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Finite Element Analysis of Desktop Machine 
Tools for Micromachining Applications 

M. J. Jackson, L. J. Hyde, G. M. Robinson and W. Ahmed 
Center for Advanced Manufacturing, College of Technology,  

Purdue University, West Lafayette, IN, 
USA 

1. Introduction 

The current interest in developing a manufacturing capability at the mixed scales is leading 
to a number of investigations concerned with the development of mesoscale machine tools 
(mMTs). The simulation of nanometric machining (Cook 1995, Inman 2001, Luo et al. 2003) 
and the effect of material microstructure (Komanduri et al. 2001 and Vogler et al. 2001) has 
led to the quest to construct machine tools capable of realizing ‘bottom-up’ fabrication 
processes in the general area of nanomanufacturing. The purpose of this paper is to 
investigate the use of a tetrahedral frame design to be used as a machine tool frame for meso, 
micro, and nanoscale machining applications. The problem with existing desk-top machine 
frames is the amount of vibration that is transmitted through the spindle, which affects the 
quality of surface finish and the dimensional accuracy imparted to the workpiece  
being machined. Owing to the way the spindle is mounted at the end of a cantilevered 
structure, low resonant frequencies can occur that are easily excited. In addition, the  

 

Fig. 1. Tetrahedral machine tool frame. 
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amplitude of oscillation is more pronounced due to the geometry of the spindle mounting. 
An alternative approach is to design a vibration suppressing structure. When vibrations 
travel through a tetrahedral structure, they are canceled out or minimized due to the 
interference between the vibrating waves as they travel through the loops of the structure. 
The ability to minimize vibrations is needed because if the spindle oscillates during 
machining, an increase in the depth of cut will occur thus reducing the quality of surface 
finish, or dimensional accuracy of the machined part will be reduced significantly. Figure 1 
shows the tetrahedral structure constructed for the purpose of this investigation. Modal 
analysis experiments were performed to investigate the structural response of the structure. 
Modal analysis experiments consisted of measuring the natural frequencies of the structure 
and deducing frequency response functions (F.R.F.) to determine the mode shapes of the 
structure. In addition, a finite element model (F.E.A.) model was constructed to compare to 
the experimental data, which also may be used for modeling any alterations to the design.  

2. Analysis 

The tetrahedral frame was initially analyzed from a numerical viewpoint using a closed-
form solution and a numerical solution using finite element analysis.  

2.1 Finite element model 

Modal analysis of the tetrahedral structure using the finite element method was performed 
to obtain the natural frequencies and the mode shapes within the range of 0-8500 Hz, to 
compare to experimentally determined mode shapes. Modal analysis simulation was  

 

Fig. 2. Finite-element model of the machine tool frame. 
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performed using the finite element software package ANSYS 6.1. Model preparation was the 

first step in analyzing the modes of the tetrahedral structure (Stephenson 2002). This step 

involved creating a beam model of the structural members. The six bars that link the spheres 

and the reinforcement connections, which tie together the spindle sub-frame and the 

reinforcement bars were modeled using (ANSYS beam 188 elements), which have three 

translational degrees of freedom , ,x yU U and, zU at each node and three rotational degrees 

of freedom ,x y   and z . The three rotational degrees of freedom were needed to 

accurately simulate the boundary conditions at the vertices of the structure. The finite 

element model, shown in Figure 2 consists of 115 elements and 513 nodes. The material 

properties of cold rolled steel were used in the modal analysis. 

Each of the beam elements used enabled a geometric cross-section to be assigned. Each of 

the structural beams was given a circular cross-section of 0.75” diameter. The spindle holder 

was modeled by using a 3.5” O.D. 0.70” I.D. beam. This allowed the spindle holder to rotate 

and bend in a smooth manner. To simulate the spheres located at each of the vertices of the 

structure, a mass element (ANSYS mass 21) was used. The actual spheres of the structure 

were weighed and mass moments of inertia were calculated for them, and then input into 

the mass element model. Beam elements were chosen over solid elements to reduce the 

computation time required to solve the problem.  

2.2 Closed-form solution model 

Sample calculations were performed to approximate the dynamic response of the 

tetrahedral structure. The purpose of these calculations is to obtain a continuous model of 

the structure instead of a finite element approximation.  

