
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



12 

Contact Stiffness Study:  
Modelling and Identification 

Hui Wang1, Yi Zheng2 and Yiming (Kevin) Rong1,2 
1Tsinghua University, 

2Worcester Polytechnic Institute,  
1China 

2USA 

1. Introduction  

In machining processes, fixtures are used to accurately position and constrain workpiece 
relative to the cutting tool. As an important aspect of tooling, fixturing significantly 
contributes to the quality, cost, and the cycle time of production. Fixturing accuracy and 
reliability is crucial to the success of machining operations.  

Computerized fixture design &analysis has become means of providing solutions in 
production operation improvement. Although fixtures can be designed by using CAD 
functions, a lack of scientific tool and systematic approach for evaluating the design 
performance makes them rely on trial-and-errors, which leads to several problems, for 
instance, over design in functions, which is very common and sometimes depredates the 
performance (e.g., unnecessary heavy design); the quality of design that cannot be ensured 
before testing; the long cycle time of fixture design, fabrication, and testing, which may take 
weeks if not months; a lack of technical evaluation of fixture design in the production 
planning stage. 

Over past two decades, Computerized Aided Fixture Design (CAFD) has been recognized as 
an important area and studied from fixture planning, fixture design to fixturing 
analysis/verification. The fixture planning is to determine the locating datum surfaces and 
locating/clamping positions on the workpiece surfaces for a totally constrained locating and 
reliable clamping. The fixture design is to generate a design of fixture structure as an 
assembly, according to different production requirements such as production volume and 
machining conditions. And the design verification is to evaluate fixture design 
performances for satisfying the production requirements, such as completeness of locating, 
tolerance stack-up, accessibility, fixturing stability, and the easiness of operation.  

For many years, fixture planning has been the focus of fixture related academic research 
with significant progress in both theoretical and practical studies. Most analyses are based 
on strong assumptions, e.g., frictionless smooth surfaces in contact, rigid fixture body, and 
single objective function for optimization. Fixture design is a complex problem with 
considerations of many operational requirements. Four generations of CAFD techniques 
and systems have been developed: group technology (GT)-based part classification for 
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fixture design and on-screen editing, automated modular fixture design, permanent fixture 
design with predefined fixture components types, and variation fixture design for part 
families. The study on a new generation of CAFD just started to consider operational 
requirements. Both geometric reasoning, knowledge-based as well as case-based reasoning 
(CBR) techniques have been intensively studied for CAFD. How to make use of the best 
practice knowledge in fixture design and verify the fixture design quality under different 
conditions has become a challenge in the fixture design &analysis study. 

In fixture design verification, it was proved that when the fixture stiffness and machining 
force are known as input information, the fixturing stability problem could be completely 
solved. However most of the studies were focused on the fixtured workpiece model, i.e., 
how to configure positions of locators and clamps for an accurate and secured fixturing. 
FEA method has been extensively used to develop fixtured workpiece model (e.g., Fang, 
2002; Lee, 1987; Trappey, 1995) with an assumption of rigid or linear elastic fixture stiffness. 
The models and computational results cannot represent the nonlinear deformation in fixture 
connections identified in previous experiments. As Beards (1983) pointed out, up to 60% of 
the deformation and 90% of the damping in a fabricated structure can arise from various 
connections. The determination of fixture contact stiffness is the key barrier in the analysis 
of fixture stiffness. The existing work is very preliminary, by either simply applying the 
Hertzian contact model or considering the effective contact area. 

The development of fixture design &analysis tools would enhance both the flexibility and 
the performance of the workholding systems by providing a more systematic and analytic 
approach to fixture design. Fixture stationary elements, such as locating pads, buttons, and 
pins, immediately contact with the workpiece when loading the workpiece. Subsequent 
clamping (by moveable elements) creates pre-loaded joints between the workpiece and each 
fixture component. Besides, there may be supporting components and a fixture base in a 
fixture. In fixture design, a thoughtful, economic fixture-workpiece system maintains 
uniform maximum joint stiffness throughout machining while also providing the fewest 
fixture components, open workpiece cutting access, and shortest setup and unloading 
cycles. Both static and dynamic stiffness in this fixture-workpiece system rely upon the 
component number, layout and static stiffness of the fixture structure. These affect fixture 
performance and must be addressed through appropriate design solutions integrating the 
fixture with other process elements to produce a highly rigid system. This requires a 
fundamental understanding of the fixture stiffness in order to develop an accurate model of 
the fixture - workpiece system. 

