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1. Introduction 

The fetal heart rate (FHR) is a useful tool in the assessment of the condition of the fetal 

before and during labour. Fetal Electrocardiography (FECG) (Sureau, 1996) uses non-

invasive surface electrodes placed on the maternal abdomen is another tool for FHR 

recording (Sureau, 1996). The fetal signal is weak relative to the maternal signal and to the 

competing noise. Widrow et al. (Widrow et al., 1975) proposed an adaptive filtering and 

adaptive noise cancellation method to extract the FECG from the composite maternal ECG 

signal. Auto-correlation and cross correlation techniques (Van Bemmel, 1968) and spatial 

filtering techniques (Van Oosterom, 1986, and Bergveld and Meijier 1981) have been 

proposed. These methods require multiple maternal thoracic ECG signals. Other methods 

were proposed for the rejection of the disturbing maternal ECG signal (Sureau, 1996). The 

automated long-term evaluation of FECG is regarded as less robust than CTG. A failure rate 

of approximately 30% is quoted as an almost unanimous norm (Herbert et al., 1993). The 

advantage of FECG is that it can be implemented in small and relatively low-cost devices 

(Lin et al., 1997).  

A proposed technique employing wavelet transform (Khamene and Negahadariapour, 2002) 

exploits the most distinct features of the signal, leading to more robustness with respect to 

signal perturbations.  The algorithm is validated using high SNR data. Dynamic modelling 

has been proposed (Schreiber, and D Kaplan, 1996). The data has comparatively high SNR 

and the fetal heartbeats can be detected by an adaptive matched filter and requires much 

shorter data samples than the dynamic modelling. The dynamic modelling apparent success 

at high SNR is offset by the required lengthy data. Due to the beat-to-beat fluctuations of the 

shape and duration of the ECG waveform, the normal ECG cannot be considered to be 

deterministic. Determinism is found in adult and fetal ECGs for data lengths of 10,000 

samples (Rizk et al., 2002). The independent component analysis (ICA) has been carried out 

under assumptions (Lathauwer et al., 2000), the validity of each has been challenged (Rizk et 

al., 2001). 
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This chapter investigates the application of recurrent neural networks to the detection and 

classification of ECG signals. Third-order cumulants, bispectrum, polyphase, and embedded 

Volterra are utilised. The chapter develops methodology for adult ECG detection using the 

higher-order statistics. It extends that to non-invasive fetal heartbeat detection, during 

labour. The work is also extended to classify adult heart abnormalities based on the phases 

of the higher-order statistics. The chapter is organised as follows; Sections 2 and 3 employ 

third-order cumulant slices and bispectrum contours, respectively, to detect adult and fetal 

ECG signals. Section 4 introduces a method of ECG abnormality detection using polyphase. 

Section 5 shows how third-order cumulants could be utilised for the detection of late 

potentials. Section 6 summarises the conclusions. 

2. ECG third-order cumulant slices classification 

2.1 Background 

Many techniques have been introduced to detect fetal heartbeats during labour. The 

advances in higher-order statistics, non-linear filtering, and artificial neural networks are 

exploited to propose a hybrid technique to improve the non-invasive detection of fetal 

heartbeats during labour. A third-order cumulants (TOCs) technique for non-invasive fetal 

heartbeat detection has been proposed (Zgallai et al., 1997). The ECG signal is processed 

using a Volterra filter. To improve the performance of the Volterra filter, quadratic and 

cubic LMF Volterra filters have been proposed (Zgallai et al., 2007). The proposed system 

uses the mother and fetal third-order cumulants (TOCs), which carry the signature imprints 

of their respective QRS-complexes, in the signal processing phase. 

Quadratic and cubic Volterra filters with LMF updates have been employed to synthesise 

the signal into linear, quadratic, and cubic parts, and retain only the linear part. The 

classification phase employs an LMS-based single-hidden-layer perceptron. This section 

proposes incorporating an adaptive cubic LMF Volterra and an artificial neural network 

classifier to improve the detection rate (Zgallai, 2010). The cubic Volterra filter has been 

shown to improve the performance of some biomedical signals such as electromyographic 

signals during labour (Zgallai et al., 2009). Cross validation has been done by comparing the 

results of the detection to QRS peaks of the fetal heartbeat extracted from the fetal scalp 

electrode which is the goldstandard. 

2.2 Third-order cumulants 

A non-Gaussian signal {X(k)} has TOCs given by (Nikias and Petropulu, 1993): 

 )}k(X),k(X),k(X{Cum),( 2121

x

3c  . (2.1) 

The calculations of the TOCs are implemented off-line due to the large CPU time required to 
calculate the lags. One way of reducing this load is to use 1-d slices of the TOCs. One-

dimensional slices of ),( 21

x

3c   can be defined as (Nikias and Petropulu, 1993): 

 ),0()}k(X),k(X),k(X{Cum)(r c
x

3

x

1,2   (2.2) 
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2,1    (2.3) 

where r 2,1() and r 1,2() represent 1-d wall and diagonal slices, respectively. The former can 

be obtained from Eq. (2.1) by assuming 1 = 0. The later obeys the condition 1 = 2. 
Employing 1-d slices will have the effect of reducing the CPU time by reducing the 
complexity of the operations. The calculations of TOC slices are comparable to those of 
autocorrelation and take CPU time of approximately 1 msec unlike TOCs, which take 1 sec 
to calculate. For a sampling rate of 0.5 KHz and an FHR of the order of 120 bpm, a real-time 
system can be implemented. An algorithm which calculates any arbitrarily chosen off 
diagonal and off wall one-dimensional slice, and hence reduce the CPU time by 99%, has 
been developed (Zgallai, 2007). 

Adequate knowledge of the TOC of both the maternal and fetal ECG signals must first be 
acquired in order to pave the way for fetal QRS-complex identification and detection. There 
are several motivations behind using TOC in processing ECG signals; (i) ECG signals are 
predominantly non-Gaussian (Rizk and Zgallai, 1999), and exhibit quadratic and higher-
order non-linearities supported by third- and fourth-order statistics, respectively. (ii) 
Gaussian noise diminishes in the TOC domains if the data length is adequate (Nikias and 
Petropulu, 1993). It is possible to process the ECG signal in Gaussian noise-free domains. 
For ECG signals a minimum length of 1 sec is adequately long to suppress Gaussian noise in 
the TOC domains, whilst not long enough to violate Hinich’s criterion of local stationarity 
(Brockett et al., 1988). In general, ECG signals are non-stationary in the statistical sense, but 
relatively short data can be successfully treated with conventional signal processing tools 
primarily designed for stationary signals. When dealing with individual cardiac cycles, non-
stationarity is not an issue but when one takes on board the heart rate time series which is 
chaotic and multi-dimensional then it is not wise to assume stationarity for analysis 
purposes. (iii) In the TOC domain all sources of noise with symmetric probability density 
functions (pdfs), e.g., Gaussian and uniform, will vanish. The ECG signals are retained 
because they have non-symmetric distributions (Zgallai et al., 1997). (iv) ECG signals 
contain measurable quantities of quadratic and, to a lesser extent, cubic non-linearities. Such 
measurable quantities of non-linearity, if not synthesised and removed before any further 
processing for the purpose of signal identification and classification, could lead to poor 
performance with regard to fetal QRS-complex detection rates. 

