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1. Introduction

In recent years, there has been a growth of research activity aimed at the development
of sophisticated content-based video data management techniques. This development is
now especially timely given an increasing number of systems that are able to capture and
store data about object motion such as those of humans and vehicles. This has acted
as a spur to the development of content-based visual data management techniques for
tasks such as behavior classification and recognition, detection of anomalous behavior and
object motion prediction. Behavior can obviously be categorized at different levels of
granularity. In far-field surveillance, we are primarily interested in trajectory-based coarse
motion description involving movement direction (right/left or up/down) and motion type
(walking, running or stopping). These techniques are essential for the development of next
generation ‘actionable intelligence’ surveillance systems.

Processing of trajectory data for activity classification and recognition has gained significant
interest quite recently. Various techniques have been proposed for modeling of
trajectory-based motion activity patterns and using the modeled patterns for classification
and anomaly detection. Much of the earlier research focus in motion analysis has been
on high-level object trajectory representation schemes that are able to produce compressed
forms of motion data (Aghbari et al., 2003; Chang et al., 1998; Dagtas et al., 2000; Hsu &
Teng, 2002; Jin & Mokhtarian, 2004; Khalid & Naftel, 2005; Shim & Chang, 2004). This work
presupposes the existence of some low-level visual tracking scheme for reliably extracting
object-based trajectories (Hu, Tan, Wang & Maybank, 2004; Vlachos et al., 2002). The literature
on trajectory-based motion understanding and pattern discovery is less mature but advances
using Learning Vector Quantization (LVQ) (Johnson & Hogg, 1995), Self-Organising Maps
(SOMs) (Hu, Xiao, Xie, Tan & Maybank, 2004; Owens & Hunter, 2000), Hidden Markov
Models (HMMs) (Bashir et al., 2006; 2005b), and fuzzy neural networks (Hu, Xie, Tan &
Maybank, 2004) have all been reported. These approaches are broadly categorized into
statistical and neural network based approaches.

In a development of trajectory-based motion event recognition systems, there are different
questions that we need to answer before proposing or selecting a pattern modeling and
recognition technique. These includes:

1. What is the feature space representation of trajectories?
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2. What is the distribution of trajectories in a given feature space representation? Do we need
to cater for complex shape distributions that may exit in a given motion pattern?

3. Do we expect to have a multimodal distribution of trajectories within a given pattern?

Most of the trajectory-based motion recognition system, as proposed in relevant literature
(Hu, Xiao, Xie, Tan & Maybank, 2004; Hu, Xie, Tan & Maybank, 2004; Khalid & Naftel, 2005;
2006; Owens & Hunter, 2000) can operate only on feature space representation of trajectories
that lies in Euclidean space with a computable mean. However, a survey of recent literature
in the areas of motion feature computation for trajectory representation shows that most of
the feature space representation are complex and do not lie in the Euclidean space (Bashir
et al., 2006; 2005a;b; 2007; Hamid et al., 2005; Keogh et al., 2001; Xiang & Gong, 2006; Zhong
et al., 2004). It is not possible to compute a mean representation of different trajectories
using such complex feature spaces. They can therefore not be applied to complex feature
spaces with incalculable mean. These approaches expect that the trajectories in a given
motion pattern follow certain standard distribution such as Gaussian. They can not cater for
multimodal complex shape distribution of trajectories within a given motion pattern which is
expected in the presence of complex feature space representation of trajectories. The research
presented in this chapter focuses on presenting a trajectory-based behavior recognition and
anomaly detection system that have an answer to all of the above raised questions. The
proposed approach does not impose any limitation on the representation of trajectories. It
can operate using any trajectory representation in any feature space with a given distance
function. The proposed approach can perform modeling, classification and anomaly detection
in the presence of multimodal distribution of trajectories within a given motion pattern.

The remainder of the chapter is organized as follows: We review some relevant background
material in section 2. In section 3, we present a framework of multimodal modeling of activity
patterns using any feature space with a computable similarity function. A soft classification
and anomaly detection techniques using multimodal m-Medoids model is presented in section
4. Comparative evaluation of currently proposed multimodal m-Medoids and previously
proposed localized m-Medoids (Khalid, 2010a) based appraoch for activity classification and
anomaly detection is presented in section 5. Experiments have been performed to show the
effectiveness of proposed system for trajectory-based modeling, classification and anomaly
detection in the presence of multimodal distribution of trajectories within a pattern, as
compared to competitors. These experiments are reported in section 6. The last section
summarizes the paper.

