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1. Introduction 

For the prosthetic reconstruction of endodontically treated teeth with large loss of tooth 

structure a lot of times become indispensable to obtain retention by the use of post and core 

systems. The retention loss and the dental fractures are the two failures more commonly 

described in this restoration type (Ferrari & Mannocci, 2000). 

The dental fracture tends to happen longitudinally with the end below the alveolar bone 

crest, what constitutes a no restorative failure and leads to the tooth’s loss. This failure type 

is attributed mainly to the use of posts with length and/or diameter incorrect and 

deficiencies in dental structure preservation1. 

The intra-radicular post is used to provide retention to a core, but would also have the 

function of distributing the functional load in a larger area of the remaining coronary 

structure and dental root. However, many authors (Assif & Gofil, 1994; Martinez-Insua et 

al., 1999; Rundquist & Versluis, 2006; Whitworth et al., 2002) have been demonstrating that 

this reconstruction method doesn't restore the original strength of a vital tooth, what is 

attributed to the wedge effect that this restoration type causes and to the stiffness difference 

between the post and the tooth. 

This effect appears when the load induces the post intrusion inside the dental root. When 

being pushed, the wedge tends to increase the perimeter of the remnant transversal section 

due to the tensile stress guided parallel to the circular outlines of the tooth’s transversal 

section. These tangent stresses can cause vertical fracture (Rundquist & Versluis, 2006). 

An attempt to increase the root strength front to the physiologic load is the ferrule making 

that is a metallic necklace of 360° that surrounds the axial walls of the remnant dentine and 

can be propitiated by the core or by the crown, and tends to produce the encirclement of the 

root. This “ferrule effect” would protect the pulpless tooth against fracture by counteracting 

spreading forces generated by the post. The core should extend apical to the shoulder of the 
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preparation to provide a 1.5 to 3.0 mm ferrule of the intact tooth structure (Tan et al., 2005; 

Pereira et al., 2006; Morgano, 1996; Morgano & Bracket, 1999).  

According to Loney et al (1990), the ferrule supplied by the core contributes for the most 
balanced stress distribution in the dental root and it could compress the remnant structure. 

The understanding of the biomechanical principles and restorations applicability is 
important to design restorations to provide larger strength and retention. The aim of this 
study was to evaluate the ferrule geometry formed by core on the stress developed in the 
dental root when a second superior premolar is submitted to four different load conditions. 

2. Materials and methods 

A natural healthy tooth model (H) was generated in the MSC/PATRAN 2005 (MSC 
Software Corporation, Santa Ana, CA, USA). On that model modifications were 
accomplished for the creation of five new models with retainer intra-radicular. 

The 3D model of the maxillary second premolar was built based on data presented by 
Shillinburg & Grace (1973), regarding the measures of the dentin thickness in the mesio-
distal and vestibular-lingual axis in four horizontal slices (with 3.5 mm interval) 
accomplished along the main axis of the dental root starting from the cementoenamel 
junction. The dentin’s thickness in the remnant of the root was built by the interpolation 
with a spline curve starting from the existent data, following the root anatomy. The pulp 
dimensions were built based on the data presented by Green & Brooklyn (1960), that it 
supplies the average diameter of the apical foramen and Shillinburg & Grace (1973), that it 
supplies the average dimensions in the cervical area. 

For the making of the crown geometry the enamel thickness and coronary dentin were 
based on the data presented by Shillinburg & Grace (1973), through slices of interval of  
1 mm, by Cantisano at al. (1987) and Ueti at al. (1997). The height of the vestibular cusp was 
considered larger than the lingual cusp in 0.9 mm (Shillinburg  et al., 1972). 

The lamina dura was represented with mechanical properties equal of the cortical bone and 
as a uniform layer of 0.25 mm thickness as well as the periodontal ligament (Lee et al., 2000). 

The models that represented intra-radicular retainer were built from the natural healthy tooth 
model already. Specify modifications were accomplished in the area corresponding to the pulp 
and to the dentin, in the places corresponding to the core and porcelain-faced crown. 

The dimension of the pulp was enlarged to reproduce the endodontic access stage (Cohen & 
Hargreaves 2005), the biomechanical prepare and the filling of the root canal. 