2.3 LMF quadratic and cubic volterra 

The Volterra structure is a series of polynomial terms (Schetzen, 1980) which are formed 
from a time sequence {y(k). The output of the filter is expressed as 

 ....xxaxa)n(y
N
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1ik1ik
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i,i
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1ik

1

i

1
2121

21
11 


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
   (2.4) 

Adaptive conventional Volterra is updated using the Least-Mean Squares (LMS) criterion. 
The LMS algorithm minimises the expected value of the squared difference between the 

estimated output and the desired response. A more general case is to minimise E{e(n)
2N

} 
(Wallach and Widrow, 1984). N = 2 is the Least-Mean-Fourth (LMF). The LMF algorithm 
updates the weights as follows: 
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 )n(x).n(e.2)n()1n( 3

iii  aa . (2.5) 

The LMF has a faster convergence than the LMS algorithm. It has generally a lower weight 
noise than the LMS algorithm, with the same speed of convergence. It was shown to have 3 
dB to 10 dB lower mean-squared error (MSE) than the LMS algorithm (Wallach and 
Widrow, 1984). Adaptive LMF-based quadratic and cubic Volterra structures have been 
developed and shown to outperform LMS-based Volterra by 6-7 dBs (Zgallai, 2007). 

2.4 Neural network classifiers 

A major limitation of the back-propagation algorithms is the slow rate of convergence to a 
global minimum of the error-performance surface because the algorithm operates entirely 
on the gradient of the error-performance surface with respect to the weights in the single-
hidden-layer perceptron. The back-propagation learning process is accelerated by 
incorporating a momentum term. The use of momentum introduces a feedback loop which 
prevents the learning process from being stuck at a local minimum on the error-
performance surface of the single-hidden-layer perceptron. The classifier is a single-hidden-
layer perceptrion based on a modified Back-Propagation technique. The modified back-
propagation algorithm has a momentum term which helps to avoid local minima. One 
hundred and sixty one-dimensional TOC slices have been used as templates for the desired 
signals in the Artificial Neural Network (ANN) classifier. 

2.5 The proposed algorithm 

2.5.1 TOC detection 

1. Create ECG cumulant database  
2. Detect the maternal QRS-complexes – Read the ECG recording sequentially, and process 

each of the 90% overlapping windows (length 250 msec) to compute the diagonal or 
wall slice TOC. The slice is matched to the templates until a maternal QRS-complex is 
detected. An auxiliary subroutine is used to pinpoint the position of the R-wave. If the 
second successive segment detects a maternal QRS-complex then it is discarded because 
it is the same complex detected in the adjacent window. The whole process of TOC 
template matching is repeated until the second maternal QRS-complex is detected and 
its R-wave is pinpointed. The maternal heart rate is accurately calculated from the 
knowledge of the current and previous R-wave positions. 

3. Detect the fetal cardiac cycles – The search begins from the position of the detected 
maternal R-wave. Window overlapping, each with fetal cumulant template matching, 
continues until the first, second, and possibly third fetal ECG TOC diagonal and wall 
slice signatures have been matched to one template for each one of them. Once the 
slices have been matched, the window will be flagged as a detection window. If the next 
overlapping window detects a fetal heartbeat, it will be discarded because it is the same 
fetal heartbeat that has just been detected in the previous window. The number of fetal 
heartbeats detected within the maternal cardiac cycle is counted. The instantaneous 
maternal heart rate is previously known with some degree of accuracy, and the relative 
fetal to maternal heartbeat is also known within the maternal cardiac cycle. Hence, the 
averaged fetal heart rate can be calculated within each maternal cardiac cycle. 
Operations 2 and 3 are repeated for all individual maternal cardiac cycles.  
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2.5.2 Window minimum length and ECG segmentation 

The duration of the fetal cardiac cycle varies from 250 msec to 500 msec for a range of fetal 

heart rate between 240 bpm and 120 bpm. The fetal QRS-complex itself occupies between 50 

msec and 70 msec. The fetal heartbeat is detected in a flag window of length 250 msec. This 

window length serves two criteria; (i) it is the minimum length yielding an acceptable upper 

threshold of both the deterministic and stochastic noise types inherent in the higher-order 

statistics of the ECG signals encountered, and (ii) this window length allows the detection of 

one, two, three, or four fetal heartbeats (FHBs) within one maternal transabdominal cardiac 

cycle. For example, for maternal heartbeat of 60 bpm, the R-wave-to-R-wave = 1000 msec, 

and four segments x 250 msec = one maternal cardiac cycle = possible four fetal cardiac 

cycles.  

2.5.3 Overlapping window  

When detecting the fetal heartbeat within the maternal transabdominal cardiac cycle, 90% 

overlapping windows, each of 250 msec duration, are scanned at a rate of 100 Hz with a 

sampling rate of 0.5 KHz. The overlapping percentage should be carefully chosen to 

compensate for the apparent loss of temporal resolution due to a lengthy window which is 

dictated by the maximum threshold of the variance of the TOCs. The average fetal QRS-

complex duration is 60 msec. This may be encountered at the beginning, middle, or end of 

the flag window. Hence by using a window overlapping of 90%, any fetal QRS-complex 

which may be missed because it starts to evolve, say, 20 msec before the end of a window, 

can definitely be picked up by the next one or two overlapping windows when it completes 

its full duration of 60 msec and has definitely reached its full peak (the   R-wave). If this 

particular QRS-complex has enough strength to be picked up by two successive overlapping 

windows, the algorithm will count it as one FHB. It has been found that reducing the 

overlapping below 90% yielded missed fetal heartbeats. 

2.5.4 Averaged fetal heart rate calculation   

The instantaneous fetal heart rate is calculated by measuring the interval between two 

successive R-waves. This requires pinpointing accurately the R-point of the QRS-complex. 

