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1. Introduction  

Guided wave ultrasound is a promising technology for non-destructive inspection and 

monitoring of long slender structures such as pipes and rails. These structures are effectively 

one-dimensional waveguides and therefore a large length of the structure can be inspected 

from a single transducer location. A good introduction to guided wave inspection is 

available in (Rose, 2002). During the design of guided wave inspection systems it is 

advantageous to understand the modes of propagation, to predict how these modes interact 

with the damage to be detected and to be able to transmit and receive these modes 

independently (Lowe et al., 1998). Analytical solutions for wave propagation in circular 

cylinders are well known (Gazis, 1959) and may be used when developing pipe monitoring 

systems. When the cross-sectional geometry is more complex, such as in the case of rails, it 

becomes necessary to employ numerical solutions.  

It is possible to compute the wavenumber – frequency relations of propagating modes using 

conventional three – dimensional continuum finite element models, with appropriate 

boundary conditions, as was demonstrated by Thompson (1997). The advantage of this 

method is that it can be implemented using commercially available finite element codes, but 

requires significant user post processing, and the solution of many different model lengths. 

Alternately, semi-analytical finite elements (SAFE) can be specially formulated to efficiently 

analyse these problems. The formulation of these elements includes complex exponential 

functions to describe the wave propagation along the waveguide and conventional finite 

element interpolation functions across the cross-section. Therefore, only a two – dimensional 

mesh of the cross-section of the waveguide is required, which results in a significant 

reduction in the amount of computation required. These elements are sometimes called 

waveguide finite elements and have been implemented by a number of research groups 

(Aalami, 1973; Lagasse, 1973; Gavrić, 1995; Hayashi et al., 2003; Damljanović & Weaver, 

2004a; Bartoli et al., 2006; Predoi Mihai et al., 2007; Castaings & Lowe, 2008 and Ryue et al., 
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2008). In addition to computing dispersion properties of complex geometry waveguides, the 

SAFE approach has been applied to a number of other problems, including forced response 

computations (Damljanović & Weaver, 2004b), modelling of piezoelectric transducers 

attached to waveguides (Loveday, 2008), determining the power input to waveguides 

(Nilsson & Finnveden, 2007), and analysing the scattering of waves at discontinuities 

(Baronian et al., 2009). Authors use slightly different formulations and two popular 

formulations will be compared in Section 2. 

It is well known that the application of an axial load to a beam can influence the natural 

frequencies of the beam. Similarly, the application of an axial load to a waveguide can 

influence the wave propagation characteristics of the waveguide. In the case of 

continuously welded rail, the axial load in the rail is an important parameter. These rails 

are installed to generally be in tension but the amount of tension depends on the 

temperature. If the rail goes into compression there is a danger of buckling, which can 

lead to derailments while if the tension is excessive, the probability of fatigue cracks is 

increased and this can lead to rail breaks and derailments. A guided wave system was 

developed to continuously monitor rails for breaks (Loveday, 2000) and it would be a 

valuable addition if the same system could monitor the rail for compression in the rail 

before buckling. There has been considerable research into the possibility of using guided 

waves to measure the axial load in rails. Low frequency flexural waves were investigated 

by Damljanović & Weaver (2005) who proposed to use a scanning laser vibrometer to 

measure displacements of points along the rail and then to extract the wavenumber of the 

flexural wave at 200Hz (Damljanović & Weaver, 2004b). This method requires that the rail 

be released from the sleepers for a considerable length. Chen & Wilcox (2006) investigated 

the use of higher frequency guided waves for measuring loads in rods. Simulation results 

clearly demonstrated that the phase velocity and group velocity are sensitive to changes 

in load.  

The influence of the axial load on wave propagation characteristics may be analysed by 

three – dimensional finite element models, although the process is tedious and difficult at 

higher frequencies where numerous waves propagate (Chen & Wilcox, 2007). Recently the 

SAFE method was extended to include axial loads (Loveday, 2009) and it was demonstrated 

that the required modification to an existing SAFE code is trivial. This extension is described 

in Section 3 of this chapter. The use of SAFE to analyse the influence of axial loads on wave 

propagation in rails offers the advantage of computational efficiency. In addition because of 

the analytical nature of the method, it is possible to directly compute certain sensitivities 

that would otherwise have to be computed by a finite difference method (Loveday & 

Wilcox, 2010). These possibilities are described in Section 4 while numerical results are 

presented in Section 5.  

