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1. Introduction 

1.1 Pseudo-unitary lattice with a characteristic parameter as a description of  
multi-principal alloys – The high-entropy alloys (HEAs) 

In the summer of 1995, J.W. Yeh and the author (SKC) started the study of multi-principal-
element alloys which was called, then, alloys with high randomness and now the high-entropy 
alloys (HEAs). SKC checked the first 10 equal-molar alloys, which was designed by Yeh that 
contained from 6 to 9 elements in the alloys out of one of Al, Cu, and Mo, together with Ti, V, 
Fe, Ni, Zr, Co, Cr, Pd, and B, with a home-made vacuum-arc remelter, and the author 
observed that the alloy series containing Mo can be made most easily, while the ones 
containing 3 at% B are the ones most difficult in melting, and 6 out of 10 can be formed in the 
water-cooled copper mold of the remelter, i.e., the existence of the HEAs was demonstrated by 
experiments. The alloys were aimed at that time to design as another kind of bulk glass alloys, 
and based on the high configurational entropy of R ln(n), n between 5 and 13, similar to the 
mixing of different gases [1]. No conclusions were drawn with XRD patterns of these alloys 
that were found two years later to be composed with peaks from a single simple lattice cell like 
FCC A1 or BCC A2, although some evidence of existence of amorphous phase was observed 
from TEM diffraction patterns and high resolution images [2,3]. The simple crystalline phases 
instead of amorphous ones were continuously found in alloys like in AlCoCrCuFeNi during 
research of HEAs in these 10 to 20 years, and identified with a so-called extended FCC or BCC 
unit cell that SKC called it a pseudo-unitary lattice in 2010 [4]. 

As multiple principal element alloys, high-entropy alloys (HEAs) comprise at least five 
elements whose concentration for each one ranges between 5 at % and 35 at % [5]. Attributes 
of forming a simple solid solution and nano-particle precipitation, as well as achieving a 
high hardness and strength, and excellent high-temperature oxidation resistance make 
HEAs highly promising for application and research and development of these alloys [6-9]. 
Properties of AlxCoCrFeNi (0 ≤ x ≤ 1) HEAs vary significantly with x [10]. For instance, the 
alloy structure changes from FCC to BCC for increased Al content x. Besides, the coefficient 
of thermal expansion decreases with x. Both properties are closely related to the bond 
strength of alloys. Moreover, electrical resistivity of AlxCoCrFeNi alloys is large, i.e., 
approximately up to 200  cm [11]. 
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1.2 Corrosion resistance for HEAs and conventional alloys 

Corrosion properties of AlCoCrCu0.5FeNiSi [12,13], AlxCrFe1.5MnNi0.5 [14,15], and 
Al0.5CoCrCuFeNiBx [16] HEAs have been extensively studied in recent years. Among these 
HEAs, AlCoCrCu0.5FeNiSi alloy (HEA 1) displays, at room temperature, a better general 
corrosion resistance than SS 304 in 1 N H2SO4; however, it exhibits a worse pitting corrosion 
resistance than SS 304 in 1 N H2SO4 and in 1 M NaCl, respectively. The general corrosion 
resistance of each of HEA 1 and SS 304 decreases when exceeding room temperature. The 
effect of temperature on corrosion resistance of HEA1 is less severe in 1 M NaCl than in 1 N 
H2SO4 [13]. AlxCrFe1.5MnNi0.5 alloys (HEA 2) reveal that in each of the 0.5 M H2SO4 and 1 M 
NaCl solutions, corrosion resistance increases with a decreasing x; in addition, the 
susceptibility to general and pitting corrosion of HEA 2 increases with an increasing x [14]. 
AlxCrFe1.5MnNi0.5 alloys (called hereinafter as HEA 2a and 2b for x = 0 and 0.3, respectively) 
in 0.1 M HCl exhibit different corrosion behaviours for different x values. Although HEA 2a 
is susceptible to localized corrosion, HEA 2b has a stable passive film on the surface. In 0.1 
M HCl, anodized treatment of HEA 2a and 2b alloys in 15 % H2SO4 gives higher corrosion 
resistance than the untreated [15]. In deaerated 1 N H2SO4, Al0.5CoCrCuFeNiBx alloys are 
more resistant to general corrosion than SS 304, and are not susceptible to localized 
corrosion. Additionally, the corrosion resistance of Al0.5CoCrCuFeNiB0.6 alloy is inferior to 
Al0.5CoCrCuFeNi alloy [16]. Above HEAs show an extremely close compositional 
dependence of corrosion behaviour in various solutions. 

1.3 Aim of this study 

Although many interesting topics have been explored for AlxCoCrFeNi alloys [10,11], 
investigation on their corrosion property is still lacking. Therefore, this study elucidates how 
Al affects their corrosion behaviour. The electrochemical properties of the alloys in sulfuric 
acids are investigated using the potentiodynamic polarization curve and a weight loss 
measurement method. Additionally, these alloys are compared with SS 304, especially with 
respect to the effect of temperature. Moreover, based on use of electrochemical impedance 
spectroscopy (EIS), the effect of Al on corrosion behaviour is analyzed. Furthermore, the 
relationship of stability of oxide film with Al content is examined by varying the chloride 
concentration in a sulfuric solution. Additionally, this study, which extends [17], also 
attempts to investigate the mechanism of the passive layers influenced by Al content x at 
various temperatures in detail. 

2. Experimental details 

2.1 Test materials and conditions for electrochemical and weight loss tests 

2.1.1 Test specimens for electrochemical tests and weight loss measurements 

As-cast AlxCoCrFeNi alloys were prepared according to molar ratios of x = 0, 0.25, 0.50, and 
1.00 (called C-0, C-0.25, C-0.50, and C-1.00, respectively) in a vacuum arc remelter. Table 1 
lists the composition of the alloys. Test specimens were cut in 0.8 cm x 0.8 cm x 0.3 cm and 
cold-mounted in epoxy with the outside surface from a surface of 0.8 cm x 0.8 cm of 
specimens. The specimens were subsequently ground and polished with grit #1000 silicon 
carbide paper, rinsed and dried in preparation for electrochemical tests and weight loss 
measurements. During determination of the weight loss, six sets of samples were dipped in 
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sulfuric acid for 1, 3, 5, 8, 11, and 15 days, respectively. All tests, except the weight loss test, 
were performed at least three times to confirm the data reproducibility. Finally, weight loss 
tests were performed twice and the reproducibility was given in an error bar. 

