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1. Introduction

3D model fitting is one of the fundamental and powerful techniques in computer vision

and computer graphics. The reason for using the fitting techniques includes establishing a

relationship between an object of complex shape and a primitive object with a simple shape.

Since object models often contain a huge number of points on the object surface, using the

original models directly is computationally very expensive. On the other hand, the primitive

models either have a compact data size or are represented by parametric functions. The

relationship between the original and primitive models enables the complex shaped original

models to be edited efficiently and easily through their corresponding primitives.

In addition, the fitting techniques provide the correspondence between multiple models by

representing all models with a unified primitive model. This correspondence enables us not

only to align the models but also to transfer the properties of one model, such as texture

and motion data, to another model. Therefore, the fitting method is useful in a wide range

of applications including Eigenspace-based object modeling (Allen et al., 2003; Blanz et al.,

1998; Kurazume et al., 2007), texture mapping, 3D object morphing (Blanz et al., 1998) and

computer animation (Noh et al., 2001; Sumner et al., 2004).

The fitting method has to meet certain requirements as described below. Appropriate

primitive models are determined depending on the shape of target objects and/or the purpose

of using the primitives. The choice of primitive models has an influence on some factors

including the accuracy of recovering the object and the mapping distortion. Hence, the fitting

method needs to deal with an arbitrary surface as a primitive. Some applications use the

correspondence between given models. This correspondence can easily be found by fitting

the models to a common primitive. Then, a fitting method is desired that allows users to

specify the mapping between features of the models, such as mapping eyes to eyes and so on.

Few existing methods, however, consider both these requirements simultaneously.

This paper presents a new method for fitting a deformable model to the points of a

target object (Morooka et al., 2005; 2007). The deformable model is called a Self-organizing

Deformable Model (SDM). The proposed fitting method is composed of two major steps.
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First, we generate a rough model of the object by deforming the SDM based on competitive

learning. Next, the accuracy of the model is improved by minimizing an energy function.

The framework of the SDM allows users to move some vertices included in the SDM towards

specific points on the target surface, and to collect the vertices in particular regions on the

surface. This control of the SDM deformation process provides preferable models depending

on the applications using them.

1.1 Previous and related works

Many researchers have concentrated on model fitting techniques. One fitting method uses a

mapping function(Eck et al., 1995; Floater et al., 2003), which enables us to project the object

mesh model onto a primitive object surface such as a planar or spherical one. There are several

types of mapping functions including harmonic mapping and conformal ones. Most of the

traditional methods that use a mapping function have been designed only for their specific

primitives. Because of this limitation, the methods are harder to generalize. In (Tarini et al.,

2004), although, a set of cubes is used as the primitive, the combination of several kinds of

primitives would be more appropriate for the compact low-distortion mapping of complex

shapes.

Deformable models have the potential for achieving such mapping by regarding the set

of multiple primitives as the deformable model. This is because the deformable model

can adapt to the new shape by deforming the original shape. The approaches using

deformable models can be categorized into the deformation methods with or without a certain

number of constraints. The constraints are the preservation of the volume and/or the shape

features of the model. Constrained deformable models can generate a continuous global

relationship between the initial and the deformed models. The relationship is used to create

model animations, and transfer deformation from one model to another (Noh et al., 2001;

Sumner et al., 2004). One technique for the constrained deformation is to modify the model

by deforming its embedded space or the underlying skeleton of the model (Ju et al., 2005;

Kavan et al., 2005; Sederberg et al., 1986). Recent approaches (Kun et al., 2004; Lipman et al.,

2005; Zayer et al., 2005) introduce the Laplace or Poisson equations, and compute the vertex

displacements which describe the difference between the initial and the deformed models.

The deformable model without the constraints applies where the relationship between the

initial and the deformed models is an arbitrary deformation. Such deformable models are

useful for mapping between two models with different shapes. Therefore, we focus on

the the unconstrained deformable models, and these types of the models are simply called

deformable models.

In the method using deformable models(Duan et al., 1998; Gibson et al., 1997; Lachaud et al.,

1999; McInerney et al., 2000), a mesh of a plane or sphere is often used as the initial deformable

model, and then the mesh model is deformed by moving its vertices to fit the target object.

Generally, fitting the deformable model to a target object is formulated as a minimization

problem of an energy function, which measures the deviation of the model from the target.

Since the model deformation uses both vertices of the model and numerous points on

the target surface, the optimum deformation must be found in a large search space that

includes many local minima. In obtaining such a deformation, certain initial conditions of the

deformable model have a great influence on the computational cost and the fitting accuracy of

20 Computer Graphics
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Self-Organizing Deformable Model: A Method for Projecting a 3D Object Mesh Model onto a Target Surface 3

the resulting model. However, the estimation of the initial model becomes more difficult when

the shape of the object is complicated. It is not so easy for users to implement the preferable

deformation. For example, an inadequate deformation may lead to certain problems such as

the self-intersection of the model. Therefore, traditional methods that use deformable models

need to find the optimal movement of vertices through trial-and-error.

Recent research (Kraevoy et al., 2004; Schreiner et al., 2004) has reported methods for finding

the relationship between two models that preserves the correspondence of specific features.

Although these methods obtain good mappings, they lead to high computational complexity

and/or an increase in the data size of the output model compared with that of the original

one.

The basis of the SDM deformation is the combination of competitive learning and an

energy minimization method. In much the same way, some methods (Barhak et al., 2001;

Ivrissimtzis et al., 2004; 2003; Liou et al., 2005; Yu, 1999) utilize a framework of competitive

learning to recover the whole object surface. An exception to these methods is that of

(Barhak et al., 2001), which focuses on a range image. The original purpose of competitive

learning is to obtain a network that represents the distribution of given points. Therefore,

direct use of competitive learning causes the accuracy of the resulting model to be inadequate

for approximating the original object surface; that is, the model has a blurred surface of the

original target object (Liou et al., 2005). Some methods (Ivrissimtzis et al., 2004; 2003; Yu, 1999)

introduce a process of changing the number of vertices and their connectivity during the

deformation. Contrastingly, in our proposed method, the SDM can recover a target surface

while retaining the architecture of the SDM. This characteristic enables us to represent objects

with a unified form, and to easily establish a correspondence between multiple models. Our

method can, therefore, be used in various applications in computer vision and computer

graphics.