The porcelain-faced crown was represented with the same outline of the enamel, being 
average thickness of 1.5 mm in the vestibular face, 1.2 mm in the lingual face, 1.0 mm in the 
proximal face and 2.0 mm in the occlusal face, with an end in chamfer around the core. The 
minimum thickness of the metal (NiCr) in the restoration porcelain-faced was 0.3 mm 
(Yamamoto, 1985). 

The zinc phosphate cement was select because is usually used for cementation of the crown 

and of intra-radicular retainer with thickness from 50 to 100 m (Anusavice, 2003) and the 
gutta-percha height was of 5 mm (Morgano, 1996). 
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In four models with intra-radicular retainer was varied the ending line of the core 
preparation (with ferrule geometry given by the core) and another model was simulated 
with simple core (without ferrule), staying the same coronary restoration. 

The width and the height of the ferrule were determined as a proportion of the thickness of 
radicular dentine found in the cementoenamel junction region on the lingual side (1.85 mm), 
separated for three thirds. For other words, the ferrule with x height varying of 0.62 x 0.62 
(T1H1), 0.62 x 1.34 (T1H2), 1.34 x 0.62 (T2H1) and 1.34 x 1.34 mm (T2H2), (Fig. 1). 

All of the models with intra-radicular retainer presented the same characteristics in relation 
to the supporting structures, porcelain-faced crown, cement thickness and apical seal  
(Fig. 2). 

 
Fig. 1. Ferrule geometries of the radicular dentine in a premolar  root. 

With the measures of the thickness in each one of the structures (pulp, dentin, enamel) in 
each face (mesial, distal, lingual, vestibular) a coordinates system was generated with the 
origin in the pulpal apex and all the values of thickness of the structures were transformed 
in coordinates. As many coordinates existed to generate the points in the Finite Element (FE) 
program, a routine in PCL (Patran Command Language) was created to read the 
spreadsheet and to generate the points. After the points generation (Fig. 3a), the curves were 
generated and, soon afterwards, the surfaces. Starting from the dental structures surfaces 
built, the superficial meshes were generated with triangular linear elements (Tri3). After 
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that, volumetric meshes (Fig. 3d) with tetrahedral linear elements (Tet4) were generated, 
following the procedures in Poiate et al. (2008, 2009a, 2009b, 2011).  

 
Fig. 2. Structures of the models with intra-radicular retainer. 

 

Fig. 3. Sequence of procedures for 3D natural healthy tooth model generation, points 
generation, dental structures surfaces, superficial and volumetric mesh, respectively. 

The degree of discretization of the FE models (Table 1) was established from convergence 

studies of the results in computer modeling (Pentium 4 3.2 GHz computer with 2.0 Gb RAM 

memory) to ensure that a proper FE model mesh density was generated and in this way 

model a realistically anatomic geometry. 
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Code Ferrule Thickness x Height 
Number of 

nodes 
Number of 
elements 

H Natural healthy tooth 179403 1109929 
T1H1 1 x 1 

1 x 2 
2 x 1 
2 x 2 
0 x 0 

193034 1226486 
T1H2 179430 1142542 
T2H1 189438 1200778 
T2H2 180720 1148853 
T0H0 184750 1175175 

Table 1. Models and mesh size. 

It was assumed that all the structures in the models were, homogeneous, isotropic and 
linearly elastic behavior as characterized by two physical properties: Young´s Modulus (E) 

and Poisson’s Ratio (), Table 2. The interfaces between the structures were presumed to be 
perfectly united, because the aim was to provide a comparison of our approach, that this 
simplification was justified.  