2. Computer-aided fixture design with predictable fixture stiffness 

The research on fixture-workpeice stiffness is a crucial topic in fixture design field. 
Currently, based on the elastic body assumption, using FEA method to predict the fixture 
stiffness has been widely accepted. With the consideration on the contact and friction 
conditions, the validity and accuracy of the methodology was been illustrated by two cases 
simulation and experimental comparison (Zhu, 1993). 

The following is an introduction on the general methodology. 

First the stiffness of typical fixture units is studied with considerations of contact friction 
conditions. The results of the fixture unit stiffness analysis are integrated in fixture design as 
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a database with variation capability driven by parametric representations of fixture units. 
When a fixture is designed using fixture design &analysis tool, the fixture stiffness at the 
contact locations (locating and clamping positions) to the workpiece can be estimated 
and/or designed based on the machining operation constraints (e.g., fixture deformation 
and dynamic constraints). Fig. 1 shows a diagram of the integrated fixture design system. 

 

Fig. 1. Integrated Fixture Design System 

In order to study the fixture stiffness in a general manner, fixture structure is decomposed 
into functional units with fixture components and functional surfaces (Rong, 1999). In a 
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fixture unit, all components are connected one to another where only one is in contact 
directly with fixture base and one or more in contact with the workpiece serving as the 
locator, clamp, or support. Fig. 2 shows a sketch of the fixture units in a fixture design. 
When a workpiece was located and clamped in the fixture, the fixture units are subjected to 
the external loads that pass through the workpiece. If the external load is known and acting 
on a fixture unit, and the displacement of the fixture unit at the contact position is measured 
or calculated based on a finite element (FE) model, the fixture unit stiffness can be 
determined. 

The fixture unit stiffness is defined as the force required for a unit deformation of the fixture 
unit in normal and tangential directions at the contact position with workpiece. The stiffness 
can be static if the external load is static (such as clamping force), and dynamic if the 
external load is dynamic (such as machining force). It is the key parameter to analyze the 
relative performance of different fixture designs and optimize the fixture configuration. 

Analysis of fixture unit stiffness may be divided into three categories: analytical, 
experimental and finite element analysis (FEA). Conventional structural analysis methods 
may not work well in estimating the fixture unit stiffness. Preliminary experimental study 
has shown the nature of fixture deformation in T-slot based modular fixtures (Zhu, 1993). 
An integrated model of a fixture-workpiece system was established for surface quality 
prediction (Liao, 2001) based on the experiment results in (Zhu, 1993), but combining zhu’s 
experimental work and finite element analysis (FEA). Hurtado used one torsional spring, 
and two linear springs, one in the normal direction and the other in the tangential direction, 
to model the stiffness of the workpiece, contact and fixture element. (Hurtado, 2002) FEA 
method has not been studied for fixture unit stiffness due to the complexity of the contact 
conditions and the large computation effort for many fixture components involved. 

 

Fig. 2. Sketch of Fixture Units 
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3. Finite element model with frictional contact conditions 

3.1 Finite element formulation 

Consider a general fixture unit with two components I and J, as shown in Fig.3 (Zheng, 2005, 

2008). For multi-component fixture units, the model can be expanded. The fixture unit is 

discretized into finite element models using a standard procedure, except for the contact 

surfaces, where each nodes on the finite element mesh for the contact surface is modelled by 

a pair of nodes at the same location belonging to components I and J, respectively, which are 

connected by a set of contact elements. The basic assumptions include that material is 

homogenous and linearly elastic, displacements and strains are small in both components I 

and J, and the frictional force acting on the contact surface follows the Coulomb law of 

friction. 