The structure was modeled as four spheres at each of the vertices of the tetrahedron, with 

springs simulating the structural links between them. Equation 1 was the equation used to 

generate a mathematical model of the structure. 

 
..

[ ] * [ ] * 0M X K X   (1)  

Where, [ M ] is the matrix of masses for each sphere, 
..

X is the acceleration of each sphere, 

[ K ] is the stiffness matrix for all of the structural links, and X is the displacement of each 

sphere. Equation 2 was used to model the stiffness ( K ) of each connecting rod only (axial 
displacements are considered in this formulation to decrease the complexity of the solution), 

 
*A E

K
L

  where 

secA cross tionalarea

E ModulusofElasticity

L LengthofRods

 



  (2) 

Since this structure was modeled as a 9 degree-of-freedom (d.o.f.) system, the methods listed 
by Inman (2001) were used. This method assumes that each of the d.o.f.’s can be modeled by 
the superposition of several single d.o.f. systems. The structure is a three-dimensional 
structure, where each equation had to be related to a global coordinate system similar to the 
methods used in finite element formulations. There were three degrees of freedom for the 
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top sphere and two degrees of freedom for the base spheres, which led to 9 possible natural 
frequencies. Damping was not considered in the mathematical modeling of this structure 
since it would create more difficulty in solving the equations. 

2.2.1 Boundary conditions 

The boundary conditions used for this structure had to allow the structure to translate along 

its base, but be constrained from movement in the vertical direction. To obtain these 

constraints, the top sphere was the only one that included a Z-axis component in the 

stiffness matrix, which allowed movement in the vertical direction. This allowed the vertical 

bars to move, which is required if the top sphere was allowed to oscillate. The base spheres 

did not include a vertical component since they were constrained from movement in the Z -

direction. Since the displacement constraints existed only in the vertical direction, rigid 

body motion was to be expected, which led to three of the eigenvalues to be zero.  

2.2.2 Free-body diagrams and derivation of equations of motion 

Each of the spheres was modelled using a free-body diagram. The effect of gravity was 

neglected since it is taken into account by the equilibrium displacement of each of the 

structural links. The spring stiffness vectors corresponding to the direction illustrated the 

directions of displacement for the spheres. Damping was not considered in the 

mathematical modeling of this structure since it would create more difficulty in solving the 

equations and because it would not dramatically alter the natural frequencies of the 

structure. The equations of motion were derived from the free-body diagrams that were  

 

Fig. 3. Free-body diagram of the tetrahedral structure. 
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created for each of the spheres. There were two equations for each of the base spheres, and 
three equations for the top sphere. Since each of the links transmits oscillatory waves 
between the spheres, Newton’s third law was used to simulate how each of the spheres 
responded to the force transmitted. Newton’s third law of motion states that a body acted 
upon by a force will respond with an equal and opposite force to achieve equilibrium.  

The first step to deriving a mathematical model was to relate the motion of each bar to a 
local X-Y-Z coordinate system. A brief example of how the equations for base sphere 1 were 
developed is shown. This example relates the motion for the links between sphere 1 and the 
spheres adjacent to it.  

The free-body diagram shown in Figure 3 can be described using a set of local co-ordinate 
systems for each sphere connected to a global co-ordinate system connected by a series of 
rods. The system is shown in Figure 4. 

 

 
 

Fig. 4. Local and global co-ordinate system describing the relationship between spheres and 
connecting rods in the tetrahedral machine tool structure. 

Figure 4 shows that, 

 1,4 cos(54.7 ) sin(54.7 )o o
xy zN e e      (3)  

 cos(30 ) sin(30 )o o
xy y xe e e     (4)  

Substituting for 
xye  yields, 
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 4,1 ( cos(30 ) sin(30 )) cos(54.7 ) sin(54.7 )o o o o
y x zN e e e         (5)  

 1 1 1( )x yU e x e y   (6) 

 4 4 4( )x yU e x e y    (7)  

 1,4 1 1,4U U N   (8)  

 4,1 4 1,4U U N   (9) 

Equation 10 involves taking the dot product between the unit vector 1U  and 1,4N to give, 

1,4 1 1( ) (( cos(30 ) sin(30 )) cos(54.7 )

sin(54.7 ))

o o o
x y y x

o
z

U e x e y e e

e

         


 

 1,4 1 1( sin(30 ) cos(30 )) cos(54.7 )o o oU x y       (10) 