Structure / Material 
Young´s Modulus 

(GPa) 
Poisson´s Ratio Reference 

Pulp 0.02 0.45 Farah & Craig (1974) 

Dentin 18.60 0.31 Ko et al. (1992) 

Enamel 41.00 0.30 Ko et al. (1992) 

Periodontal ligament 0.0689 0.45 Weinstein et al. (1980) 

Cortical bone 13.70 0.30 Ko et al. (1992) 

Spongy bone 1.37 0.30 Ko et al. (1992) 

Gutta-percha 0.00069 0.45 Friedman et al.(1975) 

NiCr 188.00 0.33 Black & Hastings (1998) 

Phosphate of Zinc Cement 13.00 0.35 Powers at al. (1976) 

Feldspathic Ceramic 82.80 0.35 Peyton & Craig (1963) 

Cast radicular retainer 
(ILOR56: gold-alloy post) 

93.00 0.33 Pegoretti et al. (2002) 

Table 2. Physical properties of the anatomical structures and materials. 

Finally, boundary conditions or the model constraint and the loads are also applied. The 

constraint conditions applied were: in the maxillary sinus, translation in x, y and z directions 

and rotations in x, y and z axis, fully anchor; in the mesial and distal extremities of the cortical 

and spongy bone, translation in x direction (perpendicular to this faces) and rotations in y and 

z axis were anchor. Four load cases were built varying the site, inclination and the application 

area of a 291.36 N total static load, maximum masticatory force (Ferrario et al., 2004). 

Initially, all of the models received the resultant load intensity of 291.36 N parallel to the 

tooth’s long axis, with the aim to evaluate the wedge effect (Fig. 4). The load was applied on 

the lingual and vestibular cusp above the occlusal surface, at 45o in relation to the tooth’s 

long axis (Holmes et al. 1996), distributed in 19 nodal points of 0.85 mm2 area in vestibular 

cusp and in 19 nodal points of 0.75 mm2 area of in lingual cusp (Kumugai et al., 1999). 
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After that, the model with ferrule that best minimized the wedge effect, as well as the 
models that represent natural healthy tooth and restored with simple core (T0H0, without 
ferrule, Fig. 1) were submitted to the following loads (Fig. 4): 

a. Oblique Load with 45o in relation to the tooth’s long axis distributed in 19 nodal points 
of 0.85 mm2 area in the vestibular cusp, with the aim to evaluate the vestibular lever 
effect; 

b. Load parallel to the tooth’s long axis distributed in 19 nodal points of 0.80 mm2 area in 
the mesial marginal ridge, with the aim to evaluate the proximal lever effect; 

c. Oblique Load with 45o in relation to the tooth’s long axis pointed to vestibular cusp, 
distributed in 19 nodal points of 0.80 mm2 area in the mesial marginal ridge, with the 
aim to evaluate the torsion effect. 

 

Fig. 4. Place, area and orientation of the load application, a)wedge effect, b)vestibular lever 
effect, c)proximal lever effect and d)torsion effect. 

The processing stage or the solution analysis was performed using MSC/NASTRAN 2005 

software (MSC Software Corporation, Santa Ana, CA, USA). The MSC/PATRAN 2005 

software, used in the pre-processing, was also used for the post-processing, visualization, 

and evaluation of the results. 

In this study, the maximum principal stress was used as the stress criterion to present the 

stress patterns distribution in the analyzed models. The cement and dentin’s tensile strength 

of 8.3 MPa (Powers at al., 1976) and 103 MPa (Tanaka et al., 2003), respectively, as well as 

dentin´s compressive strength of 282 MPa (Tanaka et al., 2003), respectively, will serve as 

reference for results comparison to evaluate if the loads would be potentially harmful to the 

studied structures. 

3. Results 

3.1 Wedge effect 

Under load with parallel resultant to the long axis, all of the models answered equally. The 
differences were just in the dentin area in contact with the ferrule (Fig. 5). The results 
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Fig. 5. MPS in all models loaded longitudinally with Vestibular (V)-Lingual (L) and Mesial 
(M)–Distal (D) slices. 
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Fig. 6. MPS vectors in the surfaces of the radicular dentine in the wedge effect in M-D and 
V-L slices. 
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obtained with models T1H1 and T2H1 presented similar pattern of stress distribution in 
Maximum Principal Stress (MPS), but different from models T1H2 and T2H2 (that present 
low tensile stress under the ferrule). In the model H, the dentin area between the bone and 
the enamel presents some tensile stress, but the Fig. 6 show that the stress vector direction is 
not totally tangential to the transversal section and it wouldn’t be deleterious, nor for the 
intensity nor for the direction. Similar stress appears in all the models with retainer 
immediately for apical of the ferrule and cannot are responsible for eventual root fracture. 