2. Self-organizing deformable model

2.1 Notations

The SDM is a deformable mesh model represented by triangular patches. According to the

notation adopted in (Lee et al., 1998), the SDM M can be regarded as a two-tuple:

M = (V ,K), (1)

where V is the set of vertices of the SDM. The SDM contains Nv vertices, with each vertex vi

(1 ≤ i ≤ Nv) of the SDM having 3D positional information. An abstract simplicical complex,

K, contains all the adjacency information for M. In other words, K includes three different

sets of simplices: a set of which includes uniquely identified vertices {i} ∈ Kv, a set of edges

e = {i, j} ∈ Ke, and a set of faces f = {i, j, k} ∈ K f . Therefore, K = Kv ∪Ke ∪K f . Our edge

representation has a commutative property. For example, the edge e3 as shown in Fig. 1 is

composed of two vertices vi3 and vi4, and is described by e3 = {i3, i4} = {i4, i3}. We represent

each face of the SDM by a list of its three vertices arranged in a counterclockwise direction,

e.g., the face f2 shown in Fig. 1 is described by f2 = {i2, i4, i3} = {i4, i3, i2} = {i3, i2, i4}.

21Self-Organizing Deformable Model: 
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i2

e
3

f2

i1

i4i3

Fig. 1. Example of notations used in our SDM. Adapted from the article (Morooka et al.,
2007). Copyright(c)2007 IEICE.

Initial SDM database
Recovery of target surface from SDM

Final SDMinitial SDM

SDM

deformation

target surface

Target surface database Projection of SDM onto target surface

Final SDM

SDM

deformation

target surface initial SDM

Fig. 2. Concept of Self-organizing Deformable Model. Adapted from the article
(Morooka et al., 2007). Copyright(c)2007 IEICE.

Given two vertices vi1 and vi4 as shown in Fig. 1, a path from vi1 to vi4 is defined as a series of

edges. Then, a topological distance L(i1, i4) between the vertices is defined as the number of

edges comprising the shortest path from vi1 to vi4. Another topological distance L(i4, i1) from

vi4 to vi1 is equal to L(i1, i4). The shortest path from vi1 to vi4 is illustrated by dashed lines,

and the topological distance L(i1, i4) is 2. When the topological distance from a vertex vi to an

arbitrary vertex is r, the latter vertex is called the r-neighbors of vi Given an arbitrary vertex

v, we regard as its neighbors the vertices for which the topological distance from each of the

vertices to v is less than a threshold θr. Here, the maximum topological distance depends on

the data size of the SDM, so we manually determine the value of the parameter θr according

to the size of the SDM.

A target surface is represented by a set of points on the surface, called control points. We

make the following three assumptions: 1) the surface orientation and surface normal at each

control point are known; 2) the size of an initial SDM is sufficient to cover the target surface

22 Computer Graphics
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completely; and 3) the SDM and the target surface have the same topological type. This paper

focuses on object surfaces of genus 0. From these assumptions, we can choose arbitrary shapes

for both the SDM and target surface. As shown in Fig. 2, the initial SDM and the target surface

can be selected from various kinds of models besides spheres, animals and human faces. A

mesh model selected as an initial SDM can be projected onto various kinds of target surface as

in other methods for surface parameterization. Furthermore, like general deformable models,

the SDM can reconstruct surfaces of target objects.

2.2 Formulation of the SDM deformation

There are two purposes for deforming the SDM. Considering the SDM notation in Eq.(1), the

first purpose is to project the SDM onto the target surface by changing the vertex positions

in V while keeping the original topology for the vertices represented by K. This projection

is called topology-preserving mapping. With an initial SDM M
s and a final SDM M

d, the

topology-preserving mapping Φ is formulated as

Φ : Ms = (V s,K) �−→ M
d = (Vd,K) (2)

The second purpose of the SDM deformation is to approximate the target surface S by the final

SDM M
d. Competitive learning is used to represent the distribution of control points on the

target surface. From a geometrical point of view, when applying competitive learning to the

SDM deformation, the resulting SDM tessellates the target surface into the Voronoi regions,

each of which includes almost the same number of control points on the target surface. The

SDM cannot always recover the complex shape. For example, if we fit a spherical surface

model as an initial SDM to the female model ’Igea’ as shown in Fig. 4(c), and the fitting does

not meet the second purpose, the final SDM is blurred and incomplete as shown in Fig. 7(c).

Therefore, we formulate an error function for the approximated model to recover the target

surface with good accuracy.

The second purpose is formulated by an error function for the approximated model. Various

definitions of error functions are given in (Cignoni et al., 1998), and the error function in our

method is defined as follows. Given a control point p on S , we consider a line that starts at

p and is perpendicular to the plane expanded by the face f ∈ K f . If the line intersects inside

the face f , we let the intersection condition be true and calculate the distance between p and

f . From the faces that satisfy the intersection condition, the face with the minimum distance is

regarded as the corresponding face of p. After finding all the correspondences between faces

and control points, for each face fm, its corresponding control points are collected into a set

Ωm. Here, we denote as Γi the set of faces fm ∈ K f that include the vertex vi. Then, the error

function is defined as the distance D(Md, S) between M
d and S :

D(Md, S) = ∑
{i}∈Kv

∑
fm∈Γi

∑
pu∈Ωm

{H(pu, fm)}2

3|Γi||Ωm|
, (3)

where |Γi| and |Ωm| represent the total number of elements in Γi and Ωm. The function H(p, f )
returns the Euclidean distance between a control point p and the perpendicular foot of p on a

face f .