Although the ECG TOC template matching technique is very effective in detecting the 

occurrence of the QRS-complex as a whole even when it is completely buried in noise, it 

cannot locate the R-wave over a window length of 250 msec which satisfies the criterion 

for the variance threshold. In most transabdominal ECG recordings (85%), the fetal QRS-

complexes cannot be seen as they are completely masked by other signals and motion 

artefact. This obscurity accounts for the lower success rate of fetal heartbeat detection in 

other assessed fetal heartbeat detection techniques (Sureau, 1996). The adult heartbeats 

can be measured accurately and the instantaneous heart rate for adults can be calculated. 

Hence, by counting the number of fetal heartbeats (FHBs) that have occurred between two 

successive maternal R-waves, one can easily calculate the averaged FHR within the 

maternal cardiac cycle. On average, the maternal cardiac cycle is 1000 msec. Two maternal 

cardiac cycles measure 2 sec. So, detecting and displaying up to eight FHBs will take less 

than 2.000030 sec which is well within the manufacturers’ detection-to-display interval of 

3.75 sec.  
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2.6 Data collection and results 

2.6.1 Data collection 

Data was obtained from pregnant women at various stages of gestation (Zgallai, 2007). This 

was achieved, with the consent of women, using a pair of electrodes, Sonicaid 8000, a 

Pentium IV PC and an interface card. The software used for the attractor calculations was 

MATLAB 8.0. Ag-AgCl Beckman electrodes of 8 cm in diameter, and 25-cm spaced centres 

were positioned on the abdominal wall after careful preparation of the skin, which lowers 

the interelectrode impedance of 10 k. The electrode pair is set over the umbilicus, and 

lined up with the median vertical axis of the uterus. The ground electrode is located on the 

woman’s hip. The training data involves using third-order cumulants  and their slices of 

segments of fetal scalp electrode measurement. These are used to compare with  results 

obtained from the transabdominal ECG recording. The testing data is the transabdominal 

ECG recording.  

2.6.2 Results 

2.6.2.1 TOCs and their diagonal and wall slices  

An optimised third-order Volterra structure is employed to decompose the ECG signal into its 

linear, quadratic, and cubic parts and retain only the linear part. Fig. 2.1 depict a maternal 

transabdominal ECG signal with segmentation and the corresponding TOCs and their 

diagonal and wall slices for predominantly maternal QRS-complexes, the first fetal heartbeats 

with maternal contribution, QRS-free ECGs, and the second fetal heartbeats with maternal 

contribution. The diagonal and wall TOC slices of the maternal QRS-complexes, segment (I) in 

Fig. 2.1, are easily distinguished from the diagonal and wall TOC slices of segments (II), (III), 

and (IV). Furthermore, the diagonal and wall TOC slices of the fetal heartbeat segments, (II) 

and (IV) in Fig. 2.1, are distinguishable from the corresponding diagonal and wall TOC slices 

of the QRS-free ECG segments (III). However, in some cases, those of segments (II) and (IV) 

could be mistaken for QRS-free ECG segments. The peaks of the QRS-free ECG segments are 

much narrower and more related to motion artefact than a signal. 

2.6.2.2 The NN classifier 

A single-hidden-layer perceptron is used for the classification of the TOC slices of the maternal 
QRS-complexes, the first fetal heartbeat with maternal contribution, QRS-free ECG, and the 
second fetal heartbeat with maternal contribution from maternal transabdominal ECG 
segments. This is achieved using a standard back-propagation with momentum algorithm 
(Caudill and C. Butler, 1992). Each of the input and output layers have a dimension of 8 x 8 
and the hidden layer has a dimension of 5 x 5. The input to the first layer is the TOCs diagonal 
and wall slices. The network is trained using TOC slice templates obtained from the maternal 
chest and fetal scalp electrode ECGs as well as previously detected and earmarked 
transabdominal ECG segments. The latter training sequences are templates of the diagonal 
and wall slices of the TOCs of four segments from maternal transabdominal full cardiac cycles. 
The input to the network is eight template patterns. These are the TOC diagonal and wall 
slices of four segments from one transabdominal cardiac cycle. For example the first pair are 
maternal slices, the second pair are fetal slices, the third pair are QRS-free slices, and the fourth 
pair are fetal slices. The network is trained over the eight patterns. The training terminates 
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when the worst error in all patterns in one pass is less than 0.1. Typically the average error will 
be in the range of 0.001.  

The TOC slice templates are used as input to the classifier. Each one of the 10 templates in each 
set is used as an input and the weights of each neuron in the classifier are optimised by 
changing the learning rate and the momentum constant until the error is minimised. Then the 
transabdominal ECG signal with 250-msec window is used as an input to the classifier. The 
instantaneous weights of the input signal are compared to those of the templates which are 
stored in the memory. The two sets of parameters are correlated. Once a signal is classified the 
output will be set to 1. The classification of the four segments involves a pattern-by-pattern 
updating rather than batch updating for the weight adjustments. This is more suitable to speed 
up the performance. Pattern-by-pattern updating tends to be orders of magnitude faster than 
batch updating. However, it should be noted that pattern-by-pattern updating is harder to 
parallelise. Fig. 2.2 summarises the results of the optimisation process. 

Parameters of the single-hidden layer perceptron: The network has been optimised in terms of its 
learning rate, momentum constant, and hidden layer size to achieve the minimum mean-
squared error. The optimum learning rate is found to be 0.8. The optimum momentum constant 
is found to be 0.99 and 0.90 for the maternal QRS-complex and the fetal heartbeat with maternal 
contribution segments, respectively. The single-hidden-layer has an optimum dimension of 5 x 
5. The input to the first layer is the TOCs diagonal and wall slices. The network is trained using 
TOC slice templates. The input to the network is eight template patterns. These are the TOC 
diagonal and wall slices of four segments from one transabdominal cardiac cycle. The network 
is trained over the eight patterns. The training terminates when the worst error in all patterns in 
one pass is less than 0.1. Typically the average error will be in the range of 0.001. 

 

Fig. 2.1. (a) Transabdominally-measured ECG (Code: 16-23) showing segmentation (segments 
I, II, III, and IV, 250 msec each). (b) The TOCs and their diagonal and walll slices (insets) for  

the QRS-free ECG (l.h.s.) and the second fetal heartbeat with maternal contribution (r.h.s.). 0, 

1 and 2 are, respectively, the reference, first and second time lags of the TOCs. 
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Fig. 2.2. The effect of changing (a) the learning rate, (b) the momentum constant, and (c) the 

middle layer size, on the classification rate of the fetal heartbeats with maternal contribution 

from transabdominally-measured ECG signals and employing TOC diagonal slices and their 

templates to be matched using a single-hidden-layer perseptron back-propagation with 

momentum. Segment length is 250 msec each. The optimised parameters are: learning rate = 

0.8, momentum constant = 0.9, and middle-layer size = 5 x 5. 