2. Background and related work

Motion trajectory descriptors are known to be useful candidates for video indexing and
retrieval schemes. Variety of trajectory modeling techniques have been proposed to compute
the feature for trajectory representation. Most of the techniques for learning motion behaviour
patterns and recognition from trajectories use discrete point sequence vectors as input
to a machine learning algorithm. Related work within the data mining community on
representation schemes for indexing time series data is also relevant to the parameterisation
of object trajectories. An object trajectory can be defined as a set of points representing the
ordered observations of the location of a moving object made at different points in time. A
trajectory can therefore be represented as a time series implying that indexing techniques
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for time series are also applicable to motion data. For example, Discrete Fourier Transforms
(DFT) (Faloutsos et al., 1994), Discrete Wavelet Transforms (DWT) (Chan & Fu, 1999),
Adaptive Piecewise Constant Approximations (APCA) (Keogh et al., 2001), and Chebyshev
polynomials (Cai & Ng, 2004) have been used to conduct similarity search in time series
data. Previous work has also sought to represent moving object trajectories through piecewise
linear or quadratic interpolation functions (Chang et al., 1998; Jeanin & Divakaran, 2001),
motion histograms (Aghbari et al., 2003) or discretised direction-based schemes (Dagtas et al.,
2000; Shim & Chang, 2001; 2004). Spatiotemporal representations using piecewise-defined
polynomials were proposed by (Hsu & Teng, 2002), although consistency in applying a
trajectory-splitting scheme across query and searched trajectories can be problematic. Affine
and more general spatiotemporally invariant schemes for trajectory retrieval have also been
presented (Bashir et al., 2003; 2004; Jin & Mokhtarian, 2004). The importance of selecting the
most appropriate trajectory model and similarity search metric has received relatively scant
attention (Khalid & Naftel, 2005).

Modeling of motion patterns using trajectory data to perform motion based behavior
recognition and anomaly detection has gained significant interest recently. Various techniques
have been proposed for modeling of motion activity patterns and using the modeled patterns
for classification and anomaly detection. These approaches are broadly categorized into
statistical and neural network based approaches. Almost all statistical approaches dealing
with anomaly detection are based on modelling the density of training data and rejecting test
patterns that fall in regions of low density. There are various approaches that use Gaussian
mixture models to estimate the probability density of data (Brotherton et al., 1998; Roberts
& Tarassenko, 1994; Yeung & Chow, 2002). Various techniques based on hidden Markov
models (HMM) have also been proposed (Xiang & Gong, 2005; 2006; Zhang et al., 2005).
(Yacoob & Black, 1999) and (Bashir et al., 2005b; 2007) have presented a framework for
modeling and recognition of human motion based on a trajectory segmentation scheme. A
framework is presented to estimate the multimodal probability density function (PDF), based
on PCA coefficients of the sub-trajectories, using GMM. Different classes of object motion
are modelled by a continuous HMM per class where the state PDFs are represented by
GMMs. The proposed technique has been shown to work for sign language recognition.
The proposed classification system can not handle anomalies in test data and can only
classify samples from normal patterns. (Xiang & Gong, 2005; 2006) propose a framework
for behavior classification and anomaly detection in video sequences. Natural grouping of
behaviour patterns is learnt through unsupervised model selection and feature selection on
the eigenvectors of a normalized affinity matrix. A Multi-Observation Hidden Markov Model
is used for modelling the behaviour pattern. (Hu et al., 2006; 2007) and (Khalid & Naftel, 2006)
models normal motion patterns by estimating single multimodal gaussian for each class. For
anomaly detection in (Hu et al., 2006), the probability of a trajectory belonging to each motion
pattern is calculated. If the probability of association of trajectory to the closest motion pattern
is less then a threshold, the trajectory is treated as anomalous. In (Rea et al., 2004), a semantic
event detection technique based on discrete HMMs is applied to snooker videos. (Zhang
et al., 2005) propose a semi-supervised model using HMMs for anomaly detection. Temporal
dependencies are modelled using HMMs. The probability density function of each HMM
state is assumed to be a GMM. (Owens & Hunter, 2000) uses Self Organizing Feature Maps
(SOFM) to learn normal trajectory patterns. While classifying trajectories, if the distance of
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the trajectory to its allocated class exceeds a threshold value, the trajectory is identified as
anomalous.

In our previous work (Khalid, 2010b), we have proposed m-Medoids based activity
Modeling and Classification approach using low dimensional feature vector representation
of trajectories in Euclidean Space (MC-ES). m-Medoids based approach models a pattern by
a set of cluster centres of mutually disjunctive sub-classes (referred to as medoids) within
the pattern. Once the m-Medoids model for all the classes have been learnt, the MC-ES
approach performs classification of new trajectories and anomaly detection by checking the
closeness of said trajectories to the models of different classes using hierarchical classifier. The
anomaly detection module required specification of threshold which is used globally for all
the patterns. However, this approach had unaddressed issues like manual specification of
threshold for anomaly detection, identification of appropriate value of threshold for anomaly
detection and anomaly detection of motion patterns with different scale and orientation which
is used globally for all the patterns. These issues are addressed by a localized m-Medoids
based approach (LMC-ES) as proposed in (Khalid, 2010a) which enables us to automatically
select a local significance parameter for each pattern taking into consideration the distribution
of individual patterns. LMC-ES can effectively handle patterns with different orientation
and scale and has been shown to give superior performance than competitors including
GMM, HMM and SVM based classifiers. However, there are still open issues (i) Modeling,
classification and anomaly detection in the presence of multimodal distribution of trajectories
within a pattern (ii) Soft classification in the presence of multimodal pattern distribution to
minimize misclassification (iii) Modeling and classification in feature spaces for which we can
not compute mean.