The total potential energy p of a structural element is expressed as the sum of the internal 

strain energy U and the potential energy Ω of the nodal force; that is, 

 p U     (1) 

It is well known that the element strain energy can be expressed as, 

     1

2

T
U q K q    (2) 

where  K is the element stiffness matrix; and q is the element nodal displacement vector. 

The potential energy of the nodal force is, 

    T
q R       (3) 

where  R is the vector of the nodal force. It includes internal force and external force. 

When the two components I and J are in contact, a number of three-dimensional contact 
elements are in effect on the contact surfaces. It should note that the problem is strongly 
nonlinear, partially due to the fact that the number of contact elements may vary with the 
change of contact condition. The original contacting nodes might separate or recontact after 
separation, based on the deformation condition on the contact surface; also contact stiffness 
may not constant either. The contact elements are capable of supporting a compressive load 
in the normal direction and tangential forces in the tangential directions. When the two 
components are in contact, and the displacements in the tangential directions and normal 
direction are assumed as independent, the element itself can be treated as three independent 
contact springs: two having stiffness kt and k in the tangential directions of the contact 
surface at the contact point and one having stiffness kn in the normal direction. 

Usually, there are two methods used to include the contact condition in the energy equation: 

the Lagrange multiplier and the penalty function methods. In order to understand these 

methods, a physical model of the contact conditions is presented, shown in Fig. 4. When two 

contact surfaces of fixture components, i.e., body J and I, are loaded together, they will 

contact at a few asperities. 
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Fig. 3. Contact Model of Two Fixture Components 

The contact criteria can be written as: 

0; 0; 0ni nif f     

Where,  

 is distance from a contact point i in body I to a contact point j on the body J in the normal 
direction of contact; fni is the contact force acting on point i of body I in the normal direction. 
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It shows the kinematic condition of no penetration and the static condition of compressive 

normal force. To prevent interpenetration, the separation distance  for each contact pair 

must be greater or equal to zero. If >0, the contact force fni=0. When =0, the points are in 

contact and fni<0. If <0, penetration occurs. In real physics, the actual contact area increases, 

and contact stiffness is enhanced when the load increases. Therefore, the contact 

deformation is nonlinear as a function of the preload as shown Figure 4(e). In the Lagrange 

multiplier method, the function w(, fni) represents the constraint, which prevents the 

penetration between contact pairs. In the penalty function method, an artificial penalty 

parameter is used to prevent the penetration between contact pairs. 

 

Body I

Body J
R

E1'v1

E2'v2

 

a) b) 

η

R
 

Initial State 
c) 

State after loading 
d) 

Normal contact deformation curve 
e) 

Fig. 4. Physical Model of the Contact Conditions 

In the penalty function method, the contact condition is represented by the constraint 
equation,  

www.intechopen.com



 
Finite Element Analysis – From Biomedical Applications to Industrial Developments 

 

326 

       Ct K q Q    (4) 

Where {t} is the constraint equation,  CK  is the contact element stiffness matrix,  Q  is the 

contact force vector of the active contact node pairs. When    0t  , it means that the 

constraints are satisfied. So the constraint equation Eq. 4 becomes  

     CK q Q   (5) 

The total potential energy Πp  in Eq. 1 can be augmented by a penalty function     1

2

T
t t  

where    is a diagonal matrix of penalty value i . The total potential energy in the 

penalty function method becomes 

              1 1Π
2 2

T T T
pP q K q q R t t     (6) 

The minimization of ΠpP  with respect to  q  requires that  Π
0pP

q
 

  
, which leads to 

                T T
C C CK K K q R K Q      (7) 

where     T
C CK K  is the penalty matrix. 

On the other hand, in the Lagrange multiplier method, the contact constraint equation can 
be written as:  

        T
Cw K q Q    (8) 

where the components of the row vector i (i=1, 2, …, N), are often defined as Lagrange 

multipliers i .  