2. Semi-analytical finite element formulation for elastic waveguides 

The formulation presented here follows that of Gavrić (1995) who choose the complex 

exponential functions along the waveguide to have the axial terms phase shifted by π/2 

relative to the in-plane terms. This choice leads directly to symmetric matrices and is 

described in Section 2.1. Many of the other SAFE formulations used do not result in a 
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symmetric stiffness matrix, which is inconvenient for eigensolvers. These formulations will 

not be considered here. A different approach was adopted by Damljanović & Weaver 

(2004a) who used a transformation to obtain symmetric matrices. These matrices are the 

same as those obtained by Gavrić except that the sign of one matrix is reversed. A 

comparison of the two approaches is outlined in Section 2.2.  

2.1 Formulation by Gavrić  

The displacement field in an elastic waveguide, extending in the z direction, may be written 

as a complex exponential along the waveguide and a finite element approximation over the 

cross-section. The displacement fields (u, v, w) employed by are Gavrić (1995) were chosen 

to take the form: 

 

( )
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( /2) ( )

( , , , ) ( , )

( , , , ) ( , )

( , , , ) ( , ) ( , )

j z t
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where, z is the coordinate in the direction along the waveguide, κ the wavenumber and ω 

the frequency. u(x,y), v(x,y) and w(x,y) are the interpolated displacements in the x, y and z 

directions respectively. The strain energy of an infinitesimal element of the waveguide is, 

 2
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where, * denotes complex transpose, 0k , 1k  and 2k  are defined below,   and c  are the 

strain and elasticity matrices defined in standard form as: 
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(3) 

where ν is Poisson’s ratio and E is elastic modulus. The strains due to the displacement field 

in (1) are separated into a function over the cross-section, multiplied by the complex 

exponential. Furthermore, for convenience the terms that are dependent on the 

wavenumber are separated from those independent of wavenumber. The result is: 

www.intechopen.com



 
Finite Element Analysis – From Biomedical Applications to Industrial Developments 

 

442 

 

( )

0 1

0

( , , , ) ( , )

( , ) ( , ) ( , )

0

( , ) ; ( , )

j z tx y z t x y e

x y x y x y

u u

x x
v v

y y

w

x y x yu v u v

y x y x

w w
j v j j

y y

w w
j u j j

x x

  
  


 





  
 

    
       

    
    
   
   
                    

            
   
       

1

0

0

; ( , )
0

w
x y

jv

ju



 
 
 
    
 
 
 
  




. 

(4) 

The terms in the strain energy, which are independent, linearly and quadratically dependent 
can now be expressed as follows: 
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1 0 1 1 0
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. (5) 

Four-noded isoparametric elements were used in this research although quadratic elements 
are more efficient (Andhavarapu et al., 2010). The standard interpolation matrix N, which is 

a function of local coordinate ( , )  , relates the nodal degrees of freedom to the coordinate 

and displacement distributions as follows: 

 1 1 1 2 2 2 3 3 3 4 4 4( , ) ( , ) ; [ ]Tu N u u u v w u v w u v w u v w     . (6) 

Where u is the vector of nodal displacements. The strains may now be written, 

 0 0 1 1( , ) ( , ) ; ( , ) ( , )B u B u           , (7) 

and the strains 0 1( , ), ( , )      are related to 0 1( , ), ( , )x y x y  by the Jacobian , J , as 

usual. Integration is performed over the area of the elements to give the elemental matrices. 
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 (8) 

The element matrices are assembled into the system equations of motion. For free vibration 
the equation of motion is: 
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2

2 1 0 0MU K K K U        
 , (9) 

where capitals indicate the assembled counterpart of the lowercase elemental matrices. It 

should be noted that the mass ( M ) and stiffness ( 0 1 2, ,K K K ) matrices are all real and 

symmetric. 