The contribution of this work is to present an extension of m-Medoids based modeling
approach, wherein the multimodal distribution of samples in each pattern is represented
using multimodal m-Medoids. An approach for multimodal model-based classification and
anomaly detection is also presented. The presented mechanism is based on a soft classification
approach which enables the proposed multimodal classifier to adapt to the multimodal
distribution of samples within different patterns. The multimodal m-Medoids based modeling
and classification is applicable to any feature spaces with a computable pairwise similarity
measure.

3. Multimodal m-Medoids based modeling

Given a representation of trajectories in any feature space for a given motion pattern, we wish
to model the underlying distribution of trajectories within a pattern using training data. A
pattern is modeled by a set of cluster centers of mutually disjunctive sub-classes (referred to
as medoids) within the pattern. The proposed modeling technique referred to as m-Medoids
modeling, models the class containing n members with m medoids known a-priori. Modeling
of pattern using multimodal m-Medoids approach in general feature space is a three step
process, (i) identification of m medoids, (ii) computation of set of possible normality ranges for
the pattern and (iii) selection of customized normality range for each medoid. The resulting
models of identified patterns can then be used to classify new unseen trajectory data to one
of the modeled classes or identify it as anomalous if it is significantly distant from all of the
modeled pattern.
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3.1 Step 1: Identification of m-Medoids

The algorithm for identification of medoids using finite dimensional features in general
feature space with a computable similarity matrix is based on the affinity propagation based
clustering algorithm (Frey & Dueck, 2007). Let DB(i) be the classified training samples
associated to pattern i, the modeling algorithm comprises the following steps:

1. Form the affinity matrix A ∈ Rn×n defined by

A(a, b) =

{

exp
(
−dist(sa ,sb)

2σ2

)

i f a �= b

P(a) otherwise
(1)

Here sa , sb ∈ DB(i) , σ is the scaling parameter and P(a) is the preference parameter
indicating the suitability of sample a to be selected as an exemplar (medoid). We set P(a) to
the median of affinities of sample a with n samples. We use a dynamic value of σ which is
set to be the 6th nearest neighbor of sa to cater for variation in local distribution of trajectory
samples.

2. Initialize availability matrix ℑ(a, b) = 0 ∀a, b. The entry ℑ(a, b) in availability matrix
stores the suitability of trajectory sb to be selected by trajectory sa as its exemplar.

3. Update responsibility matrix ℜ as

ℜ(a, b) = A(a, b)− max∀c s.t. b �=c {ℑ(a, c), A(a, c)} (2)

The entry ℜ(a, b) in the responsibility matrix reflects the accumulated evidence for how
well-suited trajectory sb to serve as an exemplar for trajectory sa while taking into account
other potential exemplar for trajectory sa.

4. Update availability matrix ℑ as

ℑ(a, b) =

{
min{0,ℜ(b, b) + ∑∀c s.t. c �=a∧c �=b}{0,ℜ(c, b)} i f a �= b

∑∀c s.t. a �=c max{0,ℜ(c, a)} otherwise
(3)

5. Identify the exemplar for each sample as

ξa = argmaxb[ℑ(a, b) +ℜ(a, b)] (4)

6. Iterate through steps 3-5 till the algorithm is converged or maximum number of learning
iterations (tmax) is exceeded. The algorithm is considered to have converged if there is no
change in exemplar identification for certain number of iterations (tconvergance).

7. If the number of exemplars identified are smaller than the desired number of medoids,
set higher values of preference and vice versa. The algorithm is repeated till the desired
number of exemplars are identified. An appropriate value of preference parameter, for
identification of desired number of medoids, is searched using a bisection method.

8. Append exemplars ξa to the list of medoids M(i) modeling the pattern i.

3.2 Step 2: Computation of possible normality ranges

After the identification of medoids M(i) for pattern i, we intend to identify and pre-compute
a set of possible normality ranges for a given pattern. Values of normality ranges for a given
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pattern is determined by the inter-medoid distances within a given pattern. Hence, different
patterns will have different set of possible normality ranges depending on the distribution of
samples, and in turn medoids, within a pattern. In this step, a set of possible normality ranges
D(c) for the pattern c is computed as follows:

1. Identify the closest pair of medoids (i, j) (indexed by (p, q)) from M(c) as follows:

(p, q) = arg min(i,j)dist(Mi, Mj) ∀i, j ∧ i �= j (5)

where dist(.,.) is the distance function for a given feature space representation of
trajectories.