The Fig. 7 represents a perspective view of the distribution of the MPS in the cement 

between the retainer and dentin. The results obtained with models T2H1, T0H0 and T1H1 

presented a similar pattern of  stress distribution in cement below the ferrula, but different 

from the model T1H2, which shows higher tensile stresses (up to 4 MPa), which by direction 

(Fig. 6) suggests greater tendency to loosen or break the cement layer in the region, because 

the stresses are significantly higher, but the failure of the cement seems unlikely when 

comparing the absolute values of stress with the stress required to the cement cohesive 

failure (8.3 MPa). 

 

 

Fig. 7. Perspective view of the cement between the retainer and dentin, MPS in the wedge 
effect. 

3.2 Vestibular lever effect 

Under load with inclination of 45o in the vestibular cusp the T2H2, T0H0 and H models 

answered equally (Fig. 8), except in the radicular dentin that is being doubled and it is 

observed compressive stress in the vestibular, concentrated in the contact area with the 

cortical bone that acts as fulcrum (Fig. 9). The tensile stress concentrates and reaches the 

maximum on the opposite side, lingual, but, unexpectedly, it presents a larger extension in 

the model with ferrule, with maximum of 104, 110 and 109 MPa for H, T0H0 and T2H2 

models, respectively. 
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Fig. 8. Perspective view of all structures, MPS in the vestibular lever effect. 

 

Fig. 9. Perspective view of the dentin, MPS in the vestibular lever effect. 
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The Fig. 11 represents a perspective view of the distribution of the MPS in the cement 
between the retainer and dentin and the Fig. 10 shows the MPS vectors in the internal and 
external surfaces of the radicular dentine at the intersections with in M-D and V-L planes.  

 

 

Fig. 10. Perspective view of the cement between the retainer and dentin, MPS in the 
vestibular lever effect. 
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Fig. 11. MPS vectors in the surfaces of the radicular dentine in the vestibular lever effect in 
M-D and V-L slices. 
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3.3 Proximal lever effect 

The Fig. 12 shows the results under load parallel to the tooth’s long axis in the mesial 

marginal ridge. The maximum tensile stress in dentin (Fig. 13) at the distal edge are also 

much seemed (68, 68 and 67 MPa), smaller than in the vestibular lever effect.  

 

Fig. 12. Perspective view of all structures, MPS in the proximal lever effect. 
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Fig. 13. Perspective view of the dentin, MPS in the proximal lever effect. 

The Fig. 14 represents a perspective view of the distribution of the MPS in the cement 
between the retainer and dentin and the Fig.15 shows the MPS vectors in the internal and 
external surfaces of the radicular dentine at the intersections with in M-D and V-L planes. 
The stress orientation in all of the cases is similar. 

Fig. 14. Perspective view of the cement between the retainer and dentin, MPS in the 
proximal lever effect. 
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Fig. 15. MPS vectors in the surfaces of the radicular dentine in the proximal lever effect in 
M-D and V-L slices. 
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3.4 Torsion effect 

The Fig. 16 shows the MPS results in all structures under oblique load with 45o in relation to 

the tooth’s long axis pointed to vestibular cusp in the mesial marginal ridge. 

 

Fig. 16. Perspective view of all structures, MPS in the torsion effect. 

The MPS in dentin are present in Fig. 17. The Fig. 18 represents a perspective view of the 

distribution of the MPS in the cement between the retainer and dentin and the Fig.19 shows 

the MPS vectors in the internal and external surfaces of the radicular dentine at the 

intersections with in M-D and V-L planes.  
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Fig. 17. Perspective view of the dentin, MPS in the torsion effect. 

 

Fig. 18. Perspective view of the cement between the retainer and dentin, MPS in the torsion 
effect. 
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Fig. 19. MPS vectors in the surfaces of the radicular dentine in the torsion effect in M-D and 
V-L slices. 
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3.5 Stress plot in wedge, vestibular lever, proximal lever and torsion effect 

The Figs 20 to 28 shows the MPS in a ridge A to B, indicated in the drawing corresponding 

to each graph, in the surface of root dentin (interface with periodontal ligament), depending 

on the relative position of the node under every load, due to the abcissa axis is adimensional 

(Distance/Total length),. 