2.2 Comparison with formulation by Damljanović and Weaver  

Damljanović & Weaver (2004a) employed the following functions to describe the 

displacement field:  
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After applying a procedure similar to that in Section 2.1 they obtain the system of equations 

of motion: 

 
2

2 1 0 0MU K j K K U        
   (11) 

In this case the matrix 1K  is skew symmetric and they use the transformation matrix T to 

transform this matrix to a symmetric matrix. The matrix T has the form, 
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  (12) 

and can be thought of as a transformation from the physical coordinates to a transformed 

coordinate system, 

 t pU TU   (13) 

where, pU  are the displacements in the physical coordinates and tU  are the displacements 

in the transformed coordinates. The transformation has the properties 
* *T T TT I   and the 

reverse transformation is 
*

p tU T U . Applying this transformation to the matrices in (11) 

has the following result: 
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The transformation has no effect on the symmetric matrices, but the skew symmetric matrix 

is transformed to a symmetric matrix. The equations of motion in the transformed 

coordinates are then, 

 
2

2 1 0
ˆ 0t tMU K K K U        


.  (15) 

In order to compare the two formulations it is noted that the displacement functions used by 

Gavrić (1) may be written as,  

 p tU TU
,  (16) 

which is the conjugate of the transformation used by Damljanović & Weaver which was 

*
p tU T U . The result of the different transformations is that, in the transformed 

coordinates, the matrix 1K  in Garvić’s method is equal to 1K̂ in Damljanović & Weaver’s 

formulation. The other matrices are the same.  

If one were to start with the functions:  
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,  (17) 

and follow Garvić’s method, the transformed matrices of Damljanović & Weaver would be 

obtained directly. 

3. Extension of SAFE to include axial load 

The presence of an initial stress or load introduces additional terms in the strain energy 

which therefore lead to additions to the stiffness matrix. The SAFE method is extended to 

include axial loads in one-dimensional waveguides in this section.  

When analysing small amplitude elastic waves we generally use the linear infinitesimal 

strain – displacement relations. However, when initial finite strains are present in the 

structure, it is necessary to make use of the full strain-displacement relation (Rose, 1999). 

The linear (  ) and full (E) strain - displacement relationships may be written as,  
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where u, v and w are displacements in the x, y and z directions respectively, as before. 

The potential energy per unit volume, k, may be written as the sum of the strain energy 
associated with the small amplitude elastic wave ( ) and the work performed by the initial 

stress ( (0) ). 
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If we restrict our analysis to consider only an axial load on the waveguide, which extends in 

the z direction, we need only retain the initial stress (0)
zz . We can assume that the stresses 

associated with the small amplitude elastic wave are at least an order of magnitude smaller 
than the axial stress and therefore the product of these stresses and the non-linear strain 
terms are negligible.  

The strain energy can then be written as, 

 
(0)1

[ ]
2

xx xx yy yy zz zz xy xy xz xz yz yz zz zzs E                          . (20) 

All of these terms except the term containing the initial load are already included in the 
linear strain energy used in the SAFE method. The term containing the initial load can be 
expanded as follows, 
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The term (0)
zz

w

z
 




disappears when the variation of the Hamiltonian of the waveguide is 

taken as in Gavrić (1995) or alternatively when the Lagrange equations are applied as in 
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Damljanović & Weaver (2004a). This term represents the interaction of the initial stress with 

the linear strain, which does not feature in the equations of motion for linear systems. 

Therefore the only term we need to add to the linear strain energy expression, previously 

used in the SAFE, is, 

 

2 2 2
(0) (0)1

[ ]
2

zz
u v w

s
z z z

                        .  (22) 

Substituting the displacement interpolation functions and integrating as before produces the 

additional strain energy term with the form, 

  (0) (0) 21

2
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  

. (23) 

The form of this term is identical to that of the kinetic energy. Therefore the additional 

stiffness matrix is proportional to the mass matrix and the equations of motion can be 

written simply as, 

  (0)2
2 1 0 0Mu K K K K u        

 
 , (24) 

where,  

 

(0)
(0) zzK M




 .  (25) 

As no new matrices have to be created it is trivial to extend existing software to analyse the 

influence of axial load on the wave propagation characteristics. 