Adding Eq. 8 to the potential energy in Eq. 1, we have the total energy in the Lagrange 
multiplier method, 

                 1Π
2

T T T
pL Cq K q q R K q Q      (9) 

The minimization of ΠpL  with respect to  q  and    requires that  Π
0pL

q
 

  
 and 

 Π
0pL


 

  
, which leads to,  

           Π
0

TpL
CK q K R

q


 
     

  (10) 
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       Π
0pL

CK q Q
 

    
  (11) 

In a matrix form, Eqs. 10 and 11 can be expressed as, 

 
   
   

 
 

 
 0

T
C

C

RqK K

QK 

             
       

  (12) 

While the constraints in Eq. 8 can be satisfied, the Lagrange multiplier method has 
disadvantages. Because the stiffness matrix in Eq. 12 may contain a zero component in its 
diagonal, there is no guarantee of the absence of the saddle point. In this situation, the 
computational stability problem may occur. In order to overcome that difficulty, a perturbed 
Lagrange multiplier method was introduced (Aliabadi, 1993). 

 
   

                    

1Π Π
2

1 1

2 2

Tp
pL pL

T T T T
Cq K q q R K q Q

 


  


 


    


  (13) 

where    is an arbitrary positive number. At the limit   goes to  , the perturbed solutions 

converge to the original solutions. The introduction of    will maintain a small force across 

and along the interface. This will not only maintain stability but also avoid the stiffness 

matrix being singular, due to rigid body motion. Similarly, the minimization of p
pL  with 

respect to  q  and    results in the following matrix, 

 
   

   
 
 

 
 1

T
C

C

K K Rq

QK I 


 
                    

  (14) 

Eq. 14 can be expressed as: 

         T
CK q R K     (15) 

        CK q Q      (16) 

Substitute Eq. 16 into Eq. 15, 

             T T
C C CK K K q R K Q      

For simplicity, let all i in [] of penalty function equal to   , i.e. i =   . Thus, the 

perturbed Lagrange multiplier is equivalent to the penalty function method. 

In the Lagrange multiplier method, both displacement and contact force are regarded as 
independent variables; thus, the constraint (contact) conditions can be satisfied and the 
contact force can be calculated. It has disadvantages. The stiffness matrix contains zero 
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components in its diagonal, and the Lagrange multiplier terms must be treated as additional 
variables. This leads to the construction of an augmented stiffness matrix, the order of which 
may significantly exceed the size of the original problem in the absence of constraint 
equations (Aliabadi, 1993). In comparison with the Lagrange multipliers method, the 
implementation of the penalty function method is relatively simple and does not require 
additional independent variables. It is often adopted in the practical analysis because of its 
simple implementation.  

3.2 Contact conditions 

Based on an iterative scheme (Mazurkiewicz, 1983), the contact conditions in FEA model are 
classified into the following three cases: 

1. Open condition: gap remains open; 
2. Stick condition: gap remains closed, and no sliding motion occurs in the tangential 

directions; and 
3. Sliding condition: gap remains closed, and the sliding occurs in the tangential 

directions. 

Let fji and uji be the contact nodal load vector and the nodal displacement, respectively, 
which are defined in the local coordinate system, where the subscript j indicates the 
component number ( j = I or J), and i indicates the coordinate (i = n, t, τ), as shown in Fig. 5. 

By equilibrium of the contact element, 0In It I Jn Jt Jf f f f f f      
     

. Fi (i = n, t, τ) is the 

external nodal load in i direction 
1

nn

t
x

x

F

R F

F


 
   
 
 

 where x is the node number of body I or J. 

The displacement and force must satisfy the equilibrium equations in the three contact 
conditions (note that {n, t, τ} is the local coordinate system). 

 

   a)              b) 

Fig. 5. Sketch of Contact Force on the Contact Surface 
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3.2.1 Open condition 

When the normal nodal force Fn is positive (tension), the contact is broken, and no force is 

transmitted. The displacement change in the normal and tangential directions, denoted 

respectively by  , ,iu i n t  , then is 

  , 0 , ,n Jn In n Ji Iiu u u f f i n t          (17) 

where uJn and uIn are the current displacements of node J and node I in a normal direction, 

respectively. For each structural contact element, stiffness and forces are updated, based 

upon current displacement values, in order to predict new displacements and contact forces. 

n is the gap between a pair of the potential contact points. In each increment of load, the 

gap status and the stiffness values are iteratively changed until convergence. As the load is 

increased, n will change and hence should be adjusted as 0 T
n n n    , where 0

n is the 

initial gap before any deformation and T
n is the gap change caused by the total combined 

normal movement at the pair of points. 