Equation 11 involves taking the dot product between the unit vector 4U  and 1,4N  and 

reducing to give, 

4,1 4 4 4( ) (( cos(30 ) sin(30 )) cos(54.7 )

sin(54.7 ))

o o o
x y z y x

o
z

U e x e y e z e e

e

           


 

That becomes, 

 4,1 4 4 4( sin(30 ) cos(30 )) cos(54.7 ) sin(54.7 )o o o oU x y z          (11) 

Now writing the force balance, 

 4,1 41 14( )F K U U   (12) 

Thus Equation 12 becomes, 

 
4,1 4 1 4 1

4

[( ) sin(30 ) cos(54.7 ) ( ) cos(30 ) cos(54.7 )

sin(54.7 )]

o o o o

o

F K x x y y

z

         


 (13)  

The local equation of motion for the rod between sphere 1 and sphere 2 is shown in Figure 5. 

Figure 5 shows that, 

 
1,2 sin(60 ) cos(60 )o o

x yN e e    
  (16) 

 
2,1 sin(60 ) cos(60 )o o

x yN e e    
 (17) 
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Fig. 5. Local and global co-ordinate system describing the relationship between spheres 1 
and 2 and connecting rods in the tetrahedral machine tool structure. 

 1 1 1( )x yU e x e y   (18) 

 2 2 2( )x yU e x e y   (19) 

 1,2 1 1,2U U N   (20) 

 2,1 2 2,1U U N   (21) 

 1,2 1 1( ) ( sin(60 ) cos(60 ))o o
x y x yU e x e y e e          (22) 

 
2,1 2 2( ) ( sin(60 ) cos(60 ))o o

x y x yU e x e y e e          (23) 

Equation 23 reduces to, 

 2,1 2 2( sin(60 ) cos(60 ))o oU x y      (24) 

Now writing the force balance: 

 2,1 2,1 1,2( )F K U U   (25) 
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Thus, Equation 25 becomes: 

 2,1 2 1 2 1[( ) sin(60 ) ( ) cos(60 )]o oF K x x y y        (26) 

The local equation of motion for the rod between sphere 1 and sphere 3 is shown in Figure 6. 

 

Fig. 6. Local and global co-ordinate system describing the relationship between spheres 1 
and 3 and connecting rods in the tetrahedral machine tool structure. 

 

Fig. 7. Global co-ordinate system representing the tetrahedral machine tool structure in the 
form of a rod and sphere free-body diagram. 

Now that the local equations of motion have been derived, the global system of equations 
must be defined. Summing forces in the X, and Y directions accomplish this task. The Z-

www.intechopen.com



 
Finite Element Analysis of Desktop Machine Tools for Micromachining Applications 

 

463 

direction is not considered since the sphere is restricted from movement in this direction. 
Figure 7 shows the arrangement for the definition of the global co-ordinates of rods and 
spheres. 

 3,1 3 1( )F K y y    (27) 

 
..

1 1,2 1,4 1cos(30 ) cos(54.7 ) sin(30 )
1

o o o
xF F F M x          (28) 

Substituting equations Equation 13, and Equation 26 yields, 

 

2 1 2 1

4 1

..

4 1 4 1

cos(30 ) [( ) sin(60 ) ( ) cos(60 )]

cos(54.7 ) sin(30 ) [( ) sin(30 ) cos(54.7 )

( ) cos(30 ) cos(54.7 ) sin(54.7 )]
1

o o o

o o o o

o o o

K x x y y

K x x

y y z M x

        

        

      

  (29) 

D’Alembert’s Principle is used so that the equation will be in the correct form for 
substituting into the stiffness matrix, K, and into the mass matrix, M, thus, 

 

2 1 2 1

4 1

..

4 1 4 1

cos(30 ) [( ) sin(60 ) ( ) cos(60 )]

cos(54.7 ) sin(30 ) [( ) sin(30 ) cos(54.7 )

( ) cos(30 ) cos(54.7 ) sin(54.7 )] 0
1

o o o

o o o o

o o o

K x x y y

K x x

y y z M x

       

       

       

  (30) 

Summing forces in the Y-direction gives, 

 
..

1 1,2 1,3 1,4 1cos(60 ) cos(54.7 ) cos(30 )
1

o o o
yF F F F M y         (31) 

Substituting equations Equation 13, and Equations 26 and 27 yields, 

 

2 1 2 1

3 1

4 1

..