4. Computation of dispersion characteristics 

If we consider free harmonic vibration (24) and (25) provide the eigenvalue problem, 

including the initial axial stress, 
(0)

0 zz  ,  

 
2 20

2 1 0K M K K u Mu
  


  
       
  

. (26) 

To obtain the relationship between wavenumber and frequency it is necessary to specify one 

of these and solve the eigenvalue problem to obtain the other. If one is interested in the 

behaviour at a frequency or a range of frequencies these may be computed by 

complementing (26) with an identity as suggested by Hayashi et al. (2003) and then solving 

the following complex eigenvalue problem:  
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The wavenumbers that are obtained, by solving this problem, can be real, imaginary or 
complex and occur in pairs with opposite sign corresponding to waves travelling in 
opposite directions. If the number of nodes in the model is denoted N, the eigensolution 
results in 6N eigenvalue-eigenvector pairs. 

If only the propagating modes are required the real wavenumber may be specified and the 
eigenvalue problem (26) may be solved. The propagating modes have real frequency,  and 

real mode shape  . The dispersion characteristics, of the propagating modes, may be 

obtained by solving this eigenvalue problem for a range of different real wavenumbers and 
collecting the real frequencies that are produced. This approach is used here. At each 
specified wavenumber a set of frequency points are obtained but there is no relationship 
between the frequencies at one wavenumber and those at the next wavenumber. If we want 
to plot the dispersion curves it is necessary to track the modes from one wavenumber to the 
next. A technique was developed to track the modes, utilizing the orthogonality property of 
the mode shapes, as expressed in (28). Equation 28 expresses the mass orthogonality of two 
arbitrary modes r and s but the stiffness orthogonality could have been used instead. 

 
( ) ( ) 0

( ) ( ) 0

T
r s

T
r r

M

M

   

   

  

  
   (28) 

It is reasonable to assume that if small wavenumber steps are taken, the mode shapes will 
not change significantly between steps, and that a mode shape at one wavenumber would 
almost be mass-orthogonal to those at the next step. The mass-orthogonality of the mode 
shapes at wavenumber step k, to those at wavenumber step k+1, is computed, i.e.,  

 1( ) ( )T
k kM        .  (29) 

If the wavenumber versus frequency curves have not crossed in this wavenumber interval, 
the largest terms in the matrix Θ will be the diagonal terms. The presence of an off-diagonal 
term that is larger than the corresponding diagonal term, indicates that the curves have 
crossed. For example, if the terms Θi,i+1 and Θi+1,i are larger than the terms Θi,i and Θi+1,i+1 this 
indicates that the ith mode at wavenumber step k becomes the i+1th mode at wavenumber 
step k+1 and that the i+1th mode at wavenumber step k becomes the ith mode at 
wavenumber step k+1. This is then taken into account in the numbering of the modes so that 
a curve for each mode can be plotted. If the complex eigenvalue problem (27) is solved at a 
range of frequencies a similar approach may be used to plot the dispersion curves of the 
propagating modes (Loveday, 2008). 

The group velocities can be computed using an analytical expression similar to the one 
presented by Hayashi et al. (2003) for their element formulation. The analytical expression 
for the group velocity is obtained by differentiating the solution of the eigenvalue problem 
with respect to frequency, 
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leading to an expression which can be rearranged to obtain the group velocity as the subject. 
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.  (31) 

The analytical nature of the SAFE method also makes it possible to directly compute the 
sensitivity of the wavenumber to changes in axial load at a particular frequency as shown in 
(32). 
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. (32) 

In a similar way, the sensitivity of the wavenumber to changes in elastic modulus can be 
obtained  
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.  (33) 

It is interesting to note the similar form and the role of the group velocity in these 
sensitivities. This feature was used to compare the change in wavenumber that would be 
expected to result from a change in temperature via these two mechanisms (Loveday & 
Wilcox, 2010). 

5. Results & discussion 

The influence of axial load on the wave propagation in an aluminium rod was computed 

and compared to an analytical solution. The analytical solution is based on Euler – Bernoulli 

beam theory and was presented by Chen and Wilcox (2007). The phase velocity vph, at 

frequency, ω, for a beam with Young’s modulus, E, second moment of area, I, mass per unit 

length, m, and subjected to a tensile axial load, T, is: 

 
2 2

2

4
ph

EI
v

T mEI T





 
 .   (34) 

A 1 mm diameter aluminium rod was modelled with SAFE method without axial load and 
then with a tensile axial load corresponding to 0.1% axial strain. The results obtained are 
compared to the Euler-Bernoulli beam solution in fig 1. It is clear that the results of the SAFE 
analysis are practically identical to the Euler-Bernoulli beam model results. This result 
confirms the accuracy of the formulation and the numerical implementation of the method. 