3.2.2 Stick condition 

The force in the tangential direction  SF , which is the composition of the nodal force in t 

and  directions (Ft and F), is defined only when 0nF   (compression). When the absolute 

value of SF  is less than | |nF , where   is the Coulomb friction coefficient, there is no 

slide-motion in the interface, and the contact element responds like a spring. The stick 

condition exists if    | |n Jt t J It t IF u k u k u k u k        . That is,  

  , 0 , 0 ,Ii Ji Jn In n Ji Iif f u u u u i t            (18) 

where kt and k are the tangential contact stiffness in t and  directions, respectively. In the 

analysis of fixture unite stiffness, set tk k . 

3.2.3 Sliding condition 

Slide-motion will occur when the absolute value of SF  is more than | |nF . The slide-

motion may occur in both the element t and  directions. That is, if 

   | |n Jt t J It t IF u k u k u k u k        , then,  

    , , , 0It Jt n I J n In Jn In Jn nt
f f F f f F f f u u                   (19) 

where  n t
F and  nF   mean the maximum friction force in t and  directions. 

3.3 Solution procedure  

The model presented in the previous section can be implemented to determine the fixture 
unit stiffness in clamping and machining. Because the model involves high nonlinearity, the 
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Newton-Raphson (N-R) approach is used to solve the problem. Considering the full 
Newton-Raphson iteration it is recognized that in general the major computational cost per 
iteration lies in the calculation and factorization of the stiffness matrix. Since these 
calculations can be quite expensive when large-order systems are considered, the modified 
Newton-Raphson algorithm is used in this research (Bathe, 1996).  

Given the applied load R and the corresponding displacement u, the applied load is divided 
into a series of load increments. At each load step, the contact stiffness and contact 
conditions remain constant. And several iterations may be necessary to find a solution with 
acceptable accuracy. The modified Newton-Raphson method is used first to evaluate the 
initial out-of-balance load vector at the beginning of the iteration at each load step. The out-
of-balance load vector is defined as the difference between the applied load vector R and the 

vector of restoring loads r
iR . When the out-of-balance load is non-zero, the program 

performs a linear solution, using the initial out-of-balance loads, and then checks for 
convergence. If the convergence criteria are not satisfied, the out-of-balance load vector is 
reevaluated, the new contact conditions and the stiffness matrix are updated, and a new 
solution is obtained. This iterative procedure continues until the solution converges. The 
modified Newton-Raphson method and its flowchart are outlined by Fig.6. 

 
 

 

 

Fig. 6. (a) Modified Newton-Raphson Method 
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Input:

 Fixture unit CAD model

 Material properties

 External forces

Finite element model:

 Define Element Type and FEA Mesh

 Apply Boundary Condition

 Set Initial Contact Condition

Load Increment

 Identify the element stiffness

matrix

 Calculate the displacements of all

substructure

Check if contact

No

Yes

Update

 Displacement,

 Reaction force,

 Contact force.

Final Load Step?

Output:

 Global stress and displacement

 Displacement of contact surfaces

 Reaction forces

 Contact forces

Yes

 Identify penalty terms

 Calculate contact force

Status Converged?
Yes

No

No

Redefine Contact Element

stiffness

 

Fig. 6. (b) Flow Chart of the Analysis Procedure 

4. Contact stiffness identification using a dynamic approach 

First, the dynamic method is studied for use in the estimation of normal contact stiffness. 
The results of the dynamic methods are compared with the results based on the static test of 
normal contact stiffness; then the validated dynamic test method is used in estimation of 
tangential contact stiffness. 

