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1. Introduction   

Temperature forecasting is mainly issued in qualitative terms with the use of conventional 

methods, assisted by the data projected images taken by meteorological satellites to assess 

future trends (Paras et al., 2007). Several criteria that need to be considered when choosing a 

forecasting method include the accuracy, the cost and the properties of the series being 

forecast. Considering those criteria, it is noted that such empirical approaches that has been 

conducted for temperature forecasting is intrinsically costlier and only proficient of 

providing certain information, which is usually generalized over a larger geographical area 

(Paras et al., 2007). Despite of involving sophisticated mathematical models to justify the use 

of empirical rules, it also requires a prior knowledge of the characteristics of the input 

time-series to predict future events. Not only that, most temperature forecasts today have 

limited information about uncertainty. Yet, meteorologists often find it challenging to 

communicate uncertainty effectively. Regardless of the extensive use of the numerical 

weather method, they are still restricted by the availability of numerical weather prediction 

products, leading to various studies being conducted for temperature forecasting (Barry & 

Chorley, 1982; Paras et al., 2007) 

Due to that inadequacy, Neural Network (NN) has been applied in such temperature 

forecasting.  NN mimic human intelligence in learning from complicated or imprecise data 

and can be used to extract patterns and detect trends that are too complex to be perceived by 

humans and other computer techniques (Mielke, 2008). NN which can be described as an 

adaptive machine that has a natural tendency for storing experiential knowledge, are able to 

discover complex nonlinear relationships in the meteorological processes by communicating 

forecast uncertainty that relates the forecast data to the actual weather (Chang et al., 2010). 

However, when the number of inputs to the model and the number of training examples 

becomes extremely large, the training procedure for ordinary neural network, especially the 

Multilayer Perceptron (MLP) becomes tremendously slow and unduly tedious. Indeed, MLP 

are prone to overfit the data (Radhika & Shashi, 2009) and adopts computationally intensive 

training algorithms. On the other hand, MLP also suffer long training times and often reach 

local minima (Ghazali & al-Jumeily, 2009). 
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Considering the limitations of MLP, therefore in this work, the intention of utilizing the use 
of higher order neural networks (HONN) which have the ability to expand the input 
representation space is considered. The Pi-Sigma Neural Network (PSNN) (Shin & Ghosh, 
1991-a), a class of HONN, is able to perform high learning capabilities that require less 
memory in terms of weights and nodes, and at least two orders of magnitude less number of 
computations when compared to the MLP for similar performance levels, and over a broad 
class of problems (Ghazali & al-Jumeily, 2009; Shin & Ghosh, 1991-b).   

In conjunction with the benefits of PSNN, a new model called Jordan Pi-Sigma Neural 
Network (JPSN) which posses a Jordan Neural Network architecture (Jordan, 1986) is 
proposed to perform temperature forecasting. In this regard, the JPSN that managed to 
incorporates feedback connections in their structure and having the superior properties of 
PSNN is mapped to function variable and coefficient related to the research area. 
Consequently, this work is conducted in order to prove that JPSN is suitable for one-step-
ahead temperature prediction. 

2. Pi-sigma neural network (PSNN) 

PSNN is a type of HONN and was first introduced by Shin & Ghosh (1991-a).  The basic 
idea behind the network is due to the fact that a polynomial of input variables is formed by 
a product (“pi”) of several weighted linear combinations (“sigma”) of input variables.  That 
is why this network is called pi-sigma instead of sigma-pi.  The PSNN exhibits fast learning 
while greatly reducing network complexity by utilising an efficient form of polynomials for 
many input variables.  This special polynomial form helps the PSNN to dramatically reduce 
the number of weights in its structure.  Figure 1 shows the architecture of PSNN: 

 

Fig. 1. Structure of Kth Order PSNN 

Input  x  is an N  dimensional vector and kx  is the k th component of x . The weighted 

inputs are fed to a layer of K  linear summing units; jih  is the output if the j th summing 

units for the i th output iy , viz: 

 i kji k ji
kj

y w x 
  
       

  (1) 
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where kjiw  and ji  are adjustable coefficients, and   is the nonlinear transfer function 

(Shin & Ghosh, 1991-a).  The number of summing units in PSNN reflects the network order.  
By using an additional summing unit, it will increase the network’s order by 1 whilst 
preserving old connections and maintaining network topology.  