Alloys Al Co Cr Fe Ni 
C-0 0 27.12 23.74 23.99 25.14 
C-0.25 3.05 25.14 22.48 24.15 25.18 
C-0.50 5.59 25.25 22.13 22.80 24.22 
C-1.00 10.02 23.84 21.11 21.99 23.03 
SS 304 0 0 19.40 72.68 7.92 

Table 1. Composition (wt %) for alloys C-x and SS 304. 

2.1.2 Test solutions and temperatures 

The base solution for all tests was 0.5 M of sulfuric acid. Test temperatures were ambient 
temperature (~25oC). Test solutions bearing chloride ions were with 0.25, 0.50, and 1.00 M 
sodium chloride in the base solution. To avoid the dissolved oxygen (aeration) affecting the 
test solutions, deaeration was simultaneously made by a nitrogen gas flow of 120 ml/min in 
the test solution. The effect of temperature on polarization was examined under 
thermostatic control at an interval of 15oC in the temperature range of 20oC - 65oC. 

2.2 Potentiodynamic polarization curve measurements and electrochemical 
impedance spectroscopy (EIS) 

A three-electrode cell was used for the electrochemical test. The reference electrode was a 
commercial Ag/AgCl electrode saturated in 3 M KCl electrode (−0.205 VSHE or –0.205 V to 
standard hydrogen electrode). The auxiliary electrode was made of Pt, and the working 
electrode was the specimen. Potentiostat was CH Instrument Model-600A. The specimen 
was cathodically polarized at a potential of −0.4 VSHE for 300 s before the test for the purpose 
of removing surface oxides. The quasi-steady-state time for an open circuit was 900 s. Scan 
speed was 1 mV/s for scan potential ranging from −0.6 VSHE to 1.4 VSHE. For EIS, the 
working potential was that of open circuit at 900 s from the start of immersion with scan 
amplitude 10 mV and a frequency ranging from 100 kHz to 10 mHz. 

2.3 Immersion tests and ICP-AES and XPS analyses 

Samples were dipped in sulfuric acid for 15 d to determine the weight-loss rate. Auger electron 
spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis were performed with 
samples after a 0.8 VSHE pretreatment plus a 1-h immersion. Inductively coupled plasma 
atomic emission spectroscopy (ICP-AES) was performed on the electrolyte after an 8-d 
immersion of the samples. The effect of temperature on polarization was examined under 
thermostatic control at an interval of 15oC in the temperature range of 20oC–65oC. 

2.4 Scanning electron microscopy (SEM) metallographic examination and energy 
dispersed X-ray spectroscopy (EDS) analysis 

Samples were fine polished, up to 0.05 μm Al2O3 powder and, then, examined with SEM 

(JEOL JSM-840A) equipped with an Oxford EDS for topography and elemental 
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compositions. Finally, samples were examined before and after 3 days immersion of 0.5 M 

H2SO4. 

3. Results and discussion 

3.1 Potentiodynamic polarization curve and weight loss at 25 
o
C 

Fig. 1 shows the anodic dissolution behaviour of alloys in 0.5 M H2SO4, while Table 2 
summarizes relevant data. This figure reveals a well-defined passive region of 0 VSHE to 1.2 
VSHE in all curves. All curves, except for the one at x = 0.25 (C-0.25), show a secondary 
passive region at 0.15 VSHE. This passivation is attributed mainly to the further oxidation or 
hydroxidation of the passive oxide film, thus altering the valence of Cr [18,19]. Fig. 1 also 
indicates that the secondary passive regions of C-0.50 and C-1.00 are more prominent than 
those of C-0 and C-0.25. This observation is due to the selective dissolution in the duplex 
FCC-BCC structure for C-0.50 and in the BCC-ordered BCC structure for C-1.00, as 
compared with C-0 and C-0.25 which are single FCC phase. In the active-passive transition 
region, different compositions at different secondary passivation potentials reveal different 
dissolution rates owing to a selective dissolution. This observation resembles that observed 
in duplex phase stainless steel [20,21]. 

Alloys C-x 
& SS304 

Ecorr (VSHE) Icorr (A/cm2) Epp (VSHE) Icrit (A/cm2) Ipass (A/cm2) 

C-0 -0.081 15.8 0.002 42.8 4.5 
C-0.25 -0.095 16.7 0.008 87.4 7.1 
C-0.50 -0.084 13.4 0.017 117.2 6.4 
C-1.00 -0.094 13.1 0.010 198.0 13.9 
SS 304 -0.185 45.3 -0.071 603.0 19.1 

Table 2. Potentiodynamic polarization curve diagram parameters of alloys C-x and SS 304 at 
25oC. 

 

Fig. 1. Potentiodynamic polarization curve diagrams for alloys C-x and SS 304 at 25oC. 
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Table 2 reveals that the corrosion potential (Ecorr) and the corrosion current density (Icorr) for 

all of the alloys differ only slightly, and no obvious trends occur for Ecorr and Icorr vs. x 

variation. The above phenomenon can be attributed to the spontaneous passivation of pure 

Al in H2SO4 [22]. Al metal spontaneously passivates in H2SO4, explaining why its corrosion 

potential is ready in the passive region, i.e., this passivation explains why the polarization 

curve of Al does not display an apparent active-passive transition region. However, 

elements such as Cr and Fe exhibit a large critical current density (Icri) for passivation, 

explaining why Cr and Fe dissolve more than Al before the alloy reaches its passive state. 

Thus, the variation of Al affects the active region of the polarization curves slightly. 

Furthermore, in H2SO4, all Al, Co, Cr, Fe, and Ni metals show passivity. Among them, Al 

has a relatively high passive current density (Ipass) [22,23] because only Al oxide can easily 

form a porous film on the metal surface [24]. Therefore, protection by oxide layer on the 

alloys with higher Al content is inferior to that with lower Al content. Fig. 1 thus reveals that 

Ipass increases with x. 