The Fig. 20 shows the outside edge of the lingual surface. It is observed that the models that 

generate the wedge or proximal lever present in the lingual edge, very low stresses, all of 

the same order of magnitude. Since the models that generate vestibular lever and torsion 

have high tensile stresses in this edge, but below the dentin´s strenght limit. 

 

Fig. 20. MPS at the edge of the root dentin on the lingual surface, from the apex to the 
cervical direction. 

The Fig. 21 shows the outside edge of the vestibular surface. It is observed that the models 
that generate proximal wedge and proximal lever have the same order of magnitude of 
stresses acting on the vestibular edge with inflection behavior (tensile to compressive) from 
the apex to the cervical direction. In models that generate proximal lever, the tensile stresses 
near the apex are close to the wedge effect, however, near the neck, the stress tensile 
increase up to 5 MPa. 
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Fig. 21. MPS at the edge of the root dentin on the vestibular surface, from the apex to the 
cervical direction. 

The Fig. 22 shows the outside edge of the distal surface. We observed lowest stresses in 

wedge models, followed by vestibular lever models, torsion models and reaching the 

maximum stresses in proximal lever models. In models of proximal lever and torsion effect 

are generated stress peaks on the same nodes of the same models; the lower stress in torsion 

models could be due to the lower longitudinal component of the load in this case. 
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Fig. 22. MPS at the edge of the root dentin, the distal surface, from the apex to the cervical, 
under all loads 

The Fig. 23 shows the outside edge of the mesial surface. We observed lowest stresses in 
wedge models. The inversion of tensile to compression stress occurs so evident in the 
proximal lever models and so milder in torsion models.  
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Fig. 23. MPS at the edge of the root dentin in the mesial side, from the apex to the cervical, 
under all loads. 

The Fig. 24 shows the inner edge of the lingual surface. We observed lowest stresses in the 

models of wedge and tensile stresses up to 45 MPa in the models of vestibular lever, 

followed by models of torsion effect, but in both types of load, in models of healthy tooth 

the stresses are smaller. It seems important to note that the order of values is much lower 

than those in Fig. 20, corresponding to the outer surface, which leads to think that the 

fracture is expected to start on the outside, apparently motivated by folding of the tooth as a 

whole. Discard the possibility of fracture driven by stress concentration on the inside face, 

which could be motivated by the wedging effect promoted by the retainer. 

The Fig. 20 shows that the highest stress on the outside edge was achieved by the healthy 
tooth model. However, it is unlikely that the healthy tooth had a greater tendency to 
fracture: this is not what is observed in practice. 

On the other hand Fig. 24 shows the stress almost doubles in inner edge, for the cases of 
vestibular lever with retainer, compared to the healthy tooth. This suggests that the failure 
criterion should not be simply the value of the maximum principal stress, but must be 
influenced by the stress gradient. 
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Fig. 24. MPS at the edge of the root dentin on the lingual surface, from the apex to the 
cervical, under all loads 

The Fig. 25 shows the inner edge of the vestibular surface. Tensile stresses are observed up 

to 27 MPa in the region near the retainer apex in the models that generate vestibular lever, 

followed by models that generate torsion, but in both types of loading, the stresses are 

smaller in the healthy tooth models. Figure 11 shows that the direction of the peak tensile is 

radial and therefore not likely to cause longitudinal fracture but delamination in the dentin 

and detachment of the retainer apex. In fact, presents a direction parallel to the tensile stress 

on the edge of the external vestibular root, which appears to be motivated by the apical 

ligament region, to oppose the rotation of the tooth that is supported by the vestibular 

cortical bone. 
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Fig. 25. MPS at the edge of the root dentin on the vestibular surface, from the apex to the 
cervical, under all loads 

The Fig. 26 shows the inner edge of the distal surface. We observed lowest stresses in wedge 
models. Except the loading wedge models, all have tensile stresses, which shows that 
practically the entire thickness of the wall works in traction. Moreover, none of the models 
exceeded the stress developed by the model of healthy tooth with proximal lever load, 
which leads to the hypothesis that in no case has reached the stress level compatible with 
the fracture. 
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Fig. 26. MPS at the edge of the root dentin, the distal surface, from the apex to the cervical, 
under all loads. 