In PSNN, weights from summing layer to the output layer are fixed to unity, resulting to a 
reduction in the number of tuneable weights. Therefore, it can reduce the training time.  
Sigmoid and linear functions are adopted in the output layer and summing layer, 
respectively.  The use of linear summing units makes the convergence analysis of the 
learning rules for the PSNN more accurate and tractable (Ghazali & al-Jumeily, 2009; 
Ghazali et al., 2006).  Compared to other HONN models, Shin and Ghosh (1991-b) argued 
that PSNN can contribute to maintain the high learning capabilities of HONN, needs a 
much smaller number of weights, with at least two orders of magnitude less number of 
computations when compared to the MLP for similar performance levels, and over a broad 
class of problems (Ghazali et al., 2006).  Moreover, the PSNN is superior to other HONN in 
approaching precision computation complexity and has a highly regular structure.  Since 
weights from hidden layer to the output are fixed at 1, the property of PSNN drastically 
reduces the training time.  The applicability of this network was successfully applied for 
image processing (Hussain and Liatsis, 2002), time series prediction (Knowles, 2005; Ghazali 
et al., 2011), function approximation ( Shin & Ghosh, 1991-a; Shin & Ghosh, 1991-b), pattern 
recognition ( Shin & Ghosh, 1991-a), Cryptography (Song, 2008), and so forth.  

3. The properties and structure of Jordan pi-sigma neural network (JPSNN) 

The structure of JPSN is quite similar to the ordinary PSNN. The main difference is the 
architecture of JPSN is constructed by having a recurrent link from output layer back to the 
input layer. This structure gives the temporal dynamics of the time-series process that 
allows the network to compute in a more parsimonious way (Hussain & Liatsis, 2002). The 
architecture of the proposed JPSN is shown in Figure 2 below. 

 

Fig. 2. The architecture of JPSN 
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where 

 x t  - the input nodes at  t-th time 

kjw
 

- the trainable weights 

 1kh t   - the summing unit 

 1y t   - the output at time 1t   

 y t   the output at time t  

 f    the activation function 

Weights from the input layers  x t  to the summing units layer are tunable, while weights 

between the summing unit layers and the output layer are fixed to 1. The tuned weights are 

used for network testing to see how well the network model generalizes on unseen data. 
1Z  denotes time delay operation.  

Let the number of external inputs to the network be M  and the number of the output be 1.  

Let  mx t  be the m -th external input to the network at time t.  The overall input at time t is 

the concatenation of  y t  and    , 1,...,kx t where k M , and is referred to  z t  where: 

  
 

 

1

1 1

2

k

k

k

x t if k M

z t if k M

y t if k M

  


  
  

 (2) 

Meanwhile, weights from  z t to the summing unit are set to 1 in order to reduce the 

complexity of the network.  

The proposed JPSN combines the properties of both PSNN and Recurrent Neural Network 

(RNN) so that better performance can be achieved. When utilizing the newly proposed JPSN 

as predictor for one-step-ahead prediction, the previous input values are used to predict the 

next elements in the data. Since network with recurrent connection holds several advantages 

over ordinary feedforward MLP especially in dealing with time-series problems, therefore, 

by adding the dynamic properties to the PSNN, this network may outperform the ordinary 

feedforward MLP and also the ordinary PSNN. Additionally, the unique architecture of 

JPSN may also avoid from the combinatorial explosion of higher-order terms as the network 

order increases. 

3.1 Learning algorithm of JPSN 

The supervised learning used in JPSN can be solved with the standard backpropagation 

(BP) gradient descent algorithm (Rumelhart et al., 1986), with the recurrent link from output 

layer back to the input layer nodes.  Since the same weights are used for all networks, the 

learning algorithm starts by initialising the weights to a small random value before training 

the weights.  The JPSN is trained adaptively in which the errors produced are calculated and 

the overall error function E of the JPSN is defined as: 

      j j je t d t y t   (3) 
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where  jd t  denotes the target output at time  1t  .  At each time  1t  , the output of 

each  jy t  is determined and the error  je t is calculated as the difference between the 

actual value expected from each unit i  and the predicted value  jy t .  

Generally, JPSN can be operated in the following steps:   

For each training example: 

1. Calculate the output. 

    
1

k

L
L

y t f h t


 
   

 
  (4) 

 lh t  can be calculated as: 

            
1

1
1 1

1 1
m m

L Lm m Lm mL m L m
m m

h t w x t w w y t w z t



 

        (5) 

where  Lh t  represents the activation of the L unit at time t, and y(t) is the previous 

network output. The unit’s transfer function f sigmoid activation function, which bounded 

of output range of [0,1]. 