4 1 4 1

cos(60 ) [( ) sin(60 ) ( ) cos(60 )]

[( )]

cos(54.7 ) cos(30 ) [( ) sin(30 ) cos(54.7 )

( ) cos(30 ) cos(54.7 ) sin(54.7 )] 1

o o o

o o o o

o o o

K x x y y

K y y

K x x

y y z M y

       
  

        

      

  (32) 

Again, D’Alembert’s Principle is used so that the equation will be in the correct form for 
substituting into the stiffness matrix, K, and the mass matrix, M, 

 

2 1 2 1

3 1

4 1

..

4 1 4 1

cos(60 ) [( ) sin(60 ) ( ) cos(60 )]

[( )]

cos(54.7 ) cos(30 ) [( ) sin(30 ) cos(54.7 )

( ) cos(30 ) cos(54.7 ) sin(54.7 )] 01

o o o

o o o o

o o o

K x x y y

K y y

K x x

y y z M y

        
  

        

       

  (33) 
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Equations 30 and 33 may be substituted into the stiffness matrix K and the mass matrix M. 

2.2.3 Solution of matrices 

After the equations for the 9 degrees-of-freedom were written, they were solved to find 

the natural frequencies of vibration. Two matrices were built, one for the mass matrix 

[ M ], and a stiffness matrix [ K ]. Once the matrices were built the eigen function was used 

to solve the eigenvalues and eigenvectors. Once the eigenvalues were solved, the square 

root was taken followed by dividing by 2, which yielded the natural frequencies of the 

system in units of Hertz. There were three zero eigenvalues, which was expected since 

rigid-body motion in the X and Y  directions and rotation in the XY plane was allowed. 

There were also two repeated eigenvalues that occurred due to symmetry of the structure. 

This was considered to be trivial since the eigenvectors would not be used for generating 

mode shapes. A list of the natural frequencies found from the mathematical model is 

shown in Table 1. 

 

Mode set Frequency (Hertz) 

0 0 

1 0 

2 0 

3 0 

4 19.6 

5 19.6 

6 33.0 

7 34.6 

8 34.6 

9 50.2 

Table 1. Natural frequencies generated for the tetrahedral machine tool structure based on 
the results using the closed-form model. 

2.3 Model verification 

A comparison of the closed-form solution and the simplified finite-element model of the 

structure was performed. This was conducted to determine whether the finite element 

software, ANSYS, would yield accurate results that would be comparable to the 

mathematical model. The bar model from ANSYS consists of 6 bar elements and 4 mass 

elements, which are located at the vertices of the structure. The bar element was a beam 3 

element, which only allows movement along its axis, thus tension or compression. This was 

used since the mathematical model was formulated in this manner. The structure was 

constrained from movement in the Uy direction and rotations about the Z-axis, and the X 

axis. The model and the constraints are shown in Figure 8. 
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Fig. 8. A simple bar model to compare to the closed-form solution. 

Finite element bar model 

(ANSYS) 

Closed-form solution 

model 
% Difference Mode set Frequency Mode set Frequency

 (Hz)  (Hz) 

1 0 1 0 0% 

2 0 2 0 0% 

3 0 3 0 0% 

4 23.5 4 19.6 -20% 

 Not available 5 19.6 0% 

 Not available 6 33.0 0% 

5 37.1 7 34.6 -7% 

 Not available 8 34.6 0% 

6 51.4 9 50.2 -2% 

Table 2. Comparison of finite element bar model to the closed-form solution. 
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Fig. 9. Finite-element bar model showing displacement of the structure at a frequency of 23.5 
Hz. 

 

Fig. 10. Finite element bar model showing displacement of the structure at a frequency of 37 
Hz. 
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Table 2 lists the frequencies found from the finite element model and compares them to the 

closed-form solution. Both models show three rigid body modes and have three frequencies 

that are similar. Only six frequencies were found from ANSYS since it only had six degrees 

of freedom, one for each of the bar elements. In addition, it can be seen as the frequencies 

increase the percentage difference decreases. The finite element beam model built to 

compare with the measured model was not used to compare with the closed-form solution 

because it did not include any bending modes, therefore the two do not correlate. However 

the closed-form solution is useful, since it proved that ANSYS compares accurately using a 

simplified bar model, and should compare well to the measured model. 