2. Set l = 1.

3. Populate the distance array at index l using

D
(c)
l = dist(Mp, Mq) (6)

4. Remove the closest pair of medoids using

M(c) = M(c) − {Mp, Mq} (7)

5. Set l = l + 1.

6. Iterate through steps 1-5 till there are no mediods left in M(c).

3.3 Step 3: Selection of customized normality range for each medoid

After the identification of medoids and a set of possible normality ranges for a given pattern,
we select different normality range for each medoid depending on the distribution of samples
from the same and different patterns around a given medoid. The normality range is selected
to minimize false positives (false identification of training samples from other patterns as
a normal member of pattern that is being modeled) and false negatives (classification of
normal samples of the pattern being modeled as anomalies). The algorithm for selection
of customized normality range for each medoid, to enable multimodal m-Medoid based
modeling of pattern, comprises of following steps:

1. Initialize significance parameter τ with the number of possible normality ranges for
pattern c as computed in Step 2.

2. Sequentially input labeled training instances belonging to all classes and identify the
closest medoid, indexed by r, using:

r = arg mink dist(Q, Mk) ∀k (8)

where Q is the test sample.

3. Perform an anomaly test using the anomaly detection system, as proposed in section 4,
assuming a one class classifier containing only pattern c represented by medoids set M(c)

using the current value of τ.

4. Increment false positive count FP(r), corresponding to closest medoid Mr, each time when
the sample is a normal member of pattern c but is identified as anomalous.
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5. Increment false negative count FN(r), corresponding to closest medoid Mr, each time
when the sample is misclassified to pattern c.

6. Iterate through steps 2-5 for all the samples in DB.

7. Calculate Significance Parameter Validity Index (SPVI) to check the effectiveness of
current value of τ for a particular medoid using:

SPVI(k, τ) = β × FP(k) + (1 − β)× FN(k) 0 ≤ β ≤ 1 ∀k (9)

where β is a scaling parameter to adjust the sensitivity of proposed classifier to false
positives and false negatives according to specific requirements.

8. Set τ = τ − 1.

9. Iterate through step 2-8 till τ = 1.

10. Identify the value of significance parameter for a given medoid as:

︷︸︸︷
τ

(c,k)
= arg min τ SPVI(τ, k) ∀Mk ∈ M(c) (10)

where
︷︸︸︷

τ
(c,k)

is the dynamic significance parameter that have a different normality range for

each medoid depending on the local density.

The space complexity of the proposed modeling algorithm in general feature space is O(3 ∗
n2). The time complexity of our algorithm is the sum of time complexities of the three
steps and is equivalent to O(ω ∗ (n2 + n2 ∗ log(n)))+O((#medoids ∗ log(#medoids)))+O(|DB|2 ∗
#medoids ∗ log(#medoids)) where

• O(n2) is the time complexity of affinity matrix computation

• O(n2 ∗ log(n)) is the time complexity of message passing to compute availability and
responsibility matrix

• ω is the number of times the modeling algorithm is repeated to identify m medoids. It has
been observed that the value of ω normally lies in the range 3-10.

• m ∗ log(m) is the time complexity of computing possible normality range

• |DB| ∗ m is the time complexity for selecting customized normality range for each medoid
where |DB| is the number of trajectories present in trajectory dataset DB.

4. Classification and anomaly detection

Once the m-Medoids based model for all the classes have been learnt, the classification of
new trajectories is performed by checking the closeness of said trajectory to the models of
different classes. The classification of unseen samples to known classes and anomaly detection
is performed using following steps:

1. Identify k nearest medoids, from the entire set of medoids (M) belonging to different
classes, to unseen sample Q as:

k-NM (Q, M, k) = {C ∈ M|∀R ∈ C, S ∈ M − C,
Dist(Q,R) ≤ Dist(Q,S)∧ |C|=k }

(11)
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where M is the set of all medoids from different classes and C is the ordered set of k closest
medoids starting from the nearest medoid.

2. Initialize nearest medoid index ı to 1.

3. Set r to the id of ıth nearest medoid and c to the index of its corresponding class.

4. Set l =
︷︸︸︷

τ
(c,r)

.

5. Identify the normality threshold d w.r.t. the medoid r using D(c) as:

d = D
(c)
l (12)

6. Test sample Q is considered to be a valid member of class c if:

Dist(Q, Mr) ≤ d (13)

7. If the condition specified in eq. (13) is not satisfied, increment the index ı by 1.

8. Iterate steps 3-7 till ı gets equivalent to k. If the test trajectory Q has not been identified as
a valid member of any class, it is considered to be an outlier and deemed anomalous.