The results of potentiodynamic polarization were compared via performing 15-day-dipping 

and weight loss experiments. In the 15-day-dipping and weight loss experiments, the 

corrosion rates for C-0.50 and C-1.00 were markedly higher than those of C-0 and C-0.25 

(Fig. 2). This observation differs substantially from the values of Icorr obtained from 

polarization experiment (Fig. 1), in which the two groups only differ slightly, despite the 

fact that the trend is the same. A previous study found a similar deviation in corrosion 

current densities obtained from weight loss test and potentiodynamic polarization method 

[25]. 

 

Fig. 2. Diagram showing change in corrosion rate (g m-2 h-1) in the 15-day-dipping and 
weight loss measurement for alloys C-x. 

Fig. 1 shows potentiodynamic polarization diagrams for the AlxCoCrFeNi alloys and SS 304. 

The alloys have better overall general corrosion behaviour, with a larger Ecorr and smaller 

Icorr, Icri, and Ipass than SS 304. 
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3.2 Effect of temperature on potentiodynamic polarization 

Fig. 3 shows polarization diagrams of AlxCoCrFeNi alloys at various temperatures. A rising 

temperature decreased the Tafel slopes of anode (Table 3), increased Icorr, and increased Ecorr 

and Et (the transpassive potential) slightly. The corrosion rate is directly related to Icorr, 

according to Arrhenius equation, Icorr = A exp(−Ea/RT) [13,26], where the pre-exponential 

factor A is generally independent of temperature and is a constant of alloys, where R 

denotes the gas constant, T denotes temperature, and Ea denotes activation energy for 

corrosion. In the case of small experimental temperature range, Ea is assumed to be 

independent of T. Consequently, Ea can be obtained from ln(Icorr) vs. 1/T plot. Fig. 4 shows 

such plots for the alloys and SS 304, indicating that Ea increases with x. This finding suggests 

that the corrosion rate is more sensitive to temperature for a larger Al content than for a 

smaller Al content. The ln(Icorr) vs. 1/T curves intersect with each other in a range of 23oC – 

27oC. Beyond this temperature range, Icorr increases with x. The situation is reversed at 

temperatures lower than 23oC, which is inconsistent with a situation in which Eas for all 

alloys increase with x from 20oC to 65oC. Hence, Ea, i.e., an intrinsic property of metal, and 

A, i.e., a surface property of metal, are determinative factors of Icorr. While Ea depends only 

on x, A depends on both x and temperature (Table 4). Therefore, although Ea increases with 

x, A also increases with x. Combining the effects of Ea and A explains the different corrosion 

behaviours of the alloys with an increasing x at temperatures exceeding 27oC and lower than 

23oC. Thus, the performance of passive films, when Al is added, at higher temperatures 

becomes inferior to that without addition of Al. In determining Icorr, A is more important 

than Ea at temperatures exceeding 27oC, while Ea is more important than A at temperatures 

lower than 23oC. 

Alloys 

C-x 

20 °C 35 °C 50 °C 65 °C 

βaa βcb βa βc βa βc βa βc 

C-0 158 218 128 158 134 162 89 158 

C-0.25 158 178 103 167 89 168 92 149 

C-0.50 94 158 113 178 138 159 89 198 

C-1.00 104 148 93 173 98 242 100 220 

a Anodic Tafel slope βa in mV/decade, the measured Tafel regions are with 40~50 mV of overvoltage. 
b Cathodic Tafel slope βc in mV/decade, the measured Tafel regions are with 150~170 mV of 

overvoltage. 

Table 3. Fit data for Tafel slopes of alloys C-x in 20 oC - 65 oC. 

Alloys A(x, T), A/cm2 Ea, kJ/mol 

20 oC (293 K) 35 oC (303 K) 50 oC (323 K) 65 oC (338 K) 

C-0 1.16 x 10-4 1.16 x 10-4 1.16 x 10-4 1.07 x 10-4 3.96 

C-0.25 1.90 x 10-4 2.03 x 10-4 1.77 x 10-4 1.90 x 10-4 5.35 

C-0.50 7.17 5.64 3.70 8.41 31.24 

C-1.00 1.78 x 109 7.46 x 108 1.89 x 109 1.31 x 109 78.61 

SS 304 1.18 x 10-4 1.28 x 10-4 1.70 x 10-4 2.07 x 10-4 9.87 

Table 4. The fits for A(x, T) and Ea(x) in Icorr(x, T) = A(x, T) exp(-Ea(x)/RT). 
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Fig. 3. Potentiodynamic Polarization Curve diagrams for (a) C-0, (b) C-0.25, (c) C-0.50, and 
(d) C-1.00 at various temperatures. 

 

Fig. 4. The Arrhenius plots for alloys C-x and SS 304 at 20oC - 65oC. 
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3.3 EIS test at 25
o
C 

Figs. 5 and 6 summarize the EIS results of alloys in a sulfuric solution and their schematic 

equivalent circuit diagrams, respectively. Table 3 lists related parameters of the equivalent 

circuit diagrams, where Rs, Rf, and Rct denote impedances of the sulfuric solution, oxide 

layer, and adsorption layer, Qf and Qad denote capacitances of constant phase element (CPE) 

for oxide layer and adsorption layer, respectively. Next, the oxide layer thickness is 

evaluated by using the Helmholtz model [27] and expressing the layer thickness of the oxide 

layer, d, as d = εεoS/Qf, where εo denotes the permittivity of free space (8.85 x 10-14 F/cm), ε 
denotes the dielectric constant of the medium, and S denotes the surface area of the 

electrode. Assuming that ε and S for all oxide layers of alloys are the same allows us to 

compare relative values of d for all samples by 1/Qf. Fig. 7 reveals that 1/Qf values are 

proportional to x, implying that d increases with Al content x. However, according to this 

figure, the impedance of oxide layer Rf decreases with x and, in Fig. 8, the impedance of the 

oxide layer is inversely proportional to Ipass. Restated, a thinner oxide layer implies a larger 

value of impedance. To explain this phenomenon, besides the thickness of oxide layer, the 

density of oxide layer is also considered. As mentioned in Section 3.1, Al oxide easily forms 

a porous film on the metal surface [24]. Therefore, it is easily understood that in addition to 

causing a thicker oxide layer, Al element promotes the dispersive oxide layer. Combining 

these two effects obviously reveals that Rf decreases with x. 