4.1 Theoretical formulation of 1-D normal contact stiffness 

The idea behind the identification of normal contact stiffness is that the contact interface is 
modeled by a discrete linear spring. When the preload is changed, contact stiffness will 
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change. When body I is in contact with the ground, the dynamic model of the entire 
structure can be shown as in Fig.7. According to this theoretical model the relationship 
between natural frequencies and normal contact stiffness can be established. When natural 
frequencies are obtained from impact test, along with a theoretical model, normal contact 
stiffness can be estimated. 

In the one-dimensional model of body I, m is the mass of body I, k is the contact stiffness, p 
is the preload, f(t) is impulse excitation, u(x,t) is the longitudinal displacement of the bar at 
distance x from a fixed reference. 

 

Fig. 7. One-Dimensional Model for Normal contact Stiffness 

With use of a bar in Fig.7, the governing equation of the longitudinal vibration of the bar can 
be expressed as 

    2

2

, ,u x t u x t
A EA

x xt


   
  
   

  (20) 

The boundary conditions of the bar are: 

At x=0:   0,
0

u t
EA

x





                                 (21) 

and at x=l:  
 ,

n

u l t
EA k u

x


 


                 (22) 

Initially, the system starts from rest, from the static equilibrium position of the bar, such that 
the initial displacement condition is: 

At t=0,   ,0 0u x    (23) 

The response of a system to an impulsive force can also be obtained by considering that the 
impulse produces an instantaneous change in the momentum of the system before any 
appreciable displacement occurs. The second initial condition is 

 
 ,0 1u x

t m





  (24) 

Assume       ,u x t X x q t      (25) 
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Substitute Eq. 25 into Eq. 20 to obtain 

 

       

 
 

 
 

2 2
2

2 2

2 2
2

2 2 2

1 1

d q t d X x
X x c q t

dt dx

d X x d q t

X x dx c q t dt




  

  (26) 

-2 is called the separation constant and is designated to be negative (De Silva, 1999). 

Therefore, the mode shapes X (x) satisfies 

 
   

2
2

2
0

d X x
X x

dx
    (27) 

whose general solution is    1 2sin cosX x C x C x       (28) 

According to the general solution and the modal boundary conditions, one can get  

 tan nk
l

EA



   (29) 

Set the structure stiffness as * EA
k

l
  and the ratio of the stiffness as 

*
nk

k
  . Since the 

structure stiffness k* is constant and known, the ratio of the stiffness  is proportional to the 
contact stiffness kn. Therefore Eq. 11 can be expressed as 

 
*

tan

nk

kl
l l


 

    (30) 

This transcendental equation has an infinite number of solutions i (i=1,2,…)that correspond 
to the modes of vibration. When  is changed, the solution of i will change. When  is 
changed from 0.1 to 10, one can get the corresponding il as shown in Fig.8. The natural 
frequencies can also be obtained using 

 i i i
E

c  


    (31) 

In an experimental study, the natural frequencies can be obtained by an impact test. i can 
calculated from Eq.31 since the natural frequencies are related to the system characteristics. 

Then  can be determined from Eq. 30. Finally, the contact stiffness, kn, can be estimated 

based on the definition of . According to the assumption that contact stiffness is a function 
of the preload, the natural frequencies can be determined in experiments under different 
preloads. The change of contact stiffness can then be identified based on the change of the 
preloads, through measurement of the natural frequency variation. It should be noted that 
although any mode of the natural frequency can be used to estimate the contact stiffness, 
some modes might be more sensitive than others to the change of the preloads. 
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(a) First Mode

 
(b) Second Mode 

 
(c) Third Mode 

 
(d) Fourth Mode

Fig. 8. Relationships between the Nondimensional Natural Frequencies and the Stiffness 

Ratio  in the First Four Modes 

4.2 Experimental procedure and results 

The experiments were conducted in order to verify the method of identifying contact 

stiffness in the normal direction (Zheng, 2005, 2008). The measurement instrumentation 

includes the proximity, the impact hammer with a load cell, power supply, and a Fast 

Fourier transformation (FFT) analyzer, as shown in Fig.9. The experimental procedure can 

be expressed as follows: 

1. Frequency response function (FRF) of the bar is measured by using the hammer to 
excite the system. Thus, the natural frequencies of the bar can be obtained. 