The time complexity of MMC-GFS based classification and anomaly detection algorithm is
O(|M|) + O(k) for anomalous samples where |M| is the total number of medoids belonging
to all classes. However, for most of the normal samples the time complexity is O(|M|). The
time complexity can be further reduced by using efficient indexing structre like kd-trees to
index |M| medoids for efficient k-NM search.

5. Relative merits of m-Medoids based modeling and classification algorithms

In this section, we provide a comparative evaluation of the proposed multimodal m-Medoids
(MMC-GFS) and localized m-Medoids (Khalid, 2010a) based frameworks (LMC-ES) for
modeling, classification and anomaly detection. These frameworks can be characterized in
terms of the following attributes:

• Ability to deal with multimodal distribution within a pattern

• Ability to deal with variety of feature space representation of trajectories

• Time complexity of generating m-Medoids based model of known patterns

• Time complexity of classification and anomaly detection using learned models of
normality

• Scalability of modeling mechanism to cope with increasing number of training data

For the ease in understanding of the comparative analysis, simulation of the working
of proposed modeling and classification algorithms for arbitrary shaped patterns having
multimodal distributions is presented in Fig. 1. In the left image of Fig. 1, each point
represents the training sample and instances belonging to the same class are represented
with same color and marker. Squares superimposed on each group of instances represent
the medoids used for modeling the pattern. Normality region generated using different
frameworks for classification and anomaly detection is depicted in the right image of Fig. 1.
Test sample is considered to be a normal member of the class if it lies within the normality
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Fig. 1. m-Medoids based modeling of patterns using (a) LMC-ES framework (b) MMC-GFS
framework.

region, else it is marked as anomalous. Visualization of LMC-ES and MMC-GFS based
modeling is provided in Fig. 1(a) and Fig. 1(b) respectively.

Multimodal modeling using MMC-GFS frameworks caters for the multimodal distribution
within a pattern. On the other hand, LMC-ES framework always assumes a unimodal
distribution within a pattern and hence can not cater for the dynamic distribution of samples
within a pattern. It is apparent from Fig. 1 that MMC-GFS frameworks have generated more
accurate models that have accommodated the variation in sample density within a given
pattern. LMC-ES framework performs a hard classification of unseen sample. A sample is
classified to a pattern represented by the majority of medoids from a set of k nearest medoids.
The sample may not lie in the normality region of a pattern to which it is classified and hence
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deemed anomalous. However, it is likely that it may still fall in the normality region of the
second closest but less dense pattern having larger normality range. The hardness of LMC-ES
based classification algorithm will result in the misclassification of such samples. However,
MMC-GFS based classification and anomaly detection algorithm does not give a hard decision
and checks for the membership of test trajectories w.r.t. different patterns until it is identified
as a valid member of some pattern or it has been identified as anomalous w.r.t. k nearest
medoids. This relatively softer approach enables the MMC-GFS based classification algorithm
to adapt to the multimodal distribution of samples within different patterns. This phenomena
is highlighted in Fig. 2. The samples, represented by ’x’ marker, will be classified to blue
pattern but is marked as anomalous using LMC-ES classifier as it falls outside the normality
range of dense medoids belonging to the closest pattern. On the other hand, soft classification
technique as proposed in MMC-GFS frameworks will correctly classify the sample as normal
members of green pattern. Another benefit of MMC-GFS framework is that it can be applied
to any feature space representation of trajectories with a given distance function. On the other
hand, LMC-ES can only operate in feature spaces with a computable mean.

Fig. 2. Scenario for evaluating the adaptation of classification algorithms as proposed in
different m-Medoids based frameworks.

Algorithms to generate m-Medoids model, as proposed in LMC-ES framework, is efficient
and scalable to large datasets. On the other hand, the modeling algorithm of MMC-GFS is
not scalable to very large datasets due to the requirement of affinity matrix computation. The
space and time complexity is quadratic which is problematic for patterns with large number of
training sample. However, this problem can be easily catered by splitting the training sample
into subsets and selecting candidate medoids in each subset using algorithm as specified in
section 3.1. The final selection of medoids can be done by applying the same algorithm again
but now using the candidate medoids instead of all the training sample belonging to a given
pattern. The classification algorithm of MMC-GFS framework is more efficient as compared
to LMC-ES framework. This efficiency gain is due to the non-iterative unmerged anomaly
detection with respect to a given medoid. The anomaly detection is done by applying a single
threshold to the distance of the test sample from its ıth closest medoid as specified in eq. (13).
On the other hand, LMC-ES implements iterative merged anomaly detection, which is more
accurate but time consuming as compared to the modeling algorithm proposed in MMC-GFS
framework. The time complexity of merged anomaly detection is O(m ∗ log(m)− τ ∗ log(τ)).
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6. Experimental results

In this section, we present some results to analyze the performance of the proposed
multimodal m-Medoids based modeling, classification and anomaly detection as compared
to competitive techniques.