23Self-Organizing Deformable Model: 
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From Eqs.(2) and (3), the deformation of Ms is formulated as the optimization problem of

finding M
d that satisfies the following conditions:

M
d = Φ̃(Ms); (4)

Φ̃ = arg min
Φ

D(Φ(Ms),S). (5)

3. SDM deformation

3.1 Overview

Generally, the topology-preserving projection function Φ in Eq.(2) is nonlinear, and

a deformation from M
s to M

d is not always unique. The Self-Organizing Map

(SOM)(Kohonen et al., 2001) is a well-known method for finding a topology-preserving

mapping, and it enables us to obtain a network that represents the distribution of the given

input data. The network consists of a set of units and a set of edges connecting two units.

Each unit has a positional vector that provides the position of the unit in the input data space.

Initially, the SOM algorithm selects an input data randomly, and computes its Euclidean

distance to every unit in the network. Next, the unit with the minimum distance is selected

as the winner of the input data. The positions of the winner unit and its neighbor units are

slightly adjusted towards the input data. These processes are repeated until no units can be

further modified.

During the learning process of the SOM, the network is deformed by moving units in the input

data space. We introduce the SOM framework into the SDM deformation by regarding the

relationship between the SDM and control points as being equivalent to that of the SOM and

the input data. Then, the vertices of the SDM and their 3D positions correspond to the units

of the SOM and their positional vectors in the input data. However, from a geometrical point

of view, problems occur when the SOM algorithm is applied directly to the SDM deformation.

The major problems and their solutions are described below.

3.2 SDM deformation based on SOM

3.2.1 Determination of winner vertex

In the SOM algorithm, when a control point is selected randomly, a winner vertex is

determined from the Euclidean distances between the control point and the vertices of the

SDM. However, this determination may select a vertex that is on the opposite side of the target

surface as shown in Fig. 3(a), where the control point and the selected vertex are marked by

’•’ and ’�’. In this case, the selected vertex and its neighbors are moved into the target surface.

As a result, the final SDM is projected onto the limited area of the target surface as shown in

Fig. 3(b). Such a phenomenon is called a collapsed SDM.

To avoid this problem, traditional deformable models based on competitive learning

(Ivrissimtzis et al., 2004; 2003; Yu, 1999) change the number of vertices of the models and their

connectivity during the deformation. On the other hand, the purpose of the SDM deformation

is to recover the target surface while keeping the architecture of the SDM. Considering this

requirement, we deal with the collapse problem by using a signed distance SD between a

24 Computer Graphics

www.intechopen.com



Self-Organizing Deformable Model: A Method for Projecting a 3D Object Mesh Model onto a Target Surface 7

SDM

target surface

winner vertex

vertex

control point

(a) (b)

SDM

target surface

(c) (d)

Fig. 3. Examples of a collapsed SDM caused by (a-b) moving certain vertices of the SDM into
a target surface, and (c-d) folding over itself. Adapted from the article (Morooka et al., 2007).
Copyright(c)2007 IEICE.

control point p and a vertex v:

SD(v,p) = np · (v − p), (6)

where np is a unit normal vector at p. SD has positive values if v is outside the surface

on which p exists. Otherwise, SD takes negative values for v inside the surface. The absolute

value of SD denotes the Euclidean distance between p and v. In our method, the winner vertex

is selected so that the signed distance between the vertex and the control point is non-negative

and the minimum of all vertices.

3.2.2 Update of vertices

After determining the winner vertex vc of a control point p, vc and its neighbors are updated

by moving towards p. In practice, the update of these vertices vi is formulated as

vi ← vi + ǫ(t)λ(i|c)∆vi; (7)

∆vi = p− vi, (8)

where t is a time parameter, and ǫ(t) (0 < ǫ < 1) is the learning rate that determines the

magnitude by which the vertex is adapted towards the point. At the start of implementing

the SOM algorithm, ǫ(t) is usually set to a large value to achieve the global adjustment of the

SDM. During the learning process, the learning rate gradually decreases to zero according to

the specified learning rate function. We define ǫ(t) as follows (Fritzke et al., 1997):

ǫ(t) = ǫs(
ǫd

ǫs
)t/T (9)

25Self-Organizing Deformable Model: 
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Here, ǫs and ǫd are the initial and the final learning rates.

The neighborhood function λ(i|c) in Eq.(7) denotes the adaptation rate of an arbitrary vertex

vi for a winner vertex vc. In our method, λ(i|c) is a decreasing function of the topological

distance L(i, c) between two vertices vi and vc:

λ(i|c) = exp[−
1

2

{ L(i, c)

σ(t)

}2
] (10)

The standard deviation σ(t) of the neighborhood function in Eq.(10) is called the

neighborhood radius. At the start of the learning process, the large neighborhood radius is

used to map the winner vertex and its neighbors onto the same portion of the target surface.

Similar to the learning rate, the neighborhood radius typically decreases with time t, and the

deformation algorithm converges. Therefore, the neighborhood radius is formulated by

σ(t) = σs(
σd

σs
)t/T, (11)

where σs and σd are the initial and final values.

T is the maximum time for selecting winner vertices. The adaptation of the winner vertex

and its neighbors causes the vertices to move towards the target surface, and may sometimes

generate a collapsed SDM. To solve this problem, our method updates the vertices as follows.

For each vertex in the SDM, we compute the signed distances between the vertex and all

control points, and select the closest control point with a non-negative signed distance. If

the signed distance between the selected control point and the vertex is more than a given

threshold τ, the vertex is assigned to a ’free’ label. Otherwise, the vertex is assigned to an

’anchor’ label. Here, to determine the value of the threshold τ, we use the average distance L

between the 1-ring neighbor points of the target surface, and the threshold is set to τ = 2 ∗ L.