 

(a) 
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(b) 

 
(c) 

Fig. 5. (a). The Nyquist plots for alloys C-x at 25oC. (b). The Bode plot for C-0.25. (c). The 
Bode plot for C-1.00.  
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According to Fig. 6, only C-1.00 reveals a component of inductance in the equivalent 

circuit (See Fig. 5(c)). In previous studies [28-31], alloys with Al and Ni readily react with 

(OH)− and (SO4)2− in a sulfuric solution and adsorbed on the surface of the alloys, which 

increases the amount of the ions in the adsorption layer. Therefore, Qad increases with x, 

as listed in Table 5. As x value increases to 1.00, the inductance appears in the equivalent 

circuit in Fig. 6(b). This effect normally occurs in the case of a severe corrosive condition 

[32]. Origin of the inductance can generally be influenced by some adsorbed intermediates 

or can be attributed to a space at the interfaces [33]. In C-1.00, a microstructure with an Al 

and Ni-rich phase which is seen as a reactive phase from metallograph, not only causes 

adsorption in these Al and Ni-rich areas in corrosion process, but also decreases the 

impedance in the low frequency area owing to their continuous dissolution. The fact that 

Rct decreases with x demonstrates a higher dissolution rate for alloys with a higher Al 

content. 

Alloys 
C-x 

Rs 

( cm2) 

Qf 

(μF/cm2) 

nf Rf 

( cm2) 

Qad 

(μF/cm2) 

nad Rct 

( cm2) 

C-0 3.271 54.57 0.9094 992.2 636.7 0.7444 7691 

C-0.25 3.758 56.61 0.9081 610.5 1525 0.6347 1932 

C-0.50 2.994 46.55 0.9223 642.8 3221 0.6454 819.1 

C-1.00 3.462 47.16 0.9614 518.1 Lad - 66.81 

* Lad = 122.4 Henry 

Table 5. EIS equivalent circuit parameters for alloys C-x. 

 

Fig. 6. EIS equivalent circuits for alloys C-0, C-0.25, C-0.50, and C-1.00. 
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Fig. 7. Impedance and relative thickness (1/Qf) of oxide layer vs. Al content x plots. 

 

Fig. 8. Impedance and Ipass of oxide layer vs. Al content x plots. 

3.4 Polarization behaviour for alloys in a chloride-containing H2SO4 solution 

Fig. 9 shows potentiodynamic polarization curve diagrams for the alloys in 0.5 M H2SO4 
solution containing various concentrations of chloride ions, as well as in simple 0.5 M H2SO4 
solution as a comparison. According to Fig. 9(a), oscillation occurs in a passive region for C-
0 in 0.5 M H2SO4 containing 0.5 M and 1 M of chloride. This phenomenon has been 
attributed to the cycling process for small pitting and re-passivation with the duration of 
several seconds for each cycle [34]. Oscillation in the passive region in potentiodynamic 
polarization curve is a metastable state [35]. This metastable state generally reflects the 
difficulty of pitting, i.e., alloy C-0 has good anti-pitting ability, while those containing 
aluminum (C-0.25, 0.50, and 1.00) with no metastable state show an inferior anti-pitting 
ability (Figs. 9 (b) to (d)). 
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Fig. 9. Potentiodynamic Polarization Curve diagrams for (a) C-0, (b) C-0.25, (c) C-0.50, and (d) 
C-1.00 at 25 oC in chloride-containing sulfuric acid solution at various Cl− molarity (M) values. 

From an adsorption viewpoint, adsorption competition always prevails on the alloy surface 
between chloride ions and dissolved oxygen atoms. Notably, no oxide layer forms once 
chloride ions adsorb on the alloy surface, in which the metal ions readily dissolve. Therefore, 
the adsorption of chloride ions increases the reacting current density (as indicated by a 
comparison of Figs. 1 and 9), subsequently increasing the rate of metal dissolution. 

Rapid dissolution of alloys in chloride-containing solution is discussed next. When chloride 
ions are adsorbed on the interface of passive layer and a sulfuric solution, metastable ion 
complexes gradually form from the anions of a passive layer. These metastable ion 
complexes enable the anions to dissolve. Once the ion complexes that are on the passive 
layer/solution interface dissolve into the sulfuric solution, the inner ion complexes of the 
passive layer move to the passive layer/solution interface in order to correlate with the 
applied potential. The inability of the anions to form oxide implies the continuous formation 
of metastable ion complexes and dissolution of ions. Since Al easily forms [Al(SO4 )]+ with 
(SO4)2-, and Al(OH)SO4 with (SO4)2- and (OH)−, respectively [36], these metastable ion 
complexes combine with Cl− and dissolve afterwards. Therefore, pitting easily occurs on the 
surface of aluminum alloys. Next, the aluminiferous passive layer and non-aluminiferous 
passive layer are compared. Fig. 10 shows the pitting potential (Epit) of the alloys and SS 304 
in different solutions. The value of Epit for C-0 is almost independent of chloride 
concentration. The value of Epit for C-0.25 decreases abruptly for a chloride concentration 
exceeding 0.50 M. This value is close to that of SS 304. The values of Epit, for C-0.25, C-0.50, 
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and C-1.00, decrease to 0.2-0.5 VSHE at a chloride concentration of 0.25 M (Fig. 10). A higher 
Al concentration in the alloys implies a lower value of Epit. For C-0, deterioration of the 
passive layer is attributed to the evolution of oxygen. Meanwhile, for C-0.25, C-0.50, and C-
1.00, the deterioration of passive layer is attributed to the pitting process. An increasing 
chloride ion concentration causes the chloride ions to cluster at the defect sites of the passive 
layer and severely attack the passive layer. Consequently, Epit shifts to a more active region. 

 

Fig. 10. Histogram of Epit for alloys C-x and SS 304 in solution of different Cl− ion molarity (M). 