6.1 Experimental datasets

Experiments are conducted on synthetic SIM2 and real life LAB (Khalid, 2010a;b; Khalid &
Naftel, 2006), HIGHWAY (Khalid & Naftel, 2006) and ASL (Bashir et al., 2006; 2005a;b; 2007;
Khalid, 2010b; Khalid & Naftel, 2006) datasets. Details of these datasets can be found in Table
1.

Dataset Description # of
trajectories

Extraction
method

Labelled
(Y/N)

SIM2 Simulated dataset
comprising of two
dimensional coordinates.

arbitrary # Simulation. Y

LAB Realistic dataset generated
in the laboratory
controlled environment
for testing purposes.
Trajectories can be
categorised into 4 classes.

152 Tracking
moving
object and
storing motion
coordinates.

Y

HIGHWAY Realistic vehicle trajectory
dataset generated
by tracking vehicles
in a highway traffic
surveillance sequence.

355 Tracking
vehicles using
PTMS(Melo
et al., 2004)
tracking
algorithm.

Y

ASL Trajectories of right hand
of signers as different
words are signed. Dataset
consists of signs for 95
different word classes
with 70 samples per word.

6650 Extracting (x, y)
coordinates of
the mass of
right hand from
files containing
complete sign
information.

Y

Table 1. Overview of datasets used for experimental evaluation

6.2 Experiment 1: Evaluation of m-Medoids based frameworks for classification and

anomaly detection

The purpose of this experiment is to evaluate the performance of proposed MMC-GFS and
LMC-ES based frameworks for classification of unseen data samples to one of the known
patterns. The effectiveness of the proposed frameworks to perform anomaly detection is also
demonstrated here. The experiment has been conducted on simulated SIM2 dataset. Training
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Fig. 3. Training data from SIM2 dataset.

data from simulated datasets is shown in Fig. 3. Test data for SIM2 dataset is obtained by
generating 500 samples from a uniform distribution such that (x, y) ∈ (U(1, 12), U(1, 12)).

We have used 50 medoids to model a class using its member samples. The classification and
anomaly detection results for SIM2 dataset, using LMC-ES and MMC-GFS frameworks are
presented in Fig. 4(a) and Fig. 4(b) respectively. Training samples are represented using
‘+’ marker whereas classified normal samples are represented by small circles. Data points
belonging to same class are represented with same colour and marker. Samples from test
data which have been identified as anomalous are represented with a black ‘x’ marker. It is
apparent from Fig. 4 that multimodal m-Medoids based classification system as proposed
in MMC-GFS framework performs better classification and anomaly detection while catering
for multimodal distribution within the modeled pattern. On the other hand, LMC-ES based
framework performs unimodal modeling of patterns and therefore the classification system
does not adjust well to the variation of density within a pattern.

After demonstrating the efficacy of proposed classification and anomaly detection approach
on synthetic data, the experiment is then repeated on real life LAB and HIGHWAY
datasets. LAB and HIGHWAY datasets are classified motion datasets and contain anomalous
trajectories within the datasets themselves. Classified training data for these datasets is
obtained by randomly selecting half of the trajectories from each of the normal patterns in the
dataset. The remaining half of the trajectories from the normal patterns along with anomalous
trajectories are extracted and used as test data. Training samples from the LAB and HIGHWAY
datasets are shown in Fig. 5 and Fig. 6 respectively. For ease of visualization, samples from
each class are plotted separately on the background scene. The starting point of each trajectory
is marked in green.

Trajectories from LAB and HIGHWAY datasets are modelled using DFT-MOD based
coefficient feature vectors. (Khalid, 2010b). Patterns are modeled using 20 medoids per
pattern. Once the multimodal m-Medoids based model for all the classes have been learnt,
classification of samples from the test data is done using the classifier as proposed in section
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Fig. 4. Classification of test data, based on SIM2 classes, using (a) LMC-ES framework (b)
MMC-GFS framework.

4. Classification obtained by applying the MMC-GFS approach on LAB dataset is shown in
Fig. 7. The matching of classification obtained for each trajectory with its ground truth shows
that no trajectory is misclassified. Trajectories identified as anomalous are shown in Fig. 8. It is
clear from Fig. 8 that anomalous trajectories are significantly different from the normal motion
patterns as shown in Fig. 7. The classification experiment is also conducted on the HIGHWAY
dataset and the results obtained are shown in Fig. 9. Trajectories filtered as anomalous are
shown in Fig. 10. These experimental results give evidence to the claim that MMC-GFS based
classification and anomaly detection system is an effective and robust approach that works
well with real life motion datasets.