Since the finite element model compares reasonably well with the closed-form solution, the 

mode shapes that were generated from ANSYS are shown in Figures 9-11.  

It can be shown from Figure 9 and Figure 10 that the top vertex oscillates along one of the 

rods. One of the upper rods shortens, whereas the opposing rods rotate about the base 

vertices. 

 

 

Fig. 11. Finite element bar model showing displacement of the structure at a frequency of 
51.3 Hz. 

Figure 11. Illustrates how the structure oscillates at 51.3 Hz. It can be seen that each of the 
upper rods elongates thus causing the top vertex to increase its height. 
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3. Experimental 

The impact hammer test has become a widely used device for determining mode shapes. 
The peak impact force is nearly proportional to the mass of the head of the hammer and its 
impact velocity. The load cell in the head of the hammer provides a measure of the impact 
force. This data is used to compute the frequency response function (F.R.F.). The use of an 
impact hammer avoids the mass-loading problem and is much faster to use than a shaker. 
An impact hammer consists of a hammer with a force transducer built into the head of the 
hammer. The hammer is used to impart an impact to the structure and excite a broad range 
of frequencies. The impact event is supposed to approximate a Dirac-delta function [2].  

3.1 Experimental method 

The tetrahedral structure [6] was placed on a granite table in order to gain accelerometer 
measurements, thus the structure was allowed to freely move longitudinally and 
transversely across the table. The roving accelerometer approach was used for all of the 
measurements. The center of the spindle frame was used as the excitation point for the 
structure. The accelerometer was placed at various points of interest about the structure. 

3.2 Experimental procedure 

The data acquisition system was set up to take data at a sampling frequency, Fs, of 17000 Hz 
for 8192 points with a delay of 100 points. The voltage range on both channels was set to +\- 
5 volts. Data was acquired in the time domain by averaging 8 ensembles and storing the 
data in binary format for use by Matlab software. This data was used to find the natural 
frequencies of the structure and their corresponding mode shapes. While applying the 
roving accelerometer technique, the structure was excited in the center of the spindle sub-
frame and data was acquired at points 1-28. Before the time domain data was stored, it was 
filtered to remove any aliasing that might have occurred from under-sampling. This was 
accomplished by installing an analog filter between the power supply and the P.C. The 
frequency was set at 8500 Hz, which corresponds to the Nyquist frequency of the measured 
data. After the data was recorded, it was translated into a binary file to be fed into Matlab 
software. The method used on the F.R.F. data of a multi-degree-of-freedom structure is the 
single-degree-of-freedom-curve-fit (S.D.O.F.). In this method the frequency response 
function for the compliance is sectioned off into frequency ranges bracketing each successive 
peak. Each peak is analyzed by assuming that it is the F.R.F. of a single-degree-of-freedom 
system. This assumes that in the vicinity of resonance the F.R.F. is dominated by that single 
mode. Once the frequency response function (F.R.F.) is completed for the chosen data points 
of a structure, it is then appropriate to compute the natural frequencies, damping ratios and 
modal amplitudes with each resonant peak. An example of one of the F.R.F.’s is shown in 
Figure 13. The damping ratio associated with each peak is assumed to be the modal 

damping ratio Zeta, . The modal damping ratio Zeta is related to the frequencies 
corresponding to Equation 34. 

 
( )

( ) ( )
2

d
a b

H
H H


     (34) 

And 2b a d    , so that 
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2
b a

d

 



  (35) 

d  is the damped natural frequency at resonance such that a  and b  satisfy Equation 3. The 

condition of Equation 34 is termed the 3 dB down point. Both the natural frequency and the 

damping ratio Zeta may be found using this method. Once the values of a  and b  are 

determined, then   is found for the structure at the prescribed frequency (Equation 35). This 

method was used in the software to experimentally determine the damping and mode shapes. 
Figure 13 gives an example of F.R.F. data set that was found from the tetrahedral structure. 

 

Fig. 12. Magnitude of the frequency response function, illustrating the calculation of the 
modal damping ratio by using the quadrature peak-picking method for lightly damped 
systems. 