3.5 Metallographic examination and EDS analysis 

Microstructures for not H2SO4-immersed alloys C-0, C-0.25, C-0.50, and C-1.00 are with 
single FCC, single FCC, duplex FCC-BCC, and BCC-ordered BCC phases, respectively [6]. 
Table 6 lists the EDS composition for each phase in different alloys. 

Alloys Phases and states Al Co Cr Fe Ni 

C-0 Overall, not immersed 0 25.93 25.73 24.21 24.13 

 Overall, immersed 0 24.45 26.39 24.83 24.32 

C-0.25 Overall, not immersed 6.16 23.27 23.58 23.59 23.40 

 Overall, immersed 6.18 23.65 24.41 23.04 22.71 

C-0.50 Overall, not immersed 11.01 22.77 22.61 21.70 21.92 

 FCC matrix, not immersed 8.36 24.74 23.48 22.77 20.65 

 BCC, not immersed 13.94 21.11 20.48 20.53 23.94 

 Overall, immersed 8.35 22.75 27.19 23.60 18.11 

 FCC matrix, immersed 9.96 22.57 23.16 23.59 20.72 

 Wall-shaped BCC, immersed 3.82 22.50 36.33 25.58 11.77 

C-1.00 Overall, not immersed 18.88 20.55 20.63 20.01 19.93 

 Overall, immersed 12.45 19.80 29.87 23.42 14.45 

 BCC, immersed 17.14 20.67 21.96 20.89 19.34 

 Ordered BCC, immersed 3.04 17.34 47.53 27.96 4.14 

Table 6. EDS analyses (at %) for alloys C-0, C-0.25, C-0.50, and C-1.00. 
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Figs. 11(a)-(b) show the microstructure of C-0 before and after 3-d immersion in 0.5 M 

H2SO4, respectively. Figs. 11(c)-(d) show the microstructure of C-0.25 before and after 3-d 

immersion in 0.5 M H2SO4, respectively. General corrosion occurs for both C-0 and C-0.25, 

as revealed by EDS analyses (Table 6). 

 

Fig. 11. Metallograph of alloys C-0 ((a) & (b)) and C-0.25 ((c) & (d)). (a) & (c), before; and (b) 

& (d), after immersion. Retained holes were from cast procedure, and Al2O3 residuals were 

from polishing procedure. 

Figs. 12(a)-(b) show the microstructure of C-0.50 before and after 3-d immersion in 0.5 M 

H2SO4, respectively. According to these figures, after immersion the FCC phase remains 

smooth while the BCC phase shows a rough morphology. Fig. 12(c) shows a line-scanned 

area across the FCC and BCC phases for an immersed sample. Fig. 12(d) summarizes the 

line-scanned results, indicating that the BCC phase of C-0.50 before immersion is rich in Al 

and Ni. However, after immersion, it is poor in Al and Ni and rich in Cr. 

Fig. 13 shows the microstructure and line-scan analysis of C-1.00 before and after 

immersion. Before immersion, BCC and ordered BCC phases cannot be resolved from the 
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microstructure. The composition of BCC phase after alloy immersion is close to the overall 

alloy composition before immersion, indicating that the BCC phase is a corrosion-resistant 

phase. Moreover, the change in overall composition after immersion is attributed to the 

selective dissolution of Al and Ni in the ordered BCC phase of this alloy (Table 6). 

 

Fig. 12. Metallograph of alloy C-0.50. (a), before; (b) & (c), after immersion; and  

(d), EDS line-scan results of the location indicated in (c). Retained holes were from cast 

procedure. 

This selective corrosion in Al and Ni-rich phase in C-0.50 and C-1.00, which results in the 

corrosion attack on Al and Ni, is due to the large bonding in Al and Ni [37]. Alloys 

containing this bonding readily react with (OH)- and (SO4)2- to form Al and Ni complexes 

and dissolve in a sulfuric solution. Accordingly, after immersion, the remaining compound 

in the less corrosive-resistant Al and Ni-rich phase is an oxide, rich in Cr, in the residual 

passive film. 
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Fig. 13. Metallograph of alloy C-1.00. (a), before; (b) & (c), after immersion; and (d), EDS 

line-scan results of the location indicated in (c). 

3.6 Comparison among potentiodynamic polarization, electrochemical impedance 
spectroscopy, and weight-loss immersion tests 

As discussed above, the corrosion current density (Icorr), the critical current density (Icri), and 

the passive current density (Ipass) were obtained from potentiodynamic polarization. The 

capacitance (Qf) and the resistance (Rf) of oxide layer were obtained from electrochemical 

impedance spectroscopy (EIS) equivalent circuits. And the weight-loss rate (Wloss) was 

obtained from weight-loss immersion test. All these data were taken from experiments at 

ambient temperature (25oC) in 0.5 M H2SO4. 

Figs. 14(a)-(b), whose data were listed in Table 2, show Icri and Ipass vs. Al content x plots, 

respectively. One can easily see that both Icri and Ipass increase with x. This implies that the 

passive corrosion property of AlxCoCrFeNi decreases with Al content x. Fig. 14(c) shows 

Wloss vs. x plot. Like Icri and Ipass, Wloss also increases with x. Notice that, unlike 

potentiodynamic polarization, immersion weight-loss test is a natural electrochemical 

reaction, i.e., without applying any voltage on the test sample. On the other hand, Icri and 
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Ipass locate at the passive region of polarization curve. The same tendency for Icri, Ipass, and 

Wloss here indicates that the spontaneous passivation occurs for AlxCoCrFeNi, i.e., the open 

circuit potential (OCP) is readily in the passive region of polarization curve. The above 

phenomenon can be attributed to the spontaneous passivation of pure Al in H2SO4 [24]. EIS 

equivalent circuits reveal that the passive layers of AlxCoCrFeNi consist of an oxide layer 

and an adsorption layer mentioned in Section 3.3. Here, only parameters associated with the 

oxide layer, i.e., Qf and Rf, are discussed. The oxide layer thickness is evaluated by using the 

Helmholtz model mentioned above and denoted by d, as d =0S/Qf, where denotes the 

permittivity of free space (8.85 x 10-14 F/cm),  denotes the dielectric constant of the 

medium, and S denotes the surface area of the electrode. Assuming that  and S for oxide 

layers of alloys are the same allows us to compare relative values of d for all samples by 

1/Qf. Figs. 14(d)-(e), whose data were listed in Table 5, show the Qf and Rf vs. x plot, 

respectively. Both Qf and Rf decreases with x. This represents that d increases with Al 

content x, and a thicker oxide layer implies a smaller value of impedance. Therefore, one can 

explain this phenomenon by considering both the thickness and the density of oxide layer. 