6.3 Experiment 2: Comparison of proposed classifiers with competitive techniques

The purpose of this experiment is to compare the performance of classifiers as proposed
in LMC-ES and MMC-GFS frameworks. For comparison of our results with competitive
techniques, we establish a base case by implementing three different systems for comparison
including Mahalanobis and GMM classifier. Real life ASL dataset is used for the experiment.
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Fig. 5. Labelled training samples from LAB dataset. Trajectories belonging to different classes
are plotted separately on background scene

Signs from different number of word classes are selected. Classified training data is obtained
by randomly selecting half of the trajectories from each word class leaving the other half
to be used as test data. Trajectories from ASL dataset are represented using DFT-MOD
based coefficient feature vectors (Khalid, 2010b). Patterns are modeled using 20 medoids
per pattern. We have computed single multimodal Gaussian for modeling of patterns for
Mahalanobis classifier. Modeling of patterns and classification of unseen samples using GMM
is based on the approach as described in (Bashir et al., 2005a). Each class is modeled using a
separate GMM. The number of modes to be used for GMM-based modeling is automatically
estimated using a string of pruning, merging and mode-splitting processes as specified in
(Bashir et al., 2005a). Once the models for all the classes have been learnt, the test data is
passed to different classifiers and the class labels obtained are compared with the ground
truth. The experiment is repeated with different numbers and combinations of word classes.
Each classification experiment is averaged over 50 runs to reduce any bias resulting from
favorable word selection.

The accuracy of different classifiers for wide range of word classes from ASL dataset is
presented in Table 2. Based on these results, we can see that the multimodal m-Medoids based
classifier as proposed in MMC-GFS framework yield a superior classification accuracy as
compared to other classifiers closely followed by unimodal LMC-ES framework. GMM yields
good results for lower number of classes but its performance deteriorates for higher number
of word classes. It can also be observed from Table 2 that the relative accuracy of proposed
m-Medoids based MMC-GFS and LMC-ES classifiers increases with an increase in the number
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Fig. 6. Labelled training samples from HIGHWAY dataset. Trajectories belonging to different
classes are plotted separately on background scene

ASL (#classes : #samples)

2 : 70 4 : 140 8 : 280 16 : 560 24:840

MMC-GFS 0.99 0.94 0.91 0.86 0.83

LMC-ES 0.98 0.92 0.88 0.83 0.78

Mahalanobis 0.95 0.88 0.82 0.75 0.71

GMM 0.97 0.92 0.83 0.74 0.69

Table 2. Classification accuracies for different number of classes from ASL dataset

of classes as compared with competitive techniques; thus making them more scalable for
larger number of classes. The superior performance of MMC-GFS, as compared to competitive
techniques, can be explained by the fact that the proposed multimodal m-Medoids based
frameworks do not impose any restriction on the probability distribution function of modeled
patterns. The proposed frameworks can effectively model arbitrary shaped patterns and
can effectively handle variation in sample distribution within a pattern as demonstrated in
Fig. 1 and Fig. 4. On the other hand, the competitive approaches impose assumptions
on the PDF of patterns (normally gaussian). These approaches do not have the capacity to
handle multimodal distribution within a pattern. As a result, the model generated by these
approaches will not give an accurate representation of complex patterns and hence result in
poor classification performance as compared to the proposed multimodal m-Medoids based
approaches.
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Fig. 7. Classification of test trajectories from LAB dataset

Fig. 8. Trajectories identified as anomalous from LAB dataset using proposed anomaly
detection mechanism.
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Fig. 9. Classification of test trajectories from HIGHWAY dataset

Fig. 10. Trajectories identified as anomalous from HIGHWAY dataset using proposed
anomaly detection mechanism.
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Similar experiment with ASL dataset (using similar experimental settings) has been conducted
by (Bashir et al., 2007) using their proposed GMM and HMM-based classification system.
They reported classification accuracies of 0.96, 0.92, 0.86 and 0.78 for 2, 4, 8 and 16 word
classes respectively. A comparison of these classification accuracies with the results obtained
using our approach reveals that classifiers from m-Medoids classifier family performs better
than GMM and HMM-based recognition system (Bashir et al., 2007) despite the fact that our
proposed classification approach is conceptually simpler and computationally less expensive.