A vertex with a ’free’ label is moved closer to the target surface while keeping its relative

position with respect to the winner vertex vc. This movement is formulated by Eq.(7) and the

translation vector ∆v of the vertex v

∆vi = p− vi + α(vi − ṽc) (12)

where ṽc is its 3D position before updating. The constant parameter α has to be small enough

to avoid the self-intersection of the SDM. We empirically set α to α = 0.3.

On the other hand, a vertex with an ’anchor’ label is considered to be on the target surface.

The adaptation of a vertex with the ’anchor’ label using Eq.(12) sometimes causes the vertex

to move into the target surface, and generate a collapsed SDM. To solve this problem, we

move the vertex with an ’anchor’ label along the target surface during the deformation. The

movement is achieved by using a geodesic path from the vertex v to a control point p. The

function Ψ(γ| v,p) (0 ≤ γ ≤ 1) is defined so that the function returns the 3D positional vector

of the point on the geodesic path. In addition, Ψ(0| v,p) = v if γ = 0, and Ψ(1| v,p) = p if

γ = 1. Using the geodesic path, we update the vertex vi with an ’anchor’ label according to

the following equation:

vi ← Ψ(ǫ(t)λ(i|c)| vi,p). (13)
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The geodesic path is computed efficiently using given techniques (Surazhsky et al., 2005).

Then, all geodesic paths between two arbitrary points on the target surface are calculated

off-line, and stored in a database. In the on-line SDM deformation, we obtain the geodesic

path from the vertex merely by finding its closest point.

3.2.3 SDM after finishing the deformation

As stated above, our method introduces certain techniques to avoid a collapsed SDM.

Nevertheless, the final SDM may contain foldovers, thus replicating the major problem of

the original SOM algorithm. One solution to this problem is to restart the learning process

using a different learning rate, the value of which decreases gradually, or by using another

neighborhood function with a larger neighborhood radius (Duda et al., 2000). We can also use

these ideas to create the SDM without foldovers.

For each vertex v, we select the faces satisfying the following: 1) the topological distance

between v and at least one of the vertices of the face is less than a given threshold; and 2) the

perpendicular lines from v intersect the face. We compute the distance between v and each

perpendicular foot of v on the selected face. If the minimum distance is less than a threshold,

the SDM is considered to include a foldover, and we update the parameters of the learning

rate and the neighborhood function in Eqs.(9) and (11):

ǫs ← h1ǫs; ǫd ← h2ǫd; (14)

σs ← h3σs; σd ← h4σd.

We empirically set h1 = 0.1, h2 = 0.1, h3 = 0.1, and h4 = 0.1. Using Eq.(14), the value of the

updated learning rate decreases more slowly than the original learning rate. This changing

of the learning rate can avoid a local minimum, that is, foldovers. On the other hand, the

updated neighborhood function deals with only the vertices and the 1 or 2-ring neighbor to

reduce the computational cost.

In addition, when applying the SOM algorithm to the SDM deformation, the final SDM M
d

has the characteristic that the Voronoi region of each vertex of the SDM includes almost the

same number of control points. This means that Md cannot always recover the object surface

completely because M
d may not be satisfied by Eq.(5). We further deform the SDM by

minimizing an energy function to improve the accuracy of the reconstructed target surface

by the SDM.

The algorithm for the deformation chooses candidates for the next position of a vertex, and

computes the energy function in the case of the vertex being moved to any of the candidates.

We select as the next position of the vertex the candidate with the minimum valued energy

function. Although the mesh deformation using the energy function is similar to the active

balloon model, the energy function in our method is based on an external energy function,

that represents the fitness of the SDM for the target surface. Using the error function in Eq.(3),

the value of the energy function E for the vertex vi is computed by

E(vi) = ∑
fm∈Γi

∑
pu∈Ωm

{H(pu, fm)}
2. (15)

27Self-Organizing Deformable Model: 
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3.3 Algorithm

1. Assign a ’free’ label to all vertices.

2. Initialize the time parameter t to t = 0.

3. From the set of control points on the target surface, randomly choose a control point p(t)

at time t.

4. Determine the winner vertex v
(t)
c from

v
(t)
c = arg min

{i}∈Kv

SD(vi,p
(t)). (16)

5. Adapt the positions of the winner vertex v
(t)
c and its neighbors according to their labels:

vi ←

{

vi + ǫ(t)λ(i|c(t))∆vi : (vi with a ’free’ label)

Ψ(ǫ(t)λ(i|c(t))| vi,p
(t)) : (vi with an ’anchor’ label)

(17)

where c(t) is the vertex label of v
(t)
c . The learning rate ǫ(t), the neighborhood function

λ(i|c), and the translation vector ∆v are obtained from Eqs.(9), (10), and (12).

6. Compute the signed distances between the moved vertices and their closest control points.

If the distance is less than the threshold τ, the vertex is assigned to an ’anchor’ label.

7. If no vertices are moved, or t ≥ T, go to step 8. Otherwise, t ← t + 1 and go to step 3.

Here, T is the maximum time for selecting winner vertices.

8. If the SDM includes foldovers, update the parameters according to Eq.(14), and go to step

2. Otherwise, go to step 9.

9. For each vertex vi:

(a) By regarding the control point p included in Ωm as the corresponding point of vi,

choose potential vectors ṽu from ṽu = vi + w(p− vi) for updating the position of vi.

The parameter w is a variable that gives the rate of moving vi to p.

(b) Find the vector v∗
i satisfying

v
∗
i = arg min

ṽu

E(ṽu), (18)

where E(vi) is the energy function in Eq.(15). In addition, update vi from vi ← v
∗
i .

10. Compute the distance between the SDM and the target surface using Eq.(3). If the distance

is less than a given threshold θe, the process is terminated. Otherwise, go to step 8.