2.6.2.3 Cumulant matching of the fetal heartbeats 

Each one of the four transabdominal ECG segments (Data length = 250 msec) has ten 

corresponding templates used for matching. An optimised cubic Volterra structure is 

employed to synthesise the four transabdominal ECG segments and the corresponding 

templates. 

2.6.2.4 The maternal heartbeat classification rates 

The classification rate is 100% for maternal QRS-complexes using the TOC template 

matching technique with single-hidden-layer classification. To calculate the maternal heart 

rate an auxiliary method to pinpoint the R-wave employing an adaptive thresholding has 

been used. Note that this is not accurate when one deals with deformed QRS-complexes in 

heart patients. The data obtained include all mothers’ ECGs exhibiting normal-to-the-patient 

QRS-complexes. The instantaneous maternal heart rate is calculated by dividing 60 by the R-

to-R interval (in seconds). The application of this auxiliary routine leads to a maternal heart 

rate with an accuracy of 99.85%. 
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2.6.2.5 Classification rate for the hybrid technique 

Definitions 

1. The Sensitivity (Se) is defined as the ratio of the True Positives (TP) to the sum of the 
True Positives and the False Negatives (FN).  The sensitivity reports the percentage of 
true beats that are correctly classified by the algorithm. 

2. The Specificity (Sp) is defined as the ratio of the True Positives (TP) to the sum of the 
True Positives (TP) and the False Positives (FP). It reports the percentage of classified 
heartbeats which are in reality true beats. 

3. The classification rate: The mean value of the sensitivity and the specificity is used as 
the criterion for the effectiveness of the technique. 

Table 2.1 shows the fetal heart detection quality and classification rate using 
transabdominally-measured ECGs and their respective TOC diagonal or wall slices with 
and without linearisation. The combined diagonal and wall slices improve the classification 
rate by about 1% over and above that achieved by either slice. A further improvement of 
about 1% is achieved by using two off-diagonal and off-wall slices. A second-order Volterra 
synthesiser results in a higher detection rate of 83.49%. 

The highest achievable classification rate for non-invasive fetal heartbeat detection using the 

first hybrid system is 86.16% when a third-order Volterra synthesiser is employed in 

conjunction with single-hidden-layer classifiers. Note that the classification rate for 

coincident maternal and fetal QRS complexes is 0%. The classification rate of non-coincident 

maternal and fetal QRS-complexes is 95.55%. 

 

TOC matching 
template slice type 

Sensitivity 
(%) 

Specificity
(%) 

Classification
Rate (%) 

False 
Positives 

False 
Negatives 

TOC Diagonal/Wall 
slice 

76.24 79.38 77.81 24744 28512 

TOC Diagonal and Wall 
slices 

77.13 80.24 78.74 23712 27444 

TOC Diagonal, wall, 
diagonal & wall, &  22.5o 
slice 

78.04 81.18 79.69 22584 26352 

Diagonal/Wall slice 2nd 
order LMF Volterra 

82.37 84.61 83.49 18468 21156 

Diagonal/Wall slice 3rd 
order LMF Volterra 

84.46 87.85 86.16 14500 18648 

Table 2.1. Fetal heart detection quality and classification rate using transabdominally-
measured ECG and their respective TOC diagonal or wall slices with and without 
linearisation. The total number of fetal heartbeats is 120,000 and the total number of 
maternal ECG recordings. is 30. The performance was assessed against synchronised fetal 
scalp heartbeats. All mothers were during the first stage of labour at 40 weeks of 
gestation.  
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3. ECG bispectrum contour classification 

3.1 Background 

This section describes a hybrid system using the mother and fetal ECG bispectral contours 
(BIC), which carry the signature imprints of their respective QRS-complexes, in the signal 

processing phase. The classification phase employs LMS-based single-hidden-layer 
classifiers. The maternal chest ECGs and the fetal scalp electrode ECGs have been used as 

templates or the HOS representatives in the classification phase. The bispectral contour 
matching technique is used to identify the signatures of both the maternal and fetal QRS-

complexes. It will be shown that the highest achievable Fetal Heartbeat (FHB) classification 
rate using the BIC template matching technique is 90.12% with reduced false positives and 

negatives associated with the power spectrum-based FHB classification rate of 70%. 
Furthermore, the BIC has a marginally improved classification performance over and above 

the TOC during episodes of overlapping fetal QRS-complexes and maternal T-waves. This is 
achieved at the expense of complexity and computation time. The hybrid bispectral contour 

matching technique is an extension to the hybrid cumulant matching technique. Therefore, 
the choice of the NN classifier is based on the general discussion presented previously. Prior 

information remain as valuable assets and are exploited herein. It is the matching of the 
horizontal 2-d bispectral contours that has been used in the BIC template matching 

technique instead of the 1-d polar bispectral slices. Because in order to use the 1-d polar 
bispectrum slices effectively, one needs to use a minimum of 24 polar slices to facilitate 

capturing the most rapid changes in the bispectrum including null features that could be 
used as discriminant patterns. Whereas for BIC contours, provided that they are 

horizontally cut at a maximum number of 10 levels, a good quality discriminant picture can 

be made available for the neural network classifier. For example, it is very unlikely that 
maxima and troughs are missed because of any changes in their respective positions.  

The same procedure of Section 2 is applied with the replacement of the third-order cumulant 
slices by the bispectral contours (usually 10 contours including the tip of the peak and are 

spaced by approximately 1 dB). The CPU time for the bispectrum computation is almost twice 
that for cumulants and 2000 times that for individual TOC slices. The Detection key operations 

are exactly the same as those described in Section 2 except that the third-order cumulant slices 
are now going to be replaced by the bispectral contours (Zgallai, 2012).  

3.2 ECG bispectrum 

The nth-order cumulant spectrum of a process {x(k)} is defined as the  (n-1)-dimensional 

Fourier transform of the nth-order cumulant sequence. The nth-order cumulant spectrum is 

thus defined as (Dogan and J. M. Mendel, 1993): 

 1 1 2 2 1

1 1

( )
1 2 1 1 2 1( , , , ) ( , , , ) n n

n

jx x
n n n nC c e      

 
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

 
   

 
 

       (3.1) 

where  

1 2 11,2,... 1, ...i nfor i n and             
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The bispectrum, n = 3, is defined as: 

 1 1 2 2

1 2

( )
3 1 2 3 1 2( , ) ( , ) jx xC c e    

 
   

 
 

 
    (3.2) 

where 3 1 2( , )xc    is the third-order cumulant sequence. The computational complexity of the 

bispectrum is of the order of N3.  