6.4 Experiment 3: Quantitative evaluation of anomaly detection algorithms

Here we provide a quantitative evaluation and comparison of m-Medoids based anomaly
detection algorithms, as proposed in MMC-GFS and LMC-ES frameworks, with competitors.
We implemented three different anomaly detection techniques based on statistical test as
proposed in (Khalid & Naftel, 2006), Grown When Required (GWR) novelty filter as proposed
in (Marsland et al., 2002) and one-class classifier based anomaly detection as proposed in (Tax,
2001). (Khalid & Naftel, 2006) performs anomaly detection by using Mahalanobis classifier
and conducting Hotelling’s T2 test. (Tax, 2001) perform anomaly detection by generating
model of one class (referred to as target class) and distinguishing it from samples belonging to
all other classes. There generation of model of the target class is done using SVM and GMM.
For SVM-based one class classifier (OCC-SVM), we have used RBF kernel for the modeing of
target class. For GMM-based one class classifier (OCC-GMM), we have used the approach as
specified in Experiment 2 to generate the GMM-based model.

The experiment has been conducted using different number of word classes from ASL dataset.
We have extracted half of the samples belonging to each word class for training purposes
leaving the other half of the samples to be used as test data. DFT-MOD based coefficient
feature vector representation of sign trajectories from training data is generated and used
to generate models as required by the different classification approaches. MMC-GFS and
LMC-ES framework based model of each class is generated using the algorithm as presented
in section 3 and (Khalid, 2010a) respectively. Patterns are modeled using 20 medoids per
pattern.

Once the model learning phase is over, anomaly detection using different techniques is carried
out using test dataset. We would expect that few instances drawn from class X would
be recorded as anomalous when tested against the same class, whereas nearly all instances
would be detected as anomalous when tested against a different class Y. The experiment is
repeated with different numbers and combinations of word classes. Each anomaly detection
experiment is averaged over 50 runs to reduce any bias resulting from favorable word
selection.

Fig. 11 reports the result in terms of percentage of correct anomaly detection using various
number of word classes from ASL dataset. The results demonstrate the superiority of
anomaly detection using m-Medoids based MMC-GFS and LMC-ES frameworks. The
anomaly detection accuracies obtained using MMC-GFS algorith are higher than unimodal
LMC-ES based anomaly detection algorithm. MMC-GFS and LMC-ES performs better than
OCC-SVM, OCC-GMM, GWR and Mahalanobis framework-based Naftel’s method. The
superior performance of proposed approach as compared to state-of-the-art techniques is
due to the fact that our approach gives importance to correct classification of normal sample
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and to the filtration of abnormal samples during the model generation phase. On the other
hand, OCC-SVM generates good model of normal classes but classifies many of the abnormal
samples as member of normal classes whereas GWR gives extra importance to filtering
abnormal samples and in the process, identifies many normal samples as abnormal.

Fig. 11. Percentage anomaly detection accuracies for different number of classes from ASL
dataset

7. Discussion and conclusions

In this chapter, we have presented an extended m-Medoids based framework, referred to as
MMC-GFS, for modeling of trajectory-based motion patterns. The strength of the proposed
approach is its ability to model complex patterns without imposing any restriction on the
distribution of samples within a given pattern. Once the multimodal m-Medoids model for
all the classes have been learnt, the classification of new trajectories and anomaly detection is
then performed using a proposed soft classification and anomaly detection algorithm which
is adaptive to multimodal distributions of samples within a pattern. The strength of this
technique is its ability to model complex patterns without imposing any restriction on the
shape of patterns. MMC-GFS can be used for modeling, classification and anomaly detection
in any feature space with a computable similarity function.

Experimental results are presented to show the effectiveness of proposed MMC-GFS classifier.
Modeling of pattern and classification using proposed frameworks is unaffected by variation
of sample distribution within a pattern as demonstrated in Fig. 4. Quantitative comparison of
MMC-GFS based classifiers with competitive techniques demonstrates the superiority of our
multimodal approach as it performs consistently better than commonly used Mahalanobis,
GMM and HMM-based classifiers.
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Experiments are also conducted to show the effectiveness of anomaly detection capabilities
of proposed frameworks. Anomaly detection results for different classes of ASL datasets,
using different variants of proposed anomaly detection algorithm, are presented. It has
been shown that anomaly detection using multimodal MMC-GFS frameworks gives better
anomaly detection accuracies as compared to the unimodal LMC-ES approach. Although
LMC-ES enables the anomaly detection system to adapt to the normality distribution of
individual classes, it is insensitive to the variation of distributions within a pattern which
results in degradation of its performance as compared to MMC-GFS frameworks. Comparison
of proposed anomaly detection algorithms with an existing approach demonstrates the
superiority of our approach approach as they consistently perform better for different number
of classes.

The application of proposed MMC-GFS based modeling and recognition system is not only
limited to trajectory-based behavior recognition, but can also be applied to other recognition
tasks that are critical in video surveillance application. Some of the applications where
MMC-GFS based modeling and classification system can be applied include but is not limited
to object recognition in surveillance videos, gait recognition, scene recognition etc.
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