Generally, in the SOM algorithm, the maximum time T for selecting winner vertices is set

to a large value to achieve good accuracy for the SOM. In addition, the parameter T acts

as a criterion for adopting the energy-based deformation process. Therefore, a large value

for the parameter T leads to a deformation process that requires much computational time,

even though the SDM is hardly deformed during the process. To avoid this situation, we use

another criterion: when no vertices are moved, the algorithm is terminated regardless of the

learning time t.
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3.4 Modification of the SDM deformation algorithm

With the above algorithm, object mesh models used as the SDM can automatically be fitted

to the given target surfaces. In addition, users can more easily control the deformation

of the SDM more easily than the general deformable models. This characteristic provides

the opportunity to obtain more preferable models depending on the applications using

the models. Given below are some of the ways of modifying the algorithm for the SDM

deformation.

3.4.1 Selection of a control point

After a winner vertex has been determined from a given control point, both the winner vertex

and its neighbors move towards the control point. If some control points are chosen more

often than others, more SDM vertices tend to move toward these control points. This means

that the choice of the control points influences the density of vertices of the SDM on the

target surface. Since the control points are randomly chosen, the choice can be controlled

by changing the selection probability of the control points. For example, if all control points

are chosen with the same probability, the vertices of the resulting SDM are located on the

target surface according to the distribution of the control points. As a further example, if

the selection probability of the control points from a particular region of the target surface is

higher than that of other regions, the vertices of the SDM tend to move toward that particular

region.

Let us consider the reconstruction of an object with a complex shape. Then, the reconstruction

accuracy of the resulting model can be improved by moving more vertices of the SDM towards

the area with the complex shape. One way of achieving this movement is to determine the

selection probability of the control points based on the curvatures at the points. In practice,

the selection probability Pu of control point pu is computed as

Pu =
Cu

Z
+ β (19)

where Cu is the curvature at control point p, and Z is a normalization factor such that ∑ Pu = 1.

The positive parameter β (β > 0) is used to set the selection possibility of all vertices with a

non-zero value. Using the probabilities, control points are chosen by a roulette wheel selection

which is one of the selection methods in generic algorithm. In a roulette wheel selection,

control points with high selection probabilities are more likely to be selected, but there is also

a chance of selecting control points with small probabilities.

3.4.2 Determination of a winner vertex

The SDM framework can move an arbitrary vertex towards a special control point as described

below. This movement is achieved by introducing the constraint that the vertex is always

selected as the winner of the special point. To begin with, users specify feature control

points p̃ and their corresponding vertices ṽ(p̃). In the SDM deformation algorithm, if the t-th

selected control point p(t) is one of the feature points, its corresponding vertex is automatically
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SDM pig rabbit armadillo lion sphere
↓ ↓ ↓ ↓ ↓ ↓

target surface sphere
cylindrical

surface
Cylinderman Animal Igea

vertices 3,516 67,037 16,980 9,154 10,242
SDM patches 7,028 134,070 33,947 18,304 20,480
target

surface
points 2,526 79,602 11,305 8,602 33,587

(η0, η1) (11, 5) (10, 0) (5, 7) (11, 6) (10, 0)

processing time [sec.] 61 286 1,055 644 231

Table 1. SDMs and target surfaces used in our experiments, and computational time for
deforming the SDMs. The results except for the projection of the sphere to Igea are adapted
from the article (Morooka et al., 2007). Copyright(c)2007 IEICE.

determined as the winner vertex. The determination is formulated by rewriting Eq.(16) as

v
(t)
c =

{

ṽ(p(t)) : (p(t) ∈ F )

arg min{i}∈Kv

SD(vi,p
(t)) : (otherwise),

(20)

where F is the set of the pairs (p̃, ṽ(p̃)) of the feature points p̃ and their corresponding

vertices ṽ(p̃). Under this constraint, the SDM is deformed in such a way that the vertex

moves constantly towards the control point.

(a)Cylinderman (b)Animal (c)Igea

Fig. 4. Examples of target surfaces. Fig.4(a) and (b) are adapted from the article
(Morooka et al., 2007). Copyright(c)2007 IEICE.

4. Experimental results

To verify the applicability of our proposed method, we conducted several experiments

that involved applying the SDM to various 3D object models. The well-known “rabbit”,

“Igea”, and “armadillo” were included as models in our experiments. These models were

downloaded from Cyberware and Stanford University websites. We set the parameters in the

SDM deformation as follows:

ǫs = 0.5, ǫd = 0.05, σs = 3.0, (21)

σd = 0.1, w = 0.01, θe = 0.2.
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(a) pig - spherical surface (b) rabbit - cylindrical surface (c) armadillo - Cylinderman

(d) lion - Animal (e) spherical surface - Igea

Fig. 5. Projection of SDMs onto various kinds of target surfaces; top : initial SDMs; bottom :
SDMs projected onto target surfaces. Fig.5(a)-(d) are adapted from the article (Morooka et al.,
2007). Copyright(c)2007 IEICE.

Given the target surface with Nv vertices, the maximum number T of selecting the control

points is set to η0 Nv. We denote as a parameter η1 the repeat count of restarting the learning

process. Finally, (η0 + η1)Nv control points are selected in the SDM deformation. These

parameters used in our experiments are shown in Table 1.

4.1 Fitting of SDMs to target surfaces

In the first experiment we project a mesh model onto another kind of target surface. The

target surfaces used in our experiments are a spherical surface, a cylindrical surface, a roughly

quadrupedal surface, and a simple humanoid surface. The latter two models, shown in Fig.
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(a) (b) (c)

Fig. 6. Facial part of armadillo projected onto Cylinderman. Adapted from the article
(Morooka et al., 2007). Copyright(c)2007 IEICE.

(a) (b) (c)

Fig. 7. The models obtained using the original SOM algorithm.

4, are called “Animal” and “Cylinderman”. Since all the target surfaces are represented by

parametric functions, the control points needed to represent each surface are calculated from

the functions. Table 1 shows the number of vertices and faces of the initial SDMs, and the

number of control points together with the computational time for each projection.