 

Fig. 13. Example of F.R.F. data set cut off at 5000 Hz. 
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3.3 Experimental analysis 

Using the measured data obtained from Me-Scope software, a model was constructed and 
the data was used to find structural damping and mode shapes. At first it was thought that 
the data was too low since the operating frequencies of the spindle are above 4500 Hz. 
However the operating frequencies of the spindle could excite lower frequencies while 
machining. Therefore, this data is useful if the structure is excited at these frequencies by 
some other means, such as localized impacts the structure might experience during a 
machining operation. This is shown in the following series of illustrations at the chosen 
frequencies (Figures 15 –20). The measured data for each node was adjusted such that the 
axis of orientation corresponded with the orientation of the accelerometer. 

 

Fig. 14. Schematic diagram of the tetrahedral machine tool structure showing experimental 
points-of-measurement for determining mode shapes. 
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Figure 14 illustrates where mode shape measurements were taken during the experimental 
phase of this study (numbers 1-28 represent actual data points, whereas the other numbers 
were used for interpolation between measurement points. 

4. Results and discussion 

The measured data compared accurately with the finite element results. It was found that 
the position of the centre of the spindle proved to be a point inside the structure that 
experienced minimal oscillations. It appeared that the structure was kinematically balanced 
such that different parts of the structure had oscillations that were out of phase with other 
parts. The tetrahedral structure was analyzed in its working orientation. The results are 
tabulated in Table 1.  

Measured data Finite element results  

(Me-Scope software) (ANSYS software) % Difference 

125 125 0% 

203 200 1% 

401 407 -1% 

534 535 0% 

601 600 0% 

1070 1085 -1% 

1820 1794 1% 

Table 3. Comparison between measured and finite element calculations. 

Not all of the results are listed, only those of interest. The first column is the measured 

natural frequency, followed by the finite element generated natural frequency in the second 

column. The observed modes of interest are shown in Figures 15-17. The following figures 

illustrate how the tetrahedral structure oscillates at various frequencies. The measured data 

mode shape is given first, followed by a corresponding finite element generated mode 

shape. As the frequency is increased, the results from the finite element model seem to 

diverge from the measured mode shapes. It is thought that as oscillation modes increase 

they tend to depart from Bernoulli beam theory upon which the finite element generated 

results depend. For most of the natural frequencies, the amount of oscillation of the spindle 

is small, or approximately zero, which is preferred since the amount of spindle oscillation 

from equilibrium is translated directly to the machined workpiece. The results from ANSYS 

above 1794 Hz did not coincide with what was measured, therefore no comparison was 

made. However, measured frequencies above 1820 Hz are shown because they are useful for 

future design revisions to the structure. Axial responses, as well as transverse responses, 

from the measured data were used to compare to the finite element results. Torsional data 

was ignored since it was not recorded using the accelerometer and the Me-Scope 

measurement software. It can be seen from the percent difference that the results from 

ANSYS have a natural frequency that resembles the measured results. However, they do not 

converge exactly instead the results oscillate about the measured data. 
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Fig. 15a. Me-Scope measured mode shape data (i.e., displacement) at a frequency of 125 Hz. 

 

Fig. 15b. Finite element generated model of mode shape data (displacement) at a frequency 
of 125 Hz. 

The measured mode shape data using ME-Scope software at a frequency of 125 Hz shows 
an axial deflection for the spindle frame. However, the spindle itself remains stationary. The 
ANSYS model shows bending in the spindle sub-frame. Both finite element models show 
axial bending modes in the structural bars. 
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Fig. 16a. Me-Scope measured mode shape data (displacement) at a frequency of 232 Hz. 

 

Fig. 16b. Finite element generated model of mode shape data (displacement) at a frequency 
of 222 Hz. 

The measured mode shape at 232 Hz illustrates how the structure cancels out oscillations 
that are transmitted through the spindle. It is apparent from the measured mode shape as 
well as the finite element model, how various structural members are out of phase, which 
prevents any displacement of the spindle from its equilibrium position thus achieving a 
preferred effect for machining. 
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Fig. 17a. Me-Scope measured mode shape data (displacement) at a frequency of 1820 Hz. 