The Fig. 27 shows the inner edge of the mesial surface. We observed lowest stresses in 
wedge models. The highest tensile stress occur to the torsion effect, regardless of the 
presence or not of the ferrula, which also does not help to reduce the stress on the lever 
vestibular. 
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Fig. 27. MPS at the edge of the root dentin in the mesial side, from the apex to the cervical, 
under all loads. 

In Figure 28 shows the circular edge of the inner dentin around the apex of the retainer. The 
abscissa axis is adimensional (Distance/Total length), where the 0 and 1 represents the 
vestibular, 0.25 the mesial, 0.5 the lingual and 0.75 the distal aspect. We observed lowest 
stresses in wedge models, followed by models of proximal lever, torsion and vestibular 
lever models. The region that remains the most tensioned is the vestibular. 
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Fig. 28. MPS shown in the circular edge of the inner dentin (VMLDV) around the apex of the 
retainer under all loads. 

4. Discussion 

Several studies (Pierrisnard et al., 2002; Zhi-Yue & Yu-Xing, 2003) show that the ferrule 
creates a positive effect in the reduction of the stress concentration in the dentin-core 
junction and helps to maintain the integrity of the cement seal in the crown (Libman & 
Nicholls 1995). 

However, in spite of some authors recommend a coronary minimum height of ferrule (Tan 
et al., 2005; Pereira et al., 2006; Morgano, 1996; Morgano & Bracket, 1999; Aykent, 2006) to 
increase the fracture strength values, in this study the ferrule didn't influence on the stress 
distribution. An important observation should be made: for the perfect adhesion among the 
structures, it was not possible to notice a wedge effect appreciable.  

Under load with parallel resultant to the long axis, all of the models present compression 
stress in the root apex, but with very low intensity when compared with the compression 
strength of dentin. The light stress concentration found around of the post apex cannot are 
responsible by longitudinal fracture, because the orientation and the intensity would not 
justify the fracture. 

www.intechopen.com



 
Finite Element Analysis – From Biomedical Applications to Industrial Developments 

 

160 

The results of models T1H1 and T2H1 show that the increase in the width of ferrule, 
keeping the height, it was important to the root protection with the ferrule effect, because 
the compressive stress increased four times. The model T2H2 presented compressive stress 
in the radicular dentin on the ferrule (0.5 to 2.0 MPa) and in the radicular dentin above the 
periodontal ligament (0.5 to 20 MPa), mesial and distal face (Fig. 4). 

On the other hand, the results of models T1H2 and T2H2 show that tensile stresses 
disappears in the dentine in contact with the ferrule, what can be attributed to the increase 
in the ferrule width, keeping the height. This characteristic confers to the ferrule design 
some superiority, because it can be inferred that it will be more difficult than the cement is 
unstuck in that area, since the tensile stress isn’t submitted. The model T2H2 seems also to 
minimize the tensile stress in the cervical dentine (compressive stress from 0.5 to 2.0 MPa) 
and in the radicular dentine near to the periodontal ligament, following by the model T2H1, 
T1H1 and T1H2.  

Posteriors teeth can be subject also to vestibular lever effects whenever requested eccentric 
efforts in lateral excursion. The contact oclusal on the work side in lateral excursion can 
reach the vestibular cusp in posteriors teeth, generating lever force on the involved roots 
that serve as guide for those movements. 

Under load with inclination of 45o in the vestibular cusp, the maximum stress value is 

compatible with the fracture occurrence. If the fracture begins at that place can follow a 

perpendicular plan to the tensile vector and to spread tending the uprighting that suggests a 

vertical radicular fracture would pass exactly in the bone crest limit. 