The top row in Fig. 5 shows the initial SDMs, while the bottom row displays the projected

models. In each of these figures, the normal of the initial SDM is mapped onto the final SDM

and its shape approximates the target surface. Amongst these experiments, the projection of

the “armadillo” model onto the Cylinderman proved to be the most time-consuming because

of the complex shapes. Fig. 6 shows the facial part of the projected armadillo in shading and

wireframe representations. Fig. 6(a) displays an enlarged view of the model shown in Fig.

5(c), while the shading model shown in Fig. 6(b) is obtained using normals of the final SDM.

The SDM can be projected onto the target surface smoothly without foldovers. It is clear from

these results that our method can project mesh models onto various kinds of mapping surfaces

in a unified framework compared with previous works that required mapping functions.

Next, we compare our proposed method to that which applies the original SOM algorithm to

an SDM deformation. We refer to the latter method as the comparison method. The pig model

used in the first experiment is projected onto a spherical surface using the comparison method.

Fig. 7(a) is the shading model obtained from the comparison method. The model is projected

onto a limited area of the target surface. Some unnatural edges are seen on the model surface.

By contrast, Fig. 7(b) is the shading model given in Fig. 5(a). Since the SDM deformation

introduces certain processes to avoid the collapse problem, the SDM can be projected onto the

target surface while not containing any foldover areas. Next, we fit a spherical surface model

as an SDM to the female model ’Igea’ as shown in Fig. 4(c). The purpose of the SOM algorithm

is to represent the distribution of the control points by the SOM. Therefore, in the comparison
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σ σ

(a) σs (b) σd

ε ε

(c) ǫs (d) ǫd

Fig. 8. Comparison of the computational time and the error distance in Eq.(3) in the SDM
deformation by changing the parameters: (a)σs, (b)σd, (c)ǫs and (d)ǫd.

method, the final SDM as shown in Fig. 7(c) is blurred and incomplete. Fig. 5(e) displays

the model obtained using our proposed method. According to these figures, our method can

approximate the original shape.

With reference to the parameters in the SDM deformation, we verified the sensitivity of our

method to these parameters. This verification uses the example mapping from a spherical

surface as the initial SDM to the Igea as the target surface in Fig. 5 (e). In this experiment, the

four main parameters σs, σd, ǫs and ǫd are used, and their values in Eq.(21) are regarded as the

original ones. Only one parameter is set to a value selected from the following sets:

σs = {1.0, 2.0, 4.0, 6.0}, σd = {0.01, 0.05, 0.5, 1.0},

ǫs = {0.2, 0.3, 0.7, 1.0}, ǫd = {0.01, 0.1, 0.2, 0.3},

(22)

while the other parameters use the original values. The SDM deformation is performed by

using the various parameter sets. Fig. 8 shows the computational time and the error distance

between the final SDM and the target surface in Eq.(3) when changing each parameter. In this
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figure, the computational time and the error are represented by a straight line and a dotted

one. The computational time and the error using the original values of the parameters are

231.4 [sec] and 2.2× 10−7. Noting these results, the accuracy of all the final SDMs is good

regardless of the settings of the parameters. On the other hand, the computational time and

the error tend to increase in the SDM deformation using the parameters so that the ratio

σd/σs or ǫd/ǫs is large. The reason for this is that the parameters leads to the retention of

a large adaptation rate or the large learning rate during the deformation process, and to a

slow convergence of the SDM deformation.

In our experiments, we determined the parameters through some preliminary experimental

work. The SDM deformation is based on the SOM algorithm, which contains the parameters

such as the learning rate in Eq.(9) and the neighborhood radius in Eq.(11). However, there is

no theoretical framework for the optimal selection of the parameters included in the SOM

algorithm. For optimal selection, one way is to incorporate the Bayesian framework into

the SOM algorithm (Bishop et al., 1998; Utsugi, 1996; 1997). This incorporation enables us

to regard the SOM algorithm as an estimating algorithm for the Gaussian mixture model.

Given the input data, self-organizing mapping is performed by estimating a probability

distribution, generating the data by using the expectation-maximization algorithm. The

optimal hyperparameters in the model can be estimated from the data. Our future work will

include the extension of the SDM using the Bayesian framework.

As shown in Table 1, the deformations of the SDMs with complex shapes require more

computational time than other SDM deformations. Since the model obtained by the SDM

tends to include a foldover, the SDM deformation is restarted several times to remove the

foldover from the SDM. Our future work includes the development of a method to reduce the

computational time of the SDM deformation.

4.2 Control of deforming SDM

In Section 3.4, we noted some of the advantages of the SDM deformation. This experiment

was conducted to verify the possibility of controlling the SDM deformation. To begin with,

we acquired facial range data from 29 males using a range finder. The range data of each face

was composed of about 85,000 points, and the points were used directly as control points. A

model of each face was obtained by fitting a spherical SDM to the facial range data. Then,

we set the single constraint that certain specific feature vertices of the SDM always moved

towards their corresponding control points one by one. In practice, we manually chose 12

vertices in the SDM. These are illustrated in Fig. 9(a) as black points. We also selected 12

control points by hand from the facial range data as shown in Fig. 9(a). If one of these control

points was chosen in step 3 of the SDM deformation algorithm, its corresponding vertex was

automatically determined as the winner vertex.

Fig. 9(b)-(d) shows the process of deforming the sphere under the constraint, while Fig. 9(d)

shows the final model. Fig. 9(e) shows another facial model generated by deforming the SDM

without the constraint. Observation of these figures show that the final model recovers the

shape of the face while the twelve feature vertices in the final model are located at their target

points. The 29 face models are obtained under the above constraint. Since the models obtained

contain the same number of vertices and the same topological information, we can easily find
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Control of deforming SDM: (a) the target points of a male face on a photographic
image; (b-d) the process of deforming the SDM under the constraint that some vertices of the
SDM correspond to control points on the target surface; (e) the facial surface recovered from
spherical mesh model without the constraint; (f) the average model of 29 faces. Adapted
from the article (Morooka et al., 2007). Copyright(c)2007 IEICE.