Related study reported Al oxide easily forms a porous structure [25]. Hence, it is easily 

understood that in addition to causing a thicker oxide layer, Al promotes the dispersive and 

porous oxide layer. In summary, Al has a negative effect to the passive parameters, 

including Icri, Ipass, Wloss, and Rf, for AlxCoCrFeNi in H2SO4. 

 

Fig. 14. (a) Icri, (b) Ipass, (c) Wloss, (d) Qf, (e) Rf, and (i) Icorr values vs. Al content x plots. 
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Interestingly, Al makes a different effect on general corrosion. Fig. 14(f) shows Icorr vs. x plot. 
One can see that Icorr decreases with x. This implies that Al promotes the general corrosion 
resistance, but degrades the passive one. 

3.7 AES, XPS, and ICP-AES analyses of oxide layers 

Figs. 15(a)-(d) show the AES results for C-0, C-0.25, C-0.50, and C-1.00, respectively. Owing 
to the slight difference of atomic number, the signals of Fe, Co, and Ni overlap in AES 
analysis. Hence, one can see the signals of Co are higher than that of Fe or Ni even for the 
equal-mole nominal chemical composition of Fe, Co, and Ni. What mentioned above,  
only the longitudinal composition profiles of O are discussed. A negative and a near-zero 
slopes are revealed in the relative concentration vs. sputter time profiles in Figs. 15(a)-(d).  

 

Fig. 15. AES analyses for (a) C-0, (b) C-0.25, (c) C-0.50, and (d) C-1.00. 
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A value for the identified sputter rate for SiO2 in this AES device is 7.5 nm per min. Because 
the immersion for the samples is in the same 1-h period of time, the oxide layers of C-0, C-
0.25, C-0.50, and C-1.00 can be distinguished from the terminals of the negative slope shown 
in each of the profiles. Look at the vertical red-dashed line, i.e., the end-terminal of each 
profile. It represents the interface between the oxide layer and the intrinsic metal. One can 
see that the thickness of the oxide layer increases with Al content x that is in accordance 
with the results of EIS. 

XPS analyses attempt to investigate the binding energy profile of 2psub<3/2>sub for Al, Co, 
Cr, Fe, and Ni. Compared to Co, Cr, Fe, and Ni, Al reveals relatively low atomic sensitivity 
factor [38]. The signals of Al for alloys C-0 to C-0.50 are too small to identify. Hence, only C-
1.00 was used for XPS analysis. Figs. 16(a)-(b) show the Al(2psub<3/2>sub) spectra of C-
1.00 after the sputter times of 20 and 35 s, respectively. The raw profile revealing two main 
peaks represents the exhibition of the selective dissolution. The oxides consists of Al2O3, 
Al(OH)3, and Al25Ni75Ox. Al tends to form oxides in H2SO4 [24] can explain the formation of 
Al2O3 and Al(OH)3. The existence of Al25Ni75Ox results from the relatively negative enthalpy 
of Al and Ni. Corresponding to the ICP-AES analysis in the next section, Al-Ni selective 
dissolution undoubtedly exists for C-1.00. Figs. 16(c)-(d) show the Co(2psub<3/2>sub) 
spectra of C-1.00 after the sputter times of 20 and 35 s, respectively. The binding types of 
Co2+ and Co3+ can be seen. Compare Fig. 16(c) with Fig. 16(d), one can see that the peak 
intensity of Co2O3 is very small in the deep region of the oxide layer. Figs. 16(e)-(f) show the 
Cr(2psub<3/2>sub) spectra of C-1.00 after the sputter times of 20 and 35 s, respectively. 
Three kinds of oxide, including Cr2O3, Cr(OH)3, and CrO3, exist for Cr [39]. However, CrO3 
merely forms at high temperatures. Hence, only Cr2O3 and Cr(OH)3 are revealed in the profile. 
One can see that the deep region of oxide layer remains in relatively small amount Cr2O3. Figs. 
16(g)-(h) show the Fe(2psub<3/2>sub) spectra of C-1.00 after the sputter times of 20 and 35 s, 
respectively. Similar to references [23,40] Fe3O4 and Fe2O3 oxides can be found. Figs. 16(i)-(j) 
show the Ni(2psub<3/2>sub) spectra of C-1.00 after the sputter times of 20 and 35 s, 
respectively. In resemblance with reference [41], NiO and Ni(OH)2 can be observed. However, 
a very small amount of Ni(OH)2 appears in our case. 

Table 7 lists the results of ICP-AES of immersion solutions for C-x. To trace the ions 
resulting from the intrinsic metal, one can study the selective dissolution of the alloy 
elements. Compared with C-0 and C-0.25, C-0.50 and C-1.00 reveal relatively greater Al-Ni 
selective dissolution. This event is consistent with the results of the XPS analysis. 

Alloys Al Co Cr Fe Ni Remarks 

C-0 alloy 0 25.93 25.73 24.21 24.13  
 solution 0 24.91 24.89 25.17 25.01 * 

C-0.25 alloy 6.16 23.27 23.58 23.59 23.40  
 solution 7.90 23.01 23.07 23.20 22.80 * 

C-0.50 alloy 11.01 22.77 22.61 21.70 21.92  
 solution 14.92 21.90 16.51 19.96 26.70 ** 

C-1.00 alloy 18.88 20.55 20.63 20.01 19.93  
 solution 31.52 20.98 4.86 14.92 27.71 ** 

*General corrosion, **Selective dissolution in Al and Ni 

Table 7. ICP-AES composition (at%) of immersion solution for alloys C-0, C-0.25, C-0.50, and 
C-1.00. 
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Fig. 16. XPS analyses after pre-sputtering for (a) Al-20 s, (b) Al-35 s, (c) Co-20 s, (d) Co-35 s, 
(e) Cr-20 s, (f) Cr-35 s, (g) Fe-20 s, (h) Fe-35 s, (i) Ni-20 s, and (j) Ni-35 s. 
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3.8 Corrosion current density (Icorr) at various temperatures 

As mentioned in Section 3.1, Icorr decreases with Al content at 25oC. However, this differs 
from temperatures to temperatures. Fig. 17 shows the Icorr values of C-x at various 
temperatures. One can see that Icorr decreases with Al content x at low temperatures (< 
27oC), and, conversely, at high temperatures (> 27oC). The EIS results (Section 3.1) indicate 
that more Al content x makes the oxide layers thicker and more dispersive. At low 
temperatures, the thicker oxide is the dominator for Icorr; whereas, at high temperatures, the 
dispersive oxide dominates. Therefore, this special phenomenon occurs. 