2. According to the natural frequency equation i i
E 


 , i  is calculated. 

3. Based on the relationship between il and  of the first three modes in Fig.8, the  can be 
inferred from the comparison of experimental results and theoretical results. Then the 

normal contact stiffness can be obtained from the equation 
*
nk

k
  . 

When the natural frequencies are obtained from the experiment, along with the curves of 

the relationships between il and , contact stiffness can be determined from each mode of 

vibration. However, when the preload changes, the natural frequencies may not necessarily 

change significantly with the change of normal load for certain modes. Contact stiffness 

should be identified from the mode most sensitive to changes of a preload. Fig.10 shows the 

FRF of the test system under different preload. Fig.11 shows the relationships between the 
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natural frequencies and preload. The natural frequency of the third mode f3 is the most 
sensitive to changes in a preload. 

 

Fig. 9. Measurement Setup 

 

 

Fig. 10. A simplifed illustration on the Frequency Response Functions (FRF) of the Test 
System 
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Fig. 11. The relationships between the natural frequencies and preloads 

Once the natural frequency is obtained from the test, contact stiffness can be estimated by 
calculating il, , and kn. In order to verify the results, these calculations were compared 
with the previous static measurement results of contact stiffness. Under the same 
experimental condition, i.e., the same experimental device and preloads, contact stiffness is 
obtained and used in the calculation of natural frequencies, and then compared with the 
results of dynamic tests, as shown in Fig.12. 

 

 (a) Natural Frequency vs. Preloads       (b) Normal Contact Stiffness vs. Preloads 

Fig. 12. Comparisons between Experimental Result of Dynamic Test and Numerical Value 
Based on Static Test 
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It can be seen that the results from the dynamic tests are consistent with the numerical 
calculation results based on the static test results. When the results of the dynamic test are 
consistent with the static test results, the dynamic test method can be used in identifying 
tangential contact stiffness, for which the static tests are too difficult to conduct. 

4.3 Theoretical formulation of tangential contact stiffness 

Two fixture components are in contact at a certain number of asperities due to the inherent 
roughness of the surface. When they are subjected to tangential forces, the components are 
mutually constrained through frictional contacts. A friction model based on the Coulomb 
friction theory is shown in Fig.13. The tangential contact stiffness results from the elasticity 
of asperities of the contact surfaces, and the total resulting stiffness of these contact surfaces 
depends on their statistical topographical parameters. 

uP

-uP

Slide area Stick area Slide area

 

Fig. 13. A Friction Model 

Consider that body I is brought into contact with the flat surface of the support under a 
uniform preload, P, and is subjected to an small excitation, F, as shown in Figure 14. It is 
assumed that the tangential contact stiffness will change as the preload increases. The 
friction at each contact point is governed by Coulomb’s law. When force is applied in the 
tangential direction, the asperities in body I will also deform until the shear stress between 
the asperities exceeds the limit, then the contact surface will slide each other. The friction 
model of body I in contact is shown in the Fig.15. The friction force is given by Eq. 32. 

 
/t tK u u P K

f
P otherwise




  


  (32) 

The idea of the identification of the tangential contact stiffness is to compare the two sets of 
system natural frequencies: one set is identified from the measured impulse response in 
tangential direction under different preloads, and the other set is calculated from the FEA 
model of the system. Based on the numerical simulation, a relationship between tangential 
contact stiffness and the natural frequencies can be established. If the natural frequencies are 
measured in the experiments under different preloads, the contact stiffness can be calculated 
from the relationship obtained by the numerical simulation. 
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Fig. 14. Body I on the Support 

 

Fig. 15. Friction Model of the Fixture Components in Contact 

In order to do the numerical simulation, the effect of the contact force needs to be included 
into FEA model of the system. The additional contact stiffness matrix will be introduced in 
the general FEA model. The derivation of contact stiffness matrix is briefly given as follows.  