3.3 Typical examples of bispectra and their contours 

Linearisation is a key step in the signal processing and it is applied using an optimised 

third-order Volterra synthesiser to all the results included. Fig. 3.1 depict dual-band-pass 

filtered bispectra and their contours normalised to the maternal QRS-complex spectral 

peak for the transabdominally-measured ECG segments I, II, III, and IV. Segment I: 

predominantly maternal QRS-complex, segment II: the first fetal heartbeat with maternal 

contribution; segment III: QRS-free ECG, and segment IV: the second fetal heartbeat with 

maternal contribution. The dual-band-pass filter consists of two fifth-order Butterworth 

filters with cut-off frequencies of 10 Hz to 20 Hz, and 25 Hz to 40 Hz, respectively, a pass-

band attenuation of 0.5 dB, and a stop-band attenuation larger than 70 dB. The sampling 

rate is 500 Hz. Optimised Kaiser weighting coefficients are used for the fetal and maternal 

ECGs to enhance their spectral peaks at 30 Hz and 17 Hz, respectively. The Kaiser 

windows are centred at frequencies of 15 Hz, 16 Hz, 17 Hz, 18 Hz, and 19 Hz for the 

maternal QRS-complex, and at frequencies of 28 Hz, 29 Hz, 30 Hz, 31 Hz, 32 Hz, 33 Hz, 34 

Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal heartbeat. 

Fig. 3.1 (I) shows the maternal QRS-complex principal bispectral peaks and contours 

centred at the frequency pairs (18 Hz, 5 Hz) and (18 Hz, 16 Hz). These maternal frequency 

pairs with a frequency peak at 18 Hz slightly deviate from the actual frequency of 17 Hz 

(Rizk et al., 2000), which is due to the BIC bias. The maternal optimised Kaiser window 

centred at 18 Hz will help to detect this deviated peak. Fig. 3.1 (II) shows the first fetal 

heartbeat principal bispectral peaks and contours at the frequency pairs   (30 Hz, 5 Hz), 

(30 Hz, 18 Hz), and (30 Hz, 30 Hz). The fetal optimised Kaiser window centred at 30 Hz 

will help to detect these peaks. Note that these peaks are sharp. Fig. 3.1 (III) shows the 

QRS-free ECG bispectral peak and contours centred at the frequency pair (27 Hz, 15 Hz). 

Note that the BIC of the QRS-free ECG is at approximately -12 dB which is 3 dB and 6 dB 

lower than that of the first and second fetal heartbeats, respectively. Fig. 3.1 (IV) shows 

the second fetal heartbeat principal bispectral peak and contours centred at the frequency 

pairs (30 Hz, 5 Hz), and (30 Hz, 28 Hz). The fetal optimised Kaiser window centred at 30 

Hz will help to detect these peaks. 

3.4 Estimation of the bispectral contour matching variance 

The variance of the BIC is defined as the expected value of the squared difference in 

frequency (in Hz) between the computed BIC of the 250 msec flag window of the 

transabdominal ECG signal and the computed BIC from the synchronised fetal scalp 

electrode ECG 250 msec window. 
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Fig. 3.1. Dual-band-pass filtered bispectra, Kaiser shaped window,  (l.h.s.) and their contour 
maps normalised to the maternal QRS spectral peak (r.h.s.) for the transabdominally-
measured ECG segments I, II, III, and IV of Fig. 2.1. Segment I: maternal QRS-complex, 
Segment II: the first fetal heartbeat with maternal contribution; Segment III: QRS-free ECG; 
and Segment IV: the second fetal heartbeat with maternal contribution. The dual band-pass 
filter consists of two fifth-order Butterworth filters with cut-off frequencies of 10 Hz to 20 
Hz, and  25 Hz to 40 Hz, respectively, and a pass-band attenuation of 0.5 dB, a stop-band 
attenuation larger than 70 dB. The sampling rate is 500 Hz. 
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 Varb = E [(Bis(1,2) Transabdominal  – Bis(1,2) fetal scalp ] 2  (3.3) 

The above variance ranges from 0.47 – 3.3, average = 1.716, when calculated for 120,000 
FHBs. The variance indicates the deviation of the frequency of the BIC (in Hz) of the 
transabdominal ECG signal from that of the fetal scalp electrode around 30 Hz. 

3.5 The back-propagation with momentum algorithm in single-hidden-layer 
perceptron  

Single-hidden-layer perceptron classifiers are trained in a supervised manner with the 

back-propagation algorithm which is based on the error-correction learning rule. The 

back-propagation algorithm provides a computationally efficient method for the training 

of the classifiers. The back-propagation algorithm is a first-order approximation of the 

steepest descent technique. It depends on the gradient of the instantaneous error surface 

in weight space. The algorithm is therefore stochastic in nature. It has a tendency to 

zigzag its way about the true direction to a minimum on the error surface. Consequently, 

it suffers from a slow convergence property. A momentum term is employed to speed up 

the performance of the algorithm. The classifier used here is exactly the same as that used 

in Section 2. 

3.6 Optimisation of the parameters of the back-propagation algorithm  

Fig. 3.2 shows the effect of changing the learning rate (), the momentum constant () and 

the middle layer size on the classification of the maternal QRS-complexes and the fetal 

heartbeats using the BIC template matching technique. The effect of changing the learning 

rate on the classification rate is shown in   Fig. 3.2 (a). Small values of  are not able to 

track the variations in the bispectral contours. For classification of the bispectral contours, 

 reaches its optimum value at 0.2. For values larger than 0.2, the output values are too 

large so that the difference with respect to the reference signal (template) will increase. 

This leads to larger error that will be fed back to the network, which will lead to slower 

convergence. The network will take long time to converge, or it might not converge at all. 

The optimum value of the momentum constant is found to be 0.2, as depicted in Fig. 3.2 

(b). Smaller values are not enough to push the adaptations to avoid local minima. While 

larger values tend to affect the routine detrimentally by bypassing the global minimum. 