 

Fig. 17. Icorr values for alloys C-x (Alx) at various temperatures. 

4. Conclusions 

Owing to the spontaneous passivation of Al element in H2SO4, the variation of Al reveals a 
more apparent effect in a passive region rather than in an active one. Therefore, in contrast 
with Ipass, which increases with x, no obvious trends occur for Ecorr and Icorr vs. x variation. In 
particular, the weight loss experiment indicates that Ipass is a proper index to evaluate the 
weight loss of samples since AlxCoCrFeNi alloys are found to have passive behaviour in 
long-term dipping. 

EIS results indicate that the passive films of AlxCoCrFeNi alloys become increasingly thicker 
and more dispersive with an increasing x. Therefore, Ipass increases with x. As x value 
increases to 1.00, the inductance effect appears in the equivalent circuit for severe 
dissolution of Al and Ni-rich phase. As for the effect of chloride on the anti-corrosion 
property, chloride eases the passive layer to form metastable ion complexes and further 
dissolve into H2SO4. With an increasing chloride concentration and Al content, the 
metastable ion complexes easily form, allowing Epit to shift to a more active region. 
Additionally, the microstructure of both C-0 and C-0.25 is single FCC phase, while those of 
C-0.50 and C-1.00 are duplex FCC-BCC and complex BCC-ordered BCC phase, respectively. 
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In C-0.50 and C-1.00, the secondary passivation phenomenon in polarization curve results 
from selective dissolution of the Al and Ni-rich phase. 

Moreover, Icorr increases with x at higher temperatures (> 27C), while Icorr decreases with x 

at lower ones (< 23C). That more closely examining Arrhenius plots of Icorr reveals that both 

pre-exponential factor A and activation energy Ea increase with Al content. However, A 

affects Icorr more significantly than it does so for Ea at higher temperatures (> 27C) and, 

conversely, at lower temperatures (< 23C). 

Al is an inferior factor to the passive corrosive resistance but helpful for the general 

corrosive resistance for AlxCoCrFeNi in H2SO4. The thickness and the density of oxide layers 

promoted by the addition of Al compete with each other at various temperatures. At 

ambient temperature, the thick oxide layer dominates Icorr value; at temperatures higher 

than 27C, the loss oxide layer does. Intuitionally, one may improve the corrosion 

performance for AlxCoCrFeNi by adjusting Al content. 

5. Acknowledgements 

The author would like to thank the financial support of this research from the National 

Science Council of the Republic of China, Taiwan (NSC96-2221-E007-066-MY3). Mr. Yih-

Farn Kao is grateful for his help in compilation of this manuscript. This work is mainly from 

the 2009 master thesis of the Department of Materials Science Engineering of the National 

Tsing Hua University by Mr. Tsung-Dar Lee, who was guided by the author. 

6. References 

[1] See for example, D.R. Gaskell, Introduction to the Thermodynamics of Materials, 3rd ed., 
Taylor & Francis, Washington D.C., 1995, p. 204. 

[2] K.H. Huang, Multicomponent alloy systems containing equal-mole elements, M.S. 
thesis, Department of Materials Science and Engineering, NTHU, Taiwan, 1996. 

[3] K.T. Lai., Microstructure and properties of multicomponent alloy system with equal-
mole elements, M.S. thesis, Department of Materials Science and Engineering, 
NTHU, Taiwan, 1998. 

[4] Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou,  
C.W. Wang, Hydrogen storage properties of multi-principal-component 
CoFeMnTixVyZrz alloys, Int. J. Hydrogen Energy 35 (2010) 9046-9059. 

[5] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, 
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy 
design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303. 

[6] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with 
improved oxidation and wear resistance for thermal spray coating, Adv. Eng. 
Mater. 6 (2004) 74-78. 

[7] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature 
compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metall. 
Mater. Trans. A 35A (2004) 1465-1469. 

www.intechopen.com



Electrochemical Passive Properties of AlxCoCrFeNi  
(x = 0, 0.25, 0.50, 1.00) High-Entropy Alloys in Sulfuric Acids 

 

155 

[8] J. Tong, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Mechanical 
performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal 
elements, Metall. Mater. Trans. A 36A (2005) 1263-1271. 

[9] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, 
Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with 
multiprincipal metallic elements, Metall. Mater. Trans. A 35A (2004) 2533-2536. 

[10] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-
cast, -homogenized, -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, J. 
Alloys & Comp. 488 (2009) 57-64. 

[11] H.P. Chou, Y.S. Chang, S.K. Chen, J.W. Yeh, Microstructure, thermophysical and 
electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Mater. Sci. Eng. 
B 163 (2009) 184-189. 

[12] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and 
electrochemical properties of high entropy alloys—a comparison with type-304 
stainless steel, Corros. Sci. 47 (2005) 2257-2279. 

[13] Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Electrochemical kinetics of the 
high entropy alloys in aqueous environments—a comparison with type 304 
stainless steel, Corros. Sci. 47 (2005) 2679-2699. 

[14] C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, H.C. Shih, Effect of the aluminium content of 
AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous 
environments, Corros. Sci. 50 (2008) 2053-2060. 

[15] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, Enhancing pitting corrosion 
resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric 
acid, Thin Solid Films 517 (2008) 1301-1305. 

[16] C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, and H. C. Shih, The Effect of Boron on the 
Corrosion Resistance of the High-Entropy Alloys Al0.5CoCrCuFeNiBx, J. 
Electrochem. Soc., 154 (2007) C424-C430. 