2. Compute the output error at time (t) using standard Mean Squared Error (MSE) by 
minimising the following index: 

  2
1

1 trn

k i ki
tr i

E y z
n 

   (6) 

where ikz  denotes the output of the k-th node with respect to the i-th data, and trn  is the 

number of training sets.  This step is completed repeatedly for all nodes on the current layer. 

3. By adapting the BP gradient descent algorithm, compute the weight changes: 

 
1

m

j ji k
j

w h x


 
   

 
 (7) 

where jih  is the output of summing unit and  is the learning rate. 

4. Update the weight: 

 i i iw w w    (8) 

5. To accelerate the convergence of the error in the learning process, the momentum term, 
  is added into Equation 3.6.  Then, the values of the weight for the interconnection on 

neurons are calculated and can be numerically expressed as 

 i i iw w w       (9) 

where the value of   is a user-selected positive constant  0 1   
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6. The JPSN algorithm is terminated when all the stopping criteria (training error, 
maximum epoch and early stopping) are satisfied. If not, repeat step 1) 

The utilisation of product units in the output layer indirectly incorporates the capabilities of 
JPSN while using a small number of weights and processing units.  Therefore, the proposed 
JPSN combines the properties of both PSNN and JNN so that better performance can be 
achieved.  When utilising the newly proposed JPSN as predictor for one-step-ahead, the 
previous input values are used to predict the next element in the data.  Since network with 
recurrent connection holds several advantages over ordinary feedforward networks 
especially in dealing with time-series problems, therefore, by adding the dynamic properties 
to the PSNN, this network may outperformed the MLP and also the ordinary PSNN.  
Additionally, the unique architecture of JPSN may also avoid from the combinatorial 
explosion of higher-order terms as the network order increases.  The JPSN has a topology of 
a fully connected two-layered feedforward network.  Considering the fixed weights that are 
not tuneable, it can be said that the summing layer is not “hidden” as in the case of the MLP.  
This is by means; such a network topology with only one layer of tuneable weights may 
reduce the training time.  

4. Temperature prediction with JPSN 

Temperature forecasting is the essence of traceability for weather forecasting.  Certainly, 

temperature is a kind of atmospheric time-series data where the time index takes on a 

predetermined or unlimited set of values.  The temperature can have a greater influence in 

daily life than any other single element on a routine basis.  Therefore, some great 

observation are needed to obtain accuracies for the temperature measurement (Ibrahim, 

2002).   Temperature forecasting undoubtedly is the most challenging task in dealing with 

meteorological parameters.   It represents not only a very complex nonlinear problem, but 

also extremely difficult to model.  

A great interest in developing methods for more accurate predictions for temperature 

forecasting has led to the development of several methods which employ the use of physical 

methods, statistical-empirical methods and numerical-statistical methods (Barry & Chorley, 

1982; Lorenc, 1986). These methods, however, constitutionally complex and are limited and 

restricted to that of numerical weather prediction products (Paras et al., 2007). Considering 

the downside of those methods, Neural Networks have placed such sophisticated models 

within the reach of practitioners, and therefore have been successfully applied in many 

problems. Therefore, in this work, JPSN is used for temperature perdiction in Batu Pahat. 

The forecasting horizon for temperature prediction is a one-step-ahead, whereas the output 

variable represents the temperature measurement of one-day ahead of temperature data.  A 

univariate data of a 5-years daily temperature measurement in Batu Pahat Malaysia, ranging 

from 2005 to 2009 was used for the simulation (please refer to Table 1). The data was 

obtained from the Central Forecast Office, Malaysian Meteorological Department (MMD).  