Fractures vertical appear as a result of stresses generated inside the root canal (Lertchirakarn 

et al., 2003), but the models showed tensile stress concentrated in the post apex, although of 

smaller magnitude that in the height of the bone crest. 

In all of the models, the root canal stress in the mesial-distal slice presented tensile stress 

(except for the area near to the post apex) and near to the bone crest presents change in the 

vector orientation due to the rotation of the same ones, that it seems related with the 

presence of cortical bone. Therefore, the fracture area not just depends on the post and 

ferrule, but also of location of the tooth in the alveolus. 

An interesting finding was the relatively small difference among the three models that could 

be attributed to the fact of the interfaces between the structures of the models was simulated 

with perfect adhesion. The perfect adhesion can losing in the course of time, what would 

explain that the failures didn’t use to happen in retainer recently cemented. On the other 

hand, the models showed high tensile stresses concentration in more than half of the cement 

layer, which could be responsible for cohesive fracture. 

Under the load area the tensile stresses on the ferrule generates 40 MPa, exceeding the 
cement’s tensile strength of 8.3 MPa and associated with the stress orientation (Fig. 11) 
suggests the tendency to the cement layer failure in this area. 

Under load parallel to the tooth’s long axis in the mesial marginal ridge, the tooth restored 
with post would present a tendency to the rupture similar to the one of the natural, what is 
not supported by the clinical observations. The explanation for this discrepancy could be 
again in the fact that the cement layer presented stresses much larger than the necessary 
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ones for cohesive fracture. After the cement failure the stress distribution change and could 
propitiate the root fracture.  

The intra-radicular retainers can be subject also to rotation force or torsion, whenever 

requested clinically through contacts functional cusp in the ridge, in other words, tooth 

relationship to two teeth (Hemmings et al., 1991). 

The occlusal contacts in the marginal ridge of the premolar could produce a torsion loads 

that tends to rotate the root along the tooth’s axis. For this reason is extremely important 

have in mind the use of retainers that offer larger safety to the radicular remnant in any 

situation of mechanical effort what the root is submitted. 

Under oblique load with 45o in relation to the tooth’s long axis pointed to vestibular cusp in 

the mesial marginal ridge, the maximum stress and orientation evidences again that cement 

layer is prone to failure and that the stress concentration is more serious in the ferrule case. 

When the cement around of the most coronary portion deteriorates, the fulcrum migrates to 

apical, what increases the lever arm progressively (Cohen et al., 1993). 

The modeling in this study considered all the components without setting out eventual contact 

problems, in other words, without cement failure, what couldn't happen in the clinic reality. 

Regarding the clinical significance of the results, it seems that the best way to protect the 

radicular remnant when restored with post would be to guarantee the occlusal adjustment, 

that don't happen loads different from the longitudinal. The most vulnerable part of the 

whole restorative system is the cement layer, that doesn't resist to the tensile stresses result 

from the loads application different from the longitudinal load. The post perfectly adhered 

doesn't seem lead to the occurrence of longitudinal fracture (below the bone crest), but 

probably to fracture that would begin in the vestibular in the height of the bone crest. 

5. Conclusions 

Within the limitations of this study, the following conclusions were drawn:  

1.  In spite of none of the simulated cases to evidence the wedge effect, the longitudinal 
load produced stresses that don't justify the rupture nor of the dentine nor of the 
cement layer and the stresses are very inferior to developed by all the other load types; 

2. The ferrule isn’t necessary to improve the stresses distribution, except for longitudinal 
load, in that presents discreet beneficial effect; 

3.  In the vestibular load were found, in the lingual face, tensile stresses guided parallel to 
the longitudinal axis and magnitude enough to induce vertical fractures above the bone 
crest. These stresses are associated to the tooth’s bend, leaning in the cortical bone that 
it acts as a fulcrum; 

4. In the cement layer were found stresses that are prone to fracture in all of the loads, 
except for the case of longitudinal load; 

5. A concerted effort to develop other FE models to improve the results may provide more 
reliable data about the non-linearly of the structures and the cement failures in the clinic 
reality; 

6.  The analyses help the field better understand the biomechanical analysis of restored 
teeth with cast intra-radicular retainer with and without ferrule.  
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