 

Fig. 17b. Finite element generated model of mode shape data (displacement) at a frequency 
of 1794 Hz. 
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The measured data vaguely coincides with the finite element model once the frequencies 

reach approximately 1800 Hz, as illustrated from the images from Me-Scope at 1820 Hz and 

the finite element results at 1794 Hz. For this reason the finite element results have been 

omitted above 1820 Hz. This may be due to inadequate modeling of the structural 

connections, but most likely due to Bernoulli beam theory not being applicable at these 

frequencies. The only characteristic that is common to both of the models is the restricted 

oscillation of the spindle. It can readily be seen from the following Figures 18 – 20 that there 

is virtually zero oscillation in the spindle at most of the measured frequencies, this is 

accompanied by the finite element model as well. The reason for omitting results above 4460 

Hz is because the F.R.F. from the measured data was not clean, thereby resembling noise, 

which is not useful for an adequate conclusion to be made. This is because the impact 

hammer method of exciting a structure is limited to approximately 4000 Hz.  

 

Fig. 18. Me-Scope measured mode shape data (displacement) at a frequency of 2890 Hz. 

 

 

Fig. 19. Me-Scope measured mode shape data (displacement) at a frequency of 3400 Hz. 
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Fig. 20. Me-Scope measured mode shape data (displacement) at a frequency of 4460 Hz. 

5. Conclusions 

It is concluded that the finite element model prediction compares well with measured data 
at low frequencies. Owing to this fact, the finite element model may be used for future 
design improvements to the structure. It can be seen from the experimental and the 
measurement results that multiple constraints on the spindle enhance the ability of the 
structure to resist excitation. One possible reason for the structure’s oscillation is probably 
due to the lack of passive damping. Therefore, it is recommended that improvements be 
made to improve passive damping of oscillations.  

6. Acknowledgements 

The author thanks Inderscience for use of material that was published as: Dynamic response 
of a tetrahedral nanomachining machine tool structure by Mark J. Jackson, Luke J. Hyde, 
Grant M. Robinson, Waqar Ahmed DOI: 10.1504/IJNM.2006.011378, International Journal of 
Nanomanufacturing, 2006, Volume, Number 1, p.p. 26-46. Full copyright is retained by 
Inderscience. 

7. References 

Cook, R. D., Finite Element Modeling For Stress Analysis, John Wiley & Sons Inc., New York, 
1995. 

Inman, D. J., Engineering Vibration, Prentice Hall, Upper Saddle River, New Jersey, 2001 
Komanduri, R., Chandrasekaran, N., and Raff, L. M., 2001, Molecular dynamics simulation of 

the nanometric cutting of silicon, Philosophical Magazine, B81, 1989-2019. 
Luo, X., Cheng, K., Guo, X., and Holt. R., 2003, An investigation into the mechanics of 

nanometric cutting and the development of its test bed, Int. J. Prod. Res., 41, 1449-1465. 
Stephenson, D.J., et al: “Ultra Precision Grinding Using the Tetraform Concept”, Abrasives 

Magazine, February/March 2002, p.p.12-16. 
Vogler, M. E., De Vor, R. E., and Kapoor, S. G., 2001, Microstructure – level force prediction 

model for micro-milling of multi-phase materials, Proceedings of the International 
Mechanical Engineering Conference and Exposition, A.S.M.E. Manufacturing 
Engineering Division, 12, p.p., 3 – 10. 

www.intechopen.com



Finite Element Analysis - From Biomedical Applications to

Industrial Developments

Edited by Dr. David Moratal

ISBN 978-953-51-0474-2

Hard cover, 496 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Finite Element Analysis represents a numerical technique for finding approximate solutions to partial

differential equations as well as integral equations, permitting the numerical analysis of complex structures

based on their material properties. This book presents 20 different chapters in the application of Finite

Elements, ranging from Biomedical Engineering to Manufacturing Industry and Industrial Developments. It has

been written at a level suitable for use in a graduate course on applications of finite element modelling and

analysis (mechanical, civil and biomedical engineering studies, for instance), without excluding its use by

researchers or professional engineers interested in the field, seeking to gain a deeper understanding

concerning Finite Element Analysis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. J. Jackson, L. J. Hyde, G. M. Robinson and W. Ahmed (2012). Finite Element Analysis of Desktop Machine

Tools for Micromachining Applications, Finite Element Analysis - From Biomedical Applications to Industrial

Developments, Dr. David Moratal (Ed.), ISBN: 978-953-51-0474-2, InTech, Available from:

http://www.intechopen.com/books/finite-element-analysis-from-biomedical-applications-to-industrial-

developments/finite-element-analysis-of-desktop-machine-tools-for-micromachining-applications



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