 

Size Maximum (oC) Minimum (oC) Average (oC) 

1826 29.5 23.7 26.75 

Table 1. The properties of Batu Pahat Temperature signal 

www.intechopen.com



An Application of Jordan Pi-Sigma  
Neural Network for the Prediction of Temperature Time Series Signal 

 

281 

To purify the data for further processing, it is needed to identify and remove the 
contaminating effects of the outlying objects on the data.  Therefore, in this study, a 
Max-Min Normalization technique was used so that the data can be distributed evenly and 
scaled into an acceptable range. In order to avoid computational problems, the range was set 
between the upper and lower bound of the network transfer function, which often to be the 

monotonically increasing function,  1 1 xe  (Cybenko, 1989) between [0, 1]. The Max-Min 

Normalization can be implemented using the following equation: 

 
min

' ( _ max _ min ) _ min
max min

v A
v new A new A new A

A A


  


 (10) 

Let A be the temperature data of Batu Pahat region and min A, max A  indicate the minimum 

and maximum values of  data A. Max-Min Normalization maps a value v  of data A to 'v  in 

the range  _ min , _ maxnew A new A .   

In data normalization, the statistical distribution values for each input and output are 

roughly uniform.  Therefore, removing the outliers should make the data more accurate. 

Figure 3 shows the daily temperature data of Batu Pahat region before normalization 

while Figure 4 shows the daily temperature data of Batu Pahat region after 

normalization.  

Meanwhile, Figure 5 shows the frequency of temperature distribution data for 5-years after 

normalization process. From Figure 5, it can be seen that the histogram of the transformed 

data is symmetrical.  Therefore, it can be said that the temperature data for Batu Pahat (after 

normalization) is relatively uniform, and closely follow the normal distribution, thus 

suitable as the network inputs. 

 
 

 
 

Fig. 3. Daily Temperature Data of Batu Pahat Region (before normalization) 
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Fig. 4. Daily Temperature Data of Batu Pahat Region (after normalization) 

 

Fig. 5. Normal Distribution of Temperature Data (after normalization) 

For simulation purposes, the data was segregated into time order and was divided into 

three sets; 50% for training, 25% for testing and 25% for validation, as shown in Table 2. 

 

Training Validation Testing 

914 456 456 

Table 2. Summary of Temperature Dataset Segregation 

For comparison purposes, the JPSN performances on temperature prdiction will be 

benchmarked againts that of the ordinary PSNN and the widely known MLP. As there is no 

rule of thumb for identifying the number of input, a trial-and-error procedure was 

determined. All networks were built considering 5 different number of input nodes ranging 

from 4 to 8. A single neuron was considered for the output layer. The number of hidden 

nodes (for MLP), and the higher order terms (for PSNN and JPSN) were initially started 

with 2 nodes, and increased by one until a maximum of 5 nodes.  
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5. Simulation results 

The temperature dataset collected from MMD was used to demonstrate the performance 

of JPSN by considering a few different network parameters.  Generally, the factors 

affecting the network performance include the learning factors, the higher order terms, 

and the number of neurons in the input layer.  Extensive experiments have been 

conducted for training, testing and validation sets, and average results of 10 

simulations/runs have been collected.  Two stopping criteria were used during the 

learning process; the maximum epoch and the minimum error, which were set to 3000 

and 0.0001 respectively.  In order to assess the performance of all network models, four 

measurement criteria, namely the number of epoch, Mean Squared Error, Normalized 

Mean Squared Error, and Signal to Noise Ratio are used.  Convergence is achieved when 

the output of the network meets the earlier mentioned stopping criteria.  By considering 

all in-sample dataset that have been trained, the best value for the momentum term 

0.2   and the learning rate 0.1  , were chosen based on extensive simulations done 

by trial-and-error procedure.   

The above discussions have shown that some network parameters may affect the network 

performances.  In conjunction with that, it is necessary to illustrate the robustness of JPSN 

by comparing its performance with the ordinary PSNN and the MLP. Table 3 to Table 5 

show the average results from 10 simulations for the JPSN, the ordinary PSNN and the 

MLP, respectively.  

 

Input 
Nodes 

Network 
Order 

NMSE on Testing 
Dataset 

MSE on Testing 
Dataset 

SNR 
Number of 

Epoch 

4 

2 0.7710 0.0065 18.7557 1460.9 
3 0.7928 0.0066 18.6410 1641.1 
4 0.8130 0.0068 18.5389 1209.9 
5 0.8885 0.0074 18.1574 336.8 

5 

2 0.7837 0.0066 18.6853 193.5 
3 0.8253 0.0069 18.4705 287.6 
4 0.8405 0.0070 18.3910 214.5 
5 0.8632 0.0072 18.2762 117.2 

6 

2 0.7912 0.0066 18.6504 285.3 
3 0.8329 0.0070 18.4333 292.8 
4 0.8522 0.0071 18.3341 238 
5 0.8850 0.0074 18.1691 97.1 