[17] Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Electrochemical passive properties of 
AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corros. Sci. 52 (2010) 
1026-1034. 

[18] V. Ashworth, P.J. Boden, Potential-pH diagrams at elevated temperatures, Corros. Sci. 
10 (1970) 709-718. 

[19] Y.Y. Chen, L.B. Chou, L.H. Wang, J.C. Oung, H.C. Shih, Electrochemical polarization 
and stress corrosion cracking of alloy 690 in 5-M chloride solutions at 25°C, Corros. 
61 (2005) 3-11. 

[20] M. Femenia, J. Pan, C. Laygraf, In situ local dissolution of duplex stainless steels in 1 M 
H2SO4 + 1 M NaCl by electrochemical scanning tunneling microscopy, J. 
Electrochem. Soc. 149 (2002) B187-B197. 

[21] I.H. Lo, W.T. Tsai, Effect of selective dissolution on fatigue crack initiation in 2205 
duplex stainless steel, Corros. Sci. 49 (2007) 1847-1861. 

[22] F. D. Bogar, M. H. Peterson, A comparison of actual and estimated long-term corrosion 
rate of mild steel in seawater, Laboratory Corrosion Test and Standards, ASTM STP 
866 (1985) 197-206. 

[23] P. Marcus, Corrosion Mechanisms in Theory and Practice, 2nd ed., Marcel Dekker, New 
York, 2002. 

www.intechopen.com



 
Corrosion Resistance 

 

156 

[24] V. Shankar Rao, V.S. Raja, Anodic polarization and surface composition of Fe-16Al-
0.14C alloy in 0.25 M sulfuric acid, Corros. 59 (2003) 575-583. 

[25] L. Young, Anodic Oxide Films, 1st ed., Academic Press, London, 1961. 
[26] G.K. Gomma, Corrosion of low-carbon steel in sulphuric acid solution in presence of 

pyrazole-halides mixture, Mater. Chem. & Phys. 55 (1998) 241-246. 
[27] C.F. Zinola, A.M. Castro Luna, The inhibition of Ni corrosion in H2SO4 solutions 

containing simple non-saturated substances, Corro. Sci. 37 (1995) 1919-1929. 
[28] M.R.F. Hurtado, P.T.A. Sumodjo, A.V. Benedetti, Electrochemical studies with a Cu-5 

wt.% Ni alloy in 0.5 M H2SO4, Electrochimica Acta 48 (2003) 2791-2798. 
[29] F.M Reis, H.G. de Melo, I. Costa, EIS investigation on Al 5052 alloy surface preparation 

for self-assembling monolayer, Electrochimica Acta 51 (2006) 1780-1788. 
[30] T.M. Yue, L.J. Yan, C.P. Chan, C.F. Dong, H.C. Man, G.K.H. Pang, Excimer laser surface 

treatment of aluminum alloy AA7075 to improve corrosion resistance, Surface and 
Coating Technology 179 (2004) 158-164. 

[31] I. Epelboin, C. Gabrielle, M. Keddam, H. Takenouti, Achievements and tasks of 
electrochemical engineering, Electrochimica Acta 22 (1975) 913-920. 

[32] M. Metikoš-Huković, R. Babić, S. Brinić, EIS-in situ characterization of anodic films on 
antimony and lead-antimony alloys, J. Power Sources 157 (2006) 563-570. 

[33] A.R. Trueman, Determining the probability of stable pit initiation on aluminium alloys 
using potentiostatic electrochemical measurements, Corros. Sci. 47 (2005) 2240-
2256. 

[34] Y.M. Tang, Y. Zuo, X.H. Zhao, The metastable pitting behaviours of mild steel in 
bicarbonate and nitrite solutions containing Cl-, Corros. Sci. 50 (2008) 989-994. 

[35] R.T. Foley, T.H. Nguyen, The chemical nature of aluminum corrosion, J. Electrochem. 
Soc. 129 (1982) 464-467. 

[36] S. Van Gils, C.A. Melendres, H. Terryn, E. Stijns, Use of in-situ spectroscopic 
ellipsometry to study aluminium/oxide surface modifications in chloride and 
sulfuric solutions, Thin Solid Films 455 (2004) 742-746. 

[37] H. Nakazawa, H. Sato, Bacterial leaching of cobalt-rich ferromanganese crusts, 
International Journal of Mineral Processing 43 (1995) 255-265. 

[38] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-
Ray Photoelectron Spectroscopy, 1st ed., Perkin-Elmer Corporation, Minnesota, 
1979. 

[39] A.A. Hermas, M. Nakayama, K. Ogura, Formation of stable passive film on stainless 
steel by electrochemical deposition of polypyrrole, Electrochimica Acta 50 (2005) 
3640-3647. 

[40] K. Varga, P. Baradlai, W.O. Barnard, G. Myburg, P. Halmos, J.H. Potgieter, 
Comparative study of surface properties of austenitic stainless steels in sulfuric and 
hydrochloric acid solutions, Electrochimica Acta 42 (1997) 25-35. 

[41] R. Wang, An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric 
acid on stainless steel, Appl. Surf. Sci. 227 (2004) 399-409. 

www.intechopen.com



Corrosion Resistance

Edited by Dr Shih

ISBN 978-953-51-0467-4

Hard cover, 472 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book has covered the state-of-the-art technologies, development, and research progress of corrosion

studies in a wide range of research and application fields. The authors have contributed their chapters on

corrosion characterization and corrosion resistance. The applications of corrosion resistance materials will also

bring great values to reader's work at different fields. In addition to traditional corrosion study, the book also

contains chapters dealing with energy, fuel cell, daily life materials, corrosion study in green materials, and in

semiconductor industry.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Swe-Kai Chen (2012). Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) High-

Entropy Alloys in Sulfuric Acids, Corrosion Resistance, Dr Shih (Ed.), ISBN: 978-953-51-0467-4, InTech,

Available from: http://www.intechopen.com/books/corrosion-resistance/electrochemical-passive-properties-of-

alxcocrfeni-x-0-0-25-0-50-1-00-high-entropy-alloys-in-sulfuric



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