The performance deteriorates significantly as the learning rate and the momentum 

constant diverge from their optimum values. The number and size of the middle layers 

were investigated by trial and error. There is a trade off between networks that should be 

small enough to allow faster implementation, and larger networks in size and number of 

hidden layers which are very slow and can not be implemented on-line using the current 

technology. Large networks could have complex relationships that represent non-

linearities that might not exist in the real signals at all. The optimum parameters indicated 

in Fig. 3.2 are calculated without considering the CPU time factor which might render 

those parameters undesirable for real-time applications. The CPU time for training is in 

the range of 17 to 60 sec. The average mean-squared error (MSE) is 0.04. The worst error is 

0.1, which is the criterion for convergence. The implemented neural network has a single 

middle layer size of 6 x 6 as shown in Fig. 3.2 (c). The number of passes (epochs) required 

for training varied from 6 to 14. 
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Fig. 3.2. The effect of changing (a) the learning rate, (b) the momentum constant, and (c) 
the middle layer size on the classification rate of the maternal  QRS-complexes (l.h.s.) and 
fetal heartbeats (r.h.s.) from transabdominally-measured ECG signals using bispectral 
contours and their templates to be matched using a single-hidden-layer perceptron back-
propagation algorithm with momentum. Data length = 250 msec. The optimised 
parameters for the BIC classification are: learning rate = 0.2, momentum constant = 0.2, 
and middle-layer size = 6 x 6. (Code: 5-1-100). 
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3.7 Bispectral contour matching of the maternal QRS-complex and fetal heartbeat 

The bispectral contour template matching technique works with only 10 templates of 
maternal transabdominal QRS-complexes and 20 templates of fetal heartbeats with maternal 
contribution. The classification of the four segments involves a pattern-by-pattern updating 
rather than batch updating for the weight adjustments. This is more suitable to speed up the 
performance. Pattern-by-pattern updating tends to be orders of magnitude faster than batch 
updating. However, it should be noted that pattern-by-pattern updating is harder to 
parallelise (Zgallai, 2012).  

3.8 The maternal QRS-complex and the fetal heartbeat classification rates 

3.8.1 The maternal QRS-complex classification rate 

Table 3.1 shows a top classification rate of 100% for maternal QRS-complexes using 
bispectral contours for signal processing and single-hidden-layer perceptron classification. 
The 100% maternal QRS-complex classification rate has been achievable with or without 
linearisation. It makes no difference to the results. A brief description of the optimised 
parameters required for the  linearisation process is given. To calculate the maternal heart 
rate an auxiliary method to pinpoint the R-wave is needed. For this application an adaptive 
thresholding method has been employed. Note that this is not very accurate when one deals 
with deformed QRS-complexes in heart patients. All maternal ECGs, however, exhibit 
normal-to-the-patient QRS-complexes. The instantaneous maternal heart rate is calculated 
by dividing 60 by the R-to-R interval (in seconds). The application of this auxiliary routine 
leads to a maternal heart rate with an accuracy of 99.85%. 

Parameters: The second-order Volterra parameters are: filter length = 6, step-size parameters 
= 0.005, and 0.0004 for linear and quadratic parts, respectively, delay = 3. The third-order 
Volterra parameters are: filter length = 6, step-size parameters = 0.001, 0.0002, and 0.0004 for 
linear, quadratic and cubic parts, respectively, delay = 4. A dual-band-pass filter is applied 
to the bispectrum, the first has a band-pass of 10 Hz to 20 Hz and the second has a band-
pass of 25 Hz to 40 Hz. Optimised Kaiser windows centred at frequencies of 15 Hz, 16 Hz, 
17 Hz, 18 Hz, and 19 Hz for the maternal spectrum, and at frequencies of 28 Hz, 29 Hz, 30 
Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal spectrum are 
used in both the power spectrum and the BIC. 

3.8.2 Fetal heartbeat detection quality and classification rate for the bispectral 
contour template matching technique 

Table 3.2 summarises the results of the fetal heartbeat detection using the power spectrum 
method (second-order statistics), and the bispectrum contour template matching technique. 
Optimised adaptive LMF-based second- and third-order Volterra synthesisers are employed. 
The power spectrum method has a classification rate of 71.47%. Using the second hybrid 
system, the classification rate increased to 87.72% without linearisation, and to 88.28% and 
90.12% using second- and third-order Volterra synthesisers with LMF update, respectively. The 
second hybrid method has an improvement of 19% and 4% in the classification rate over and 
above that achieved with the second-order statistics and the TOC template matching technique, 
respectively. The classification rate of the coincident maternal and fetal QRS-complexes is 0%. 
The classification rate of non-coincident maternal and fetal QRS-complexes is 99.21%. 

www.intechopen.com



 
Recurrent Neural Networks and Soft Computing 

 

240 

Parameters:The second-order Volterra parameters are: filter length = 6, step-size parameters 
= 0.005, and 0.0004 for linear and quadratic parts, respectively, delay = 5. The third-order 
Volterra parameters are: filter length = 6, step-size parameters = 0.001, 0.0002, and 0.0004 for 
linear, quadratic and cubic parts, respectively, delay = 5. A dual-band-pass filter is applied 
to the bispectrum, the first has a band- pass of 10 Hz to 20 Hz and the second has a band-
pass of 25 Hz to 40 Hz. Optimised Kaiser windows centred at frequencies of 15 Hz, 16 Hz, 
17 Hz, 18 Hz, and 19 Hz for the maternal spectrum, and at frequencies of 28 Hz, 29 Hz, 30 
Hz, 31 Hz, 32 Hz, 33 Hz, 34 Hz, 35 Hz, 36 Hz, 37 Hz, and 38 Hz for the fetal spectrum are 
used in both the power spectrum and the BIC. 

 

Spectral matching template with ANN 
classifiers 

The power 
spectrum 

The bispectrum 
contours 

Classification rate 99.84 100.00 

Table 3.1. The classification rate for the maternal QRS-complex using maternal 
transabdominally-measured ECGs and their respective power spectrum and bispectral 
contours. 

 

Spectral matching template type with 
and without linearisation using 
Volterra and in conjunction with 
ANN classifiers 

Se 
(%) 

Sp 
(%) 

FP, 
out of 
120000 

FN, 
out of 
120000 

Classification 
rate 
(%) 

Power spectrum with linearisation 71.29 71.44 34272 34537 71.37 

Bispectral contour without 
linearisation 

87.97 87.46 15048 14436 87.72 

Linearised bispectral contour using 2nd 
order adaptive LMF Volterra 
synthesiser 

 
88.53 

 
88.04

 
14352 

 
13764 

 
88.28 

Linearised bispectral contour using 3rd 
order adaptive LMF Volterra 
synthesiser 

 
90.53 

 
89.73

 
12324 

 
11364 

 
90.12 

Table 3.2. Fetal heart detection quality and classification rate using transabdominally-
measured ECG and their respective power spectrum and bispectral contours with and 
without linearisation. The total number of fetal heartbeats is 120,000 and the total number of 
maternal ECG recordings is 30. The performance was assessed against synchronised fetal 
scalp heartbeats. All mothers were during the first stage of labour at 40 weeks of gestation. 