(a) (b) (c) (d)

Fig. 10. Control of deforming SDM by changing the selection probability of control points.

a structural correspondence between any two facial models. This correspondence is useful to

computer vision and computer graphics applications. As an example of an application, we

generate the average model of male faces by computing the average position of each vertex

with the same label. Fig. 9(f) shows the average facial mesh model.

Also the SDM deformation can be controlled by changing the selection possibility of the

control points. In this experiment, a spherical surface and a female face as shown in Fig. 10(a)

are used as the initial SDM and target surface, respectively. The target surface is resampled

so that the control points are distributed uniformly. From Eq.(19), we determine the selection

possibility of the control point. The determination uses the average curvature at the control

point p as the curvature C(p) in Eq.(19). The average curvature is computed by the method in

(Hameiri et al., 2002). Fig. 10(b) shows the visualization of the high average curvature of the

face. In particular, the eyes, nose, and mouth areas contain points with high curvatures.
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After the SDM deformation, the final SDM is obtained as shown in Fig. 10(c). The distribution

of the vertices is represented by the average distance Ai between each vertex vi and its

1-ring neighbors. When many vertices are intensively collected in certain regions, the average

distance between the vertices is small. On the other hand, the average distance is large when

regions contain a small number of vertices. Using the average distance, the red color Ri of the

vertex vi is assigned by

Ri =

{

(Ai − Amin)/(Amax − Amin) : (Ai < threshold)

0 : (otherwise),
(23)

where Amin and Amax are, respectively, the minimum and maximum average distances

between the vertices whose Ai is less than a given threshold. Fig. 10(c) shows the final SDM,

while Fig. 10(d) shows the visualization of the distribution of the vertices in the final SDM.

Comparing Figs.10(b)-(d), the SDM deformation can recover the target surface while locating

many vertices in the regions with high curvatures by controlling the selection possibilities of

the vertices.

5. Conclusion

This paper proposed a method for fitting mesh models to a given surface using the

Self-organizing Deformable Model (SDM). The basic idea behind the SDM is the combination

of competitive learning and energy minimization. Although the SDM and the target surface

must have the same topological type, there are few other constraints when using the SDM. Our

SDM can be applied to various target surfaces, whereas traditional methods using mapping

functions only deal with a specific target surface. Furthermore, compared with deformable

models based on energy minimization, our proposed method enables us to control the SDM

deformation easily by changing the ways in which control points are chosen and a winner

vertex is determined. The experimental results show that our SDM is a powerful tool for use

in various fields in computer vision and computer graphics. For example, the SDM enables us

to establish the correspondence between two mesh models by mapping them onto a common

target surface. We are currently developing SDM-based applications.
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Allen, B.; Curless, B.; & Popović, Z. (2003). The space of human body shapes: reconstruction

and parameterization from range scans, Proc. SIGGRAPH ’03, pp.587–594, 2003.

Barhak, J.; & Fischer, A. (2001). Parameterization and reconstruction from 3D scattered points

based on neural network and PDE techniques, IEEE Transactions on Visualization and

Computer Graphics, vol.7, no.1, pp.1–16, 2001.

Bishop, C.M.; Svensén, M.; & Williams, C.K.I. (1998). GTM : the generative topographic

mapping, Neural Computation, vol.10, no.1, pp.215–235, 1998.

36 Computer Graphics

www.intechopen.com



Self-Organizing Deformable Model: A Method for Projecting a 3D Object Mesh Model onto a Target Surface 19

Blanz, V.; Mehl, A.; Vetter, T.; & Seidel, H.P. (2004). A statistical method for robust 3d surface

reconstruction from sparse data, Proc. of the 3D Data Processing, Visualization, and

Transmission, pp.293–300, 2004.

Cignoni, P.; Rocchini, C.; & Scopigno, R. (1998). Metro: Measuring error on simplified surfaces,

Computer Graphics Forum, vol.17, no.2, pp.167–174, 1998.

Duan, Y.; & Qin, H. (2004). A subdivision-based deformable model for surface reconstruction

of unknown topology, Graphcal Models, 66(4), 181–202 (2004)

Duda, R.O.; Hart, P.E.; & Stork, D.G. (2000). Pattern Classification (2nd Edition),

Wiley-Interscience.

Eck, M.; DeRose, T.; Duchamp, T.; Hoppe, H.; Lounsbery, M.; & Stuetzle, W. (1995).

Multiresolution analysis of arbitrary meshes, Proc. SIGGRAPH ’95, vol. 29,

pp. 173–182, 1995.

Floater, M.; & Hormann, K. (2003). Recent advances in surface parameterization,

Multiresolution in Geometric Modeling 2003, pp. 259–284, 2003.

Fritzke, B. (1997). Some competitive learning methods, 1997.

Gibson, S.; & Mirtich, B. (1997). A survey of deformable modeling in computer graphics,

Technical Report TR97-19, Mitsubishi Electric Research Lab. (1997)

Hameiri, E.; & Shimshoni, I. (2002). Estimating the Principal Curvatures and the Darboux

Frame from Real 3D Range Data, Proc. 3DPVT 2002, pp. 258–267, 2002.

Ivrissimtzis, I.; Lee, Y.; Lee, S.; Jeong, W.K.; & Seidel, H.P. (2004). Neural mesh ensembles,

Proc. Int. Symp. on 3DPVT, pp. 308–315, 2004.

Ivrissimtzis, I.P.; Jeong, W.K.; & Seidel, H.P. (2003). Using growing cell structures for surface

reconstruction, Shape Modeling International 2003, pp. 78–88, 2003.

Ju, T.; Schaefer, S. & Warren, J. (2005). Mean value coordinates for closed triangular meshes,

ACM Trans. Graph., vol. 24, no. 3, pp. 561–566, 2005.