7 

2 0.7888 0.0066 18.6626 236.3 
3 0.8310 0.0070 18.4425 178.8 
4 0.8206 0.0069 18.4954 182.2 
5 0.8751 0.0073 18.2213 116.7 

8 

2 0.8005 0.0067 18.5946 185.9 
3 0.8166 0.0069 18.5106 283.9 
4 0.8468 0.0071 18.3515 149.4 
5 0.8542 0.0072 18.3147 152 

Table 3. Average Result of JPSN for One-Step-Ahead Prediction. 
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Input 
Nodes 

Network 
Order

NMSE on Testing 
Dataset

MSE on Testing 
Dataset

SNR 
Number of 

Epoch 

4 

2 0.7791 0.0065 18.7104 1211.8 
3 0.7792 0.0065 18.7097 1302.9 
4 0.7797 0.0065 18.7071 1315.3 
5 0.7822 0.0066 18.6935 1201.0 

5 

2 0.7768 0.0065 18.7234 1222.5 
3 0.7769 0.0065 18.7226 1221.6 
4 0.7775 0.0065 18.7193 1149.9 
5 0.7806 0.0065 18.7023 916.9 

6 

2 0.7758 0.0065 18.7289 961.3 
3 0.7770 0.0065 18.7222 852.5 
4 0.7775 0.0065 18.7192 1155.6 
5 0.7832 0.0066 18.6880 948.0 

7 

2 0.7726 0.0065 18.7470 1064.0 
3 0.7733 0.0065 18.7432 911.6 
4 0.7760 0.0065 18.7277 922.1 
5 0.7766 0.0065 18.7244 1072.2 

8 

2 0.7674 0.0064 18.7688 719.3 
3 0.7677 0.0064 18.7671 877.0 
4 0.7693 0.0065 18.7579 861.4 
5 0.7694 0.0065 18.7574 970.9 

Table 4. Average Result of PSNN for One-Step-Ahead Prediction. 

 

Input 
Nodes 

Hidden 
Nodes

NMSE on Testing 
Dataset

MSE on Testing 
Dataset

SNR 
Number of 

Epoch 

4 

2 0.7815 0.0065 18.6971 2849.9 
3 0.7831 0.0066 18.6881 2468.2 
4 0.7825 0.0066 18.6918 2794.2 
5 0.7827 0.0066 18.6903 2760.9 

5 

2 0.7803 0.0065 18.7037 2028.6 
3 0.7792 0.0065 18.7097 2451.8 
4 0.7789 0.0065 18.7114 2678.1 
5 0.7792 0.0065 18.7097 2565.8 

6 

2 0.7750 0.0065 18.7335 2915.1 
3 0.7763 0.0065 18.7261 2837.2 
4 0.7776 0.0065 18.7188 2652.4 
5 0.7783 0.0065 18.7152 2590.8 

7 

2 0.7742 0.0065 18.7378 2951.2 
3 0.7780 0.0065 18.7164 2566.6 
4 0.7771 0.0065 18.7217 2796.4 
5 0.7786 0.0065 18.7131 2770.0 

8 

2 0.7734 0.0065 18.7350 2684.8 
3 0.7749 0.0065 18.7268 2647.2 
4 0.7747 0.0065 18.7278 2557.1 
5 0.7753 0.0065 18.7242 2774.6 

Table 5. Average Result of MLP for One-Step-Ahead Prediction. 
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As it can be noticed, Table 3 which shows the results for temperature prediction using JPSN 
reveals that the 2nd order network, with 4 inputs demonstrates the best results using all 
measuring criteria except for the number of epochs.  Meanwhile, Table 4 shows the results 
that were produced by PSNN on temperature prediction.  It demonstrates that the 
combination of 8 input nodes and PSNN of Order 2 shows the best performance for all 
measuring criteria.  Same thing goes to the MLP, which signifies that MLP with 2 hidden 
nodes and 8 input nodes attained the best results for all measuring criteria except for SNR 
and number of epochs (refer to Table 5).  

 

Network 
Models 

NMSE on 
Testing Dataset

MSE on Testing 
Dataset 

MAE on 
Testing Dataset

SNR 
Number 
of Epoch 

JPSN 0.771034 0.006462 0.063458 18.7557 1460.9 
PSNN 0.779118 0.006529 0.063471 18.71039 1211.8 
MLP 0.781514 0.006549 0.063646 18.69706 2849.9 

Table 6. Comparison on the Best Single Simulation Results for JPSN, PSNN and MLP. 

