives or suturing. Memon et al. demonstrated 
that layered skeletal myoblast sheets transplanted to infarcted rat hearts enhanced left 
ventricular contraction, reduced fibrosis and prevented left ventricular dilation (Memon et 
al., 2005). Kondoh et al. showed that in hamsters with dilated cardiomyopathy, myoblast 
sheet graft implantation improved cardiac performance and prolonged life expectancy in 
association with a reduction in myocardial fibrosis (Kondoh et al., 2006). In our study on 
rats, adipose tissue-derived MSC sheets improved cardiac function in damaged hearts, with 
reversal of cardiac wall thinning and prolonged survival after myocardial infarction 
(Miyahara et al., 2006). These cell sheets enable transplantation of many more cells than with 
intramuscular or intravenous needle injection. MSC sheet transplantation is expected to 
increase the number of engrafted cells and to enhance paracrine signaling. 

4. Conclusion 

This review shows the potential of allogeneic transplantation of FM-MSCs for the treatment 
of peripheral vascular disease and autoimmune myocarditis. FM-MSCs did not elicit 
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alloreactive T lymphocyte proliferation, and allogeneic FM-MSC transplantation induced 
therapeutic angiogenesis in a rat model of hind-limb ischemia. The angiogenic effects may 
be induced in a paracrine manner rather than via vascular differentiation of the transplanted 
MSCs. It is expected that allogeneic FM-MSC transplantation will be an effective therapy for 
autoimmune myocarditis with rapidly progressive heart failure. The beneficial effects of 
allogeneic FM-MSC transplantation are mainly attributable to suppression of T lymphocyte 
activation and anti-inflammatory effects. FM are potentially promising cell source for 
clinical use; they are medical waste material, are abundantly available from maternity 
wards. The unlimited availability of term gestational tissue, large number of cell that can be 
isolated from FM without invasive procedures, minimal ethical and legal barriers associated 
with their usage and immune tolerance make these cells highly attractive for stem cell based 
regenerative and reparative medicine and tissue engineering. Meanwhile, the risk of tumor 
formation from transplanting allogeneic FM-MSC into patients remains undetermined, and 
long-term follow-up studies are needed to clarify safety. Although further experiments are 
needed to adapt the current results for clinical application, we predict that allogeneic FM-
MSC transplantation therapy will become a treatment for severe peripheral vascular disease 
and autoimmune myocarditis. 
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