Kavan, L.; & Zara, J. (2005). Spherical blend skinning: a real-time deformation of articulated

models, Proc. the 2005 symposium on Interactive 3D graphics and games, pp. 9–16, 2005.

Kohonen, T. (2001). Self-Organizing Maps, Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2001.

Kraevoy, V.; & Sheffer, (2004). A. Cross-parameterization and compatible remeshing of 3D

models, Proc. SIGGRAPH ’04, pp. 861–869, 2004.

Kun, Y.; Zhou, K.; Xu, D.; Shi, X.; Bao, H.; Guo, B.; & Shum, H.Y. (2004). Mesh editing with

Poisson-based gradient field manipulation, Proc. SIGGRAPH ’04, pp. 644–651, 2004.

Kurazume, R.; Nakamura, K.; Okada, T.; Sato, Y.; Sugano, N.; Koyama, T.; Iwashita, Y.; &

Hasegawa, T. (2007). 3D reconstruction of a femoral shape using a parametric model

and two 2d fluoroscopic images, Proc. ICRA’07, pp. 3002–3008, 2007.

Lachaud, J.O.; & Montanvert, A. (1999). Deformable meshes with automated topology

changes for coarse-to-fine 3d surface extraction, Medical Image Analysis, vol. 3, no. 2,

pp. 187–207, 1999.

Lee, A.W.F.; Sweldens, W.; Schröder, P.; Cowsar, L.; & Dobkin, D. (1998). MAPS:

Multiresolution adaptive parameterization of surfaces, Proc. SIGGRAPH ’98,

pp. 95–104, 1998.

Liou, C.Y.; & Kuo, Y.T. (2005). Conformal self-organizing map for a genus-zero manifold, The

Visual Computer, vol. 21, no. 5, pp. 340–353 , 2005.

37Self-Organizing Deformable Model: 
A Method for Projecting a 3D Object Mesh Model onto a Target Surface

www.intechopen.com



20 Will-be-set-by-IN-TECH

Lipman, Y.; Sorkine, O.; Alexa, M.; Cohen-Or, D.; Levin, D.; Rössl, C.; & Seidel, H.P.

(2005). Laplacian framework for interactive mesh editing, International Journal of

Shape Modeling, vol. 11, no. 1, pp. 43–62 , 2005.

McInerney, T.; & Terzopoulos, D. (2000). T-snakes: Topology adaptive snakes, Medical Image

Analysis, vol. 4, no. 2, pp. 73–91, 2000.

Morooka, K.; & Nagahashi, H. (2005). Self-organizing Deformable Model : A New Method

for Fitting Mesh Model to Given Object Surface, Proc. of Int. Symp. Visual Computing,

pp. 151–158, 2005.

Morooka, K.; Matsui, S.; & Nagahashi, H. (2007). Self-organizing Deformable Model : A

New Method for Projecting Mesh Model of 3D Object onto Target Surface, IEICE

Transactions on Information and Systems (Japanese Edition), vol. J90-D, no. 3, pp.908–917,

2007.

Noh, J.Y.; & Neumann, U. (2001). Expression cloning, Proc. SIGGRAPH ’01, pp. 277–288, 2001.

Schreiner, J.; Asirvatham, A.; Praun, E.; & Hoppe, H. (2004). Inter-surface mapping, Proc.

SIGGRAPH ’04, pp. 870–877, 2004.

Sederberg, T. W.; & Parry, S. R. (1986). Free-form deformation of solid geometric models, Proc.

SIGGRAPH ’86, pp. 151–160, 1986.

Sumner, R.W.; & Popovic, J. (2004). Deformation transfer for triangle meshes. Proc. SIGGRAPH

’04, pp. 399–405, 2004.

Surazhsky, V.; Surazhsky, T.; Kirsanov, D.; Gortler, S.; & Hoppe, H. (2005). Fast exact and

approximate geodesics on meshes, Proc. SIGGRAPH ’05, pp. 553–560, 2005.

Tarini, M.; Hormann, K.; Cignoni, P.; & Montani, C. (2004). Polycube-maps, Proc. SIGGRAPH

’04, pp. 853–860, 2004.

Utsugi, U. (1996). Topology selection for self-organizing maps, Network: Computation in Neural

Systems, vol. 7, no. 4, pp. 727–740, 1996.

Utsugi, U. (1997). Hyperparameter selection for self-organizing maps, Neural Computation,

vol. 9, no. 3, pp. 623–635, 1997.

Yu, Y. (1999). Surface reconstruction from unorganized points using self-organizing neural

networks, Proc. IEEE Visualization ’99, pp. 61–64, 1999.

Zayer, R.; Rössl, C.; Karni, Z.; & Seidel, H.P. (2005). Harmonic guidance for surface

deformation, Comput. Graph. Forum, pp. 601–609, 2005.

38 Computer Graphics

www.intechopen.com



Computer Graphics

Edited by Prof. Nobuhiko Mukai

ISBN 978-953-51-0455-1

Hard cover, 256 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Computer graphics is now used in various fields; for industrial, educational, medical and entertainment

purposes. The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In

order to visualize various things, many technologies are necessary and they are mainly divided into two types

in computer graphics: modeling and rendering technologies. This book covers the most advanced

technologies for both types. It also includes some visualization techniques and applications for motion blur,

virtual agents and historical textiles. This book provides useful insights for researchers in computer graphics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ken'Ichi Morooka and Hiroshi Nagahashi (2012). Self-organizing Deformable Model : a Method for Projecting a

3D Object Mesh Model onto a Target Surface, Computer Graphics, Prof. Nobuhiko Mukai (Ed.), ISBN: 978-

953-51-0455-1, InTech, Available from: http://www.intechopen.com/books/computer-graphics/self-organizing-

deformable-model-a-method-for-projecting-a-3d-object-mesh-model-onto-a-target-surfac



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