In order to compare the predictive performance of the three models, Table 6 presents the 
best simulation results for JPSN, PSNN and MLP.  Over all the training process, JPSN 
obtained the lowest MAE, which is 0.063458; while the MAE for PSNN and MLP were 
0.063471 and 0.063646, respectively.  By considering the MAE, it shows that JPSN is able to 
make a very close forecasts to the actual output in analysing the temperature.  In this 

respect, JPSN outperformed PSNN by a ratio of 41.95 10 , and 32.9 10  for the MLP.  

Moreover, it can be seen that JPSN reached higher value of SNR.  Therefore, it can be said 
that the network can track the signal better than PSNN and MLP.  Apart from the MAE and 
SNR, it is verified that JPSN exhibited lower prediction errors, in terms of NMSE and MSE 
on the out-of-sample dataset.  This indicates that the network is capable of representing 
nonlinear function better than the two benchmarked models.  In the case of learning speed, 
particularly on the number of epoch utilized, PSNN converged much faster than the JPSN 
and MLP.  However, JPSN reached a smaller number of epoch when compared to the MLP.  
On the whole, the performance of JPSN gives a gigantic comparison when compared to the 
two benchmarked models.   

For demonstration purpose, the models’ performance on their NMSE is depicted in Figure 6.  
It shows that JPSN steadily gives lower NMSE when compared to both PSNN and MLP.  
This by means shows that the predicted and the actual values which were obtained by the 
JPSN are better than both comparable network models in terms of bias and scatter.  
Consequently, it can be inferred that the JPSN yield more accurate results, providing the 
choice of network parameters are determined properly.  The parsimonious representation of 
higher order terms in JPSN assists the network to model successfully.   

The plots depicted in Figures 7 to 9 present the temperature forecast on the out-of-sample 
dataset for all network models.  As shown in the plots, the blue line represents the trend of 
the actual values, while the red line represents the predicted values.  The predicted values of 
daily temperature measurement made by all network models almost fit the actual values 
with minimum error forecast. On the whole, JPSN practically beat out PSNN and MLP by 
1.038% and 1.341%, respectively.  It is verified that JPSN has the ability to perform an 
input-output mapping of temperature data as well as better performance when compared to 
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both network models.  Besides, the evaluations on MAE, NMSE, MSE, and SNR over the 
temperature data demonstrated that JPSN were merely improved the performance level 
compared to the two benchmarked network models, PSNN and MLP.  The better 
performance of temperature forecasting is allocated based on the vigour properties it 
contains.  Hence, it can be seen that the thrifty representation of higher order terms in JPSN 
assists the network to model effectively.  
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Fig. 6. The NMSE for JPSN, PSNN, and MLP. 
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Fig. 7. Temperature Forecast made by JPSN on Out-of sample Dataset. 

 
 
 

 
 
 

Fig. 8. Temperature Forecast made by PSNN on Out-of sample Dataset. 
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Fig. 9. Temperature Forecast made by MLP on Out-of sample Dataset. 

6. Conclusion  

There are many applications and techniques on temperature that was developed in the past. 
However, limitations such as the accuracy and complexity of the models make the existing 
system less enviable for some applications. Therefore, improvement on temperature 
forecasting requires continuous efforts in many fields, including NN. Several methods 
related to NN, particularly have been investigated and carried out. However, the ordinary 
feedforward NN, the MLP, is prone to overfitting and easily get stuck into local minima. 
Thus, to overcome the drawbacks, a new model, called JPSN is proposed as an alternative 
mechanism to predict the temperature event. The JPSN which combines the properties of 
PSNN and RNN can benefits the temperature prediction event, which may overcome such 
drawbacks in MLP. In this chapter, JPSN is used to learn the historical temperature data of 
Batu Pahat, and to predict the temperature measurements for the next-day ahead. 
Simulations for the comprehensive evaluation of the JPSN were presented, and the 
evaluation covering several performance criteria: the NMSE, MSE, SNR, and number of 
epoch were discussed. Experimental results of JPSN were compared with the ordinary 
PSNN and the MLP. Results obtained from each model were presented, and on the whole, 
the proposed JPSN has shown to outperform the ordinary PSNN and MLP on the prediction 
errors and convergence time. 
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