www.intechopen.com



 
Semi-Analytical Finite Element Analysis of the Influence of Axial Loads on Elastic Waveguides 

 

449 

10
-1

10
0

10
1

10
2

10
-2

10
-1

Frequency Thickness (Hz m)

P
h
a
s
e
 V

e
lo

c
it
y
 /

 S
h
e
a
r 

V
e
lo

c
it
y

 

 

0% strain

0.1% strain

 

Fig. 1. Influence of strain on 1mm diameter aluminium rod computed by Euler-Bernoulli 
beam theory (top) and SAFE (bottom). 

The ability of the SAFE method to compute the influence of axial loads on complex shapes 
such as rails was demonstrated by computing the dispersion curves for a UIC60 rail profile. 
The model used a density of 7700 kg/m3, a Young’s modulus of 215 GPa and a Poisson’s 
ratio of 0.3. The axial load applied corresponds to 0.1% strain. This analysis was performed 
by setting the wavenumber and computing the frequencies of the propagating modes at this 
wavenumber. The wavenumber was increased in a number of steps and the orthogonality 
conditions were used to track the evolution of the modes. The wavenumber – frequency 
curves are shown in fig. 2, which shows numerous propagating modes. The case with no 
axial load is shown with dashed lines while the solid lines represent the case with axial load. 
The first four propagating modes, which propagate at all frequencies, are identified in the 
legend. It is difficult to see the influence of the axial load when the curves are plotted over 
50 kHz and 120 rad/m. The second plot shows a zoomed in view and the small influence 
can be observed in the fundamental horizontal and vertical bending modes in the frequency 
range between 5 kHz and 10 kHz.  
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Fig. 2. Influence of strain on dispersion in UIC60 rail over a large frequency range (top) and 
zoomed in (bottom). 

The influence of axial load on the group velocities was computed using (31) and is shown in 
fig. 3. Again, the influence is small and the zoomed in view is necessary to see the influence. 
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The group velocity of the two fundamental flexural modes appears to be most sensitive in 
the frequency range from 3 kHz to 6 kHz. In this range the group velocity changes rapidly 
with frequency and significant dispersion would be observed in experiments. 

 

Fig. 3. Influence of strain on group velocity in UIC60 rail over a large frequency range (top) 
and zoomed in (bottom). 
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Finally, the sensitivity of the wavenumbers of the propagating modes to the axial load was 
computed using (32). The sensitivities are plotted in fig. 4 along with the relative 
sensitivities, which are the sensitivities normalised by the wavenumber.  

 

Fig. 4. Sensitivity (top) and relative sensitivity (bottom) of wavenumber to axial load in 
UIC60 rail. 
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These sensitivities indicate modes and frequencies where the axial load has an influence on 
the wavenumber or phase velocity more clearly than the curves in fig. 2. Again, the two 
fundamental flexural modes are the most sensitive. The relative wavenumber sensitivity 
provides a measure of how much the wavelength changes relative to the wavelength and if 
one considers transmitting and then receiving at a number of wavelengths further along the 
rail one could calculate the amount of phase change that would occur due to the axial load. 
The relative wavenumber sensitivity is highest at very low frequencies. At slightly higher 
frequencies the two fundamental flexural modes show maxima in the relative wavenumber 
sensitivities at approximately 5kHz and 6 kHz. It is interesting to note that these frequencies 
appear to correspond to minima in the group velocities of these two modes. This 
information would be useful when trying to design a system to exploit the wavenumber 
sensitivity to measure the axial load in a rail.  

6. Conclusion  

The SAFE method has become popular for analysing guided wave propagation in structures 
with complex geometries. The method, applied to one-dimensional waveguides, was 
extended to include the presence of an axial load. It was shown that the software 
modifications required for this extension are trivial. One of the advantages of the SAFE 
method is that it allows group velocities to be computed analytically. The analytical nature 
of the method can further be exploited to compute sensitivities analytically and the 
sensitivity of the wavenumber to axial load was computed in this manner. Results for 
propagating modes up to 50 kHz in UIC60 rail were computed.  
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