3.9 Discussion 

The bispectral contour matching technique is an extension to the cumulant matching 
technique. Therefore, the choice of the NN classifier is based on the discussion presented 
previously. Prior information remain as valuable assets and are very much exploited herein. 
It is the matching of the horizontal 2-d bispectral contours that has been used in the BIC 
template matching technique instead of the 1-d polar bispectral slices. Because in order to 
use the 1-d polar bispectrum slices effectively, one needs to use a minimum of 24 polar slices 
to facilitate capturing the most rapid changes in the bispectrum including null features that 
could be used as discriminant patterns. Whereas for BIC contours, provided that they are 
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horizontally cut at a maximum number of 10 levels, a good quality discriminant picture can 
be made available for the neural network classifier. For example, it is very unlikely that 
maxima and troughs are missed because of any changes in their respective positions. 
Approximately 50,000 maternal cardiac cycles have been included in the analysis. The 
numbers of bispectral contours compound templates are 10 for the maternal chest, 10 for the 
fetal scalp, and 140 for the transabdominally-measured 250 msec segments, respectively. 
Each bispectral compound template is made of 10 horizontal templates at different levels. 
Starting from a normalised 0 dB and going down in steps of 1 dB each to a – 10 dB. 

The maternal transabdominal ECG signal is linearised using an optimised LMF-based second- 

or third-order Volterra synthesiser. The second-order Volterra synthesiser parameters are: filter 

length = 6, step-size parameters = 0.005, and 0.0004 for linear and quadratic parts, respectively, 

delay = 5. The third-order Volterra synthesiser parameters are: filter length = 6, step-size 

parameters = 0.001, 0.0002, and 0.0004 for linear, quadratic and cubic parts, respectively, delay = 

5.  The transabdominal ECG signal is segmented into four segments containing; (I) The 

maternal QRS-complex, (II) the first fetal heartbeat with maternal contribution, (III) QRS-free 

ECG, and (IV) the second fetal heartbeat with maternal contribution. To segment the 

transabdominal ECG signals, the window length is carefully chosen to; (i) Yield an acceptable 

upper threshold of both the deterministic and stochastic noise types inherent in the higher-

order statistics of the ECG signals encountered, and (ii) allow the detection of one, two, three, or 

four fetal heartbeats (FHBs) within one maternal transabdominal cardiac cycle. 

The classification procedure starts by matching the bispectral contours of the segments to 

those of the templates until the first and the second maternal QRS-complexes are detected and 

their R-waves are pinpointed. The maternal heart rate is accurately calculated from the 

knowledge of the current and previous R-wave positions. Then, the search for the fetal 

heartbeat starts at 50 msec before the first maternal R-wave and continues until the second 

maternal R-wave is  reached. Although the ECG bispectral contour template matching 

technique is very effective in detecting the occurrence of the fetal heartbeats as a whole in the 

frequency domain even when it is completely buried in noise, it cannot locate the R-wave in 

the time domain over a window length of  250 msec. However, the maternal heartbeats can be 

measured fairly accurately and calculate the instantaneous heart rate for the mother. Hence, by 

counting the number of fetal heartbeats that have occurred between two successive maternal 

R-waves, one can easily calculate the averaged FHR within the maternal cardiac cycle; 

The average FHR = MHR x Number of  FHBs / number of maternal heartbeats  

the instantaneous maternal heart rate is previously known with some degree of accuracy, 
and the relative fetal to maternal heartbeat is also known within the maternal cardiac cycle. 
Hence, the averaged fetal heart rate can be calculated within each maternal cardiac cycle. 

3.9.1 The effect of window length on the bispectral contour variance  

The variance of the bispectrum for the optimum window length of 250 msec with FHB 
occurrence ranges from 0.47 to 3.3 with an average value of 1.716. The variance of the 
bispectrum is smaller than that of the third-order cumulants. A further 15% increase in the 
variance of the bispectrum is due to an increase in the maternal heartbeat from 60 bpm to 
100 bpm. The latter has resulted in an 30% decrease in segment size.  
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3.9.2 Parameters of the single-hidden layer perceptron 

The network has been optimised in terms of its learning rate, momentum constant, and hidden 
layer size to achieve the minimum mean-squared error. The optimum learning rate is found to 
be 0.2. The optimum momentum constant is found to be 0.2. The single-hidden-layer has an 
optimum dimension of 6 x 6. The input to the first layer is the bispectral contours of the four 
transabdominally-measured ECG segments. The network is trained using the BIC templates. 
During the training phase, the input to the network is four template patterns. These are the 
BIC of four segments from one transabdominal cardiac cycle. For example the first is the 
maternal QRS-complex BIC, the second is the first fetal heartbeat BIC, the third is the QRS-free 
ECG BIC, and the fourth is the second fetal heartbeat BIC. The network is trained over ten 
templates of each of the four segments. The training terminates when the worst error in all 
patterns in one pass is less than 0.1. Typically the average error will be in the range of 0.001. 

4. ECG abnormality classification using polyphase 

The main motivations behind the use of HOS are their ability to (i) preserve the phase of the 
signal frequency components (ii) suppress Gaussian noise, (iii) characterise and separate motion 

artefact (Nikias and Petropulu, 1993), and other non-Gaussian low frequency components, and 
(iv) detect and classify non-linearities. HOS algorithms are employed to develop discriminant 

contour patterns in the multi-dimensional phase of the polyspectra (polyphase) of normal 
looking ECGs in outpatients having weariness and general malaise or have recently had 

suspected angina. Similar polyphase patterns have been found in the ECGs of acute myocardial 
infarct patients with or without diagnostic S-T segment and T-wave changes. The polyphase 

computation is done in milliseconds but a temporal window of 10 ECG cycles is necessary in 
each of the polyspectral averaging process. The polyphase patterns can be displayed every 10 

seconds. A high resolution three-lead ECG is adequate for polyphase discrimination. The 
results of a pilot study show that this is a potential diagnostic technique. Particularly in those 

50% Pre-Infarction Syndrome cases which show perfectly normal 12-lead ECGs and will not be 
identified early enough to prevent them from developing acute myocardial infarction (AMI), 