Consider an elastic body I in Fig.15, the kinetic, strain, and potential energies of the system 
can be expressed respectively as: 

    
2

T

V

u u
K dV

t t

      
    

    
  (33) 

    1

2

T

V

U dV     (34) 

        
1

ˆ ˆ

C

T T

c

S S

W F u dS R u dS
 
   
 
 
    (35) 
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where K is the kinetic energy; {u} is the displacement vector; V is the volume of the elastic 

body I;  is the mass density of the material; U is the strain energy;   and {}; are the strain 

and stress components, respectively. W is the potential energy of external forces;  F̂  is the 

external surface force vector specified on the boundary S1;  ˆ
cR  is the contact force vector 

on the contact surface Sc. Note that  1cS S  ; The body force is ignored. Using the 

above energy expressions the total potential energy of the system is 

  Π K W U     (36) 

Based on the well-known Hamilton’s principle, a discretized FEA formulation for a typical 
element can be expressed as  

           0e e e
CM d t K K d t F            

    (37) 

To obtain the matrix form, the displacement field of a typical element {u}, which is a 
function of both space and time, can be written as: 

                     u N x d t u N x d t u N x d t             
     (38) 

where [N(x)] is a vector of the space function; and {d(t)} is the nodal response vector. Using 

the interpolation relationship the element, 

Mass matrix is given by 

    
e

Te

V

M N x N x dV              (39) 

And the element stiffness matrix is 

     
e

Te
e

V

K B D B dV       (40) 

where [B] is the geometry matrix. 

Comparing to the standard FEA formulation an additional term of CK , referred as the 

contact stiffness matrix in included in Eq. (37). The term stems from the work done by the 

contact force on the contact surface. A brief derivation is presented as follows. 

The work done by the contact force on the contact surface can be written as 

    ˆ

Ce

T
ce ce

S

E u R dS    (41) 

Using the contact element, the contact force can be expressed as  

     ˆ
ce cR D u   (42) 

Substituting Eqs. (38) and (42) into (41) yields 
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            
Ce

TT
ce c

S

E d t N x D N x dS d t           (43) 

Therefore, the contact stiffness matrix can thus be defined as  

      
Ce

T
C c

S

K N x D N x dS             (44) 

where [Dc] is the contact property matrix. In the section, the displacements of contact 

element in the normal direction are assumed to keep stick. Therefore, the normal contact 

stiffness becomes infinity. The tangential contact stiffness is considered. 

The derived contact stiffness matrix should be added to the general FEA model for the 

fixture stiffness analysis to take into account the effects of the contact force. Followed the 

standard procedure of the eigenvalue problem, the system natural frequencies can be 

obtained using the FEA method to establish the relationship between the tangential contact 

stiffness and natural frequencies. For example, a specimen that has the dimensions 530.75 

in was used to measure dynamic characteristics. Fig.16 shows the FEA model of the 

specimen. Contact elements were modeled as separate springs on the top and bottom 

surfaces of the specimen. There are two nodes for each contact element. One node is on the 

contact surface of the specimen. The other node is constrained at all degrees of freedom. The 

impulse force was applied at the side of the specimen. The response was obtained at point 

M, at the other side of the specimen. 

 

Fig. 16. Finite Element Model of Specimen 

Fig.17 shows the relationships between tangential contact stiffness and natural frequencies 

of the first two vibration modes. The results are obtained through numerical simulation. 

From experiments, the frequency response is measured under the different preloads. The 

contact stiffness can be determined based on the relationships shown in Fig.17. 
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Fig. 17. The Relationship of Tangential Stiffness vs. the First Two Natural Frequencies 

5. Conclusions 

Forces in a workpiece-fixture system have a crucial impact on the deformation and accuracy 
of the system. In this chapter, an FEA model of fixture unit stiffness is proposed. A contact 
model between fixture components are utilized for solving the contact problem encountered 
in the study of fixture unit stiffness. By several simple experiments and comparison with the 
corresponding analytical solution and experimental results in the literature, this 
methodology is validated. This analytic approach also can be extended in the research of 
complex fixture system with multiple units and components, which will lead to a new 
progress in the design and verification of fixture-workpiece system study. 
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