(Struebe and Strube, 1989). The standard 12-lead ECG has poor sensitivity for the early 
detection for (AMI). Only 40-50% patients presenting with AMI show S-T segment and T-wave 

changes on the initial ECG. The rest might not receive the benefit of acute interventional 
therapies in the first hours after the event. The application of HOS to ECGs has shown fruition 

in positively identifying ischemic heart diseases (Strube and Strube, 1989, Zgallai, 2011a, 
Zgallai, 2011b, and Zgallai 2011c). The methodology involved decomposing the ECGs into 

linear and several non-linear component waves prior to identification and classification. 
Methods of validation employed clinical diagnoses and other apriori clinical information 

spanned over a number of years.  Using other HOS discriminant patterns, the focus is on the 
identification of coronary artery disease, solely from its polyphase contour patterns. Polyphase 

patterns are obtained using the standard three-lead ECG, a multi-channel low-noise amplifier, 
an interface card and a PC. Sampling frequency is 0.5 KHz and a resolution of 12 bits. Recurrent 

neural networks have been used to classify the patterns in Fig 4.1 c and d, respectively (Rizk et 

al., 1999b). The employed neural network has an input layer, a middle layer, and an output 

layer. The input layer has 64 neurons, the middle layer has 16 neurons, and the output layer has 
8 neurons. The network size has been optimised using trial and error with an MSE threshold of 

0.001. The learning rate and momentum constant are, respectively, 0.7 and 0.9. 
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Fig. 4.1. Typical electrocardiogram biphase signature of an Acute myocardial infarction 
(AMI) presented with a normal looking 12-lead ECG without S-T segment and T-wave 
changes and normal sinus rhythm. (a) and (b) are ECGs of normal and AMI subjects, 
respectively. (c) and (d) are the corresponding bispectral phases using the direct method 
with frequency domain smoothing and Kaiser window. The bispectrum is the average of 10 
ST bispectra, the S-T segment is 150 samples starting from the R peak (Rizk et al., 1999b). 

5. ECG abnormality classification using cumulants 

This section describes a simple and accurate multi-layer recurrent neural network classifier 
specifically designed to successfully distinguish between normal and abnormal higher-order 
statistics features of electrocardiogram (ECG) signals. The concerned abnormality in ECG is 
associated with ventricular late potentials (LPs) indicative of life threatening heart diseases. 
LPs are defined as signals from areas of delayed conduction which outlast the normal QRS 
period (80-100 msec). The QRS along with the P and T waves constitute the heartbeat cycle. 
This classifier incorporates both pre-processing and adaptive weight adjustments across the 
input layer during the training phase of the network to enhance extraction of features 
pertinent to LPs found in 1-d cumulants. The latter is deemed necessary to offset the low 
SNR ratio in the cumulant domains concomitant to performing short data segmentation in 
order to capture the LPs transient appearance. The procedures of feature selection for neural 
network training, modification to the back propagation algorithm to speed its rate of 
conversion, and the pilot trial results of the neural ECG classifier are summarised. 

5.1 Background 

The relationship between myocardial infarction (MI) and short-duration high-frequency 
components occurring around the terminal end of the QRS complex in the cardiac cycle of 
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the ECG  has been investigated by a number of dedicated research workers (Gomis et al., 
1997). The high frequency components are associated with late potentials (LPs) emanating 
from areas of delayed conduction and outlast the normal QRS period (80-100 msec). LPs are 
linked with malignant ventricular tachycardia (VT) after a myocardial infarction (dead zone 
or scar tissue in the ventricular muscle). The later is highly correlated with sudden cardiac 
death. Common methodology for detecting LPs in the time domain involves temporal 
scanning of the S-T region of the cardiac cycle and relies upon accurate identification of the 
QRS boundaries (Li et al., 1995). The detection problem is exacerbated by the fact that LP‘s 
are relatively weak (mv) and often below the noise floor. In the frequency domain, second-
order statistics can offer a limited success. The shapes of power spectra of normal and 
abnormal (malignant VT) ECGs are invariably broadly similar and without significant 
features above the noise floor, at approximately -70 dB (Rizk et al., 1998). LPs are essentially 
non-linear transient events (Gomis et al., 1997) and consequently interact with the inherent 
non-linearity of the cardiac waves as well as certain class of recursive non-linearly attributed 
to external factors such as motion artefact (Zgallai et al., 1997). 

Previous work (Zgallai et al., 1997) showed that results obtained using HOS offer some 
empirical evidence that:  (i) ECG signals contain intrinsic as well as quadratic and higher-
order non- linearities, (ii) the QRS wave is predominantly linear non-Gaussian, the P and T 
waves are characterized by having quadratic and cubic non-linearities, (iii) the QRS wave 
can be totally resolved from the motion artifact in the bispectrum domains and (iv) 
disproportionately high-frequency non-linearity in the bicoherence squared is indicative of 
abnormality in an otherwise innocent looking ECG. However, non-linear filtering and a 
high resolution technique such as the spectral MUSIC incorporates an optimised window 
must be applied to a short duration data sample (without compromising the variance), prior 
to the application of HOS (Zgallai et al., 1997). Third-order Volterra filtering applied to raw 
data can be beneficial in isolating quadratic and cubic non-linearity in the higher-domains 
(Zgallai et al., 2007). 

The higher-order statistical features are selected and enhanced using sampled weights of a 
non-linear function based on a priori information about distinguished abnormality 
signatures in the higher domains. The function is modified adaptively during the training of 
the neural network which employs ten 1-d cumulants every 1000 or less cycles per patient. 
After this the updated version of the function parameters are fixed over the next 1000 
cardiac cycles. Subsequently, a simple neural network classifier based on a modified version 
(Jacobs, 1988, and Hush and Salas, 1988) of the back-propagation algorithms performs 
accurate LPs and even ischemic ECG classification (Zgallai,     2011 a, Zgallai, 2011 b, and 
Zgallai, 2011 c). 

5.2 Higher-order statistics feature selection and enhancement 

The experimental setup consists of an ECG monitor, interface card and a workstation. 
Raw ECG data are measured using three orthogonal surface electrodes, sampled at 500 Hz 
and fed to the computer which performs the following operations. Accurate on-line QRS 
detection. This involves Volterra whitening filters in the time domain or / and the high-
resolution spectral MUSIC in the frequency domain. Positions of ECG peaks are 
pinpointed in the time domain. The MUSIC algorithm incorporates two sliding sets of 
three overlapping Kaiser windows and adaptive thresholding operations which not only 
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pinpoint the high-level low-frequency QRS spectral peaks (LFQRSSPs) per cycle, but also 
performs the preliminary spotting of the low-level high-frequency late potential 
components over a range of frequencies from 100-250 Hz. Detection of late potential high-
frequency spectral peaks is carried out off-line every 5 LFQRSSPs to allow appropriate 
segmentation between the R-R marking in the time domain processing which runs almost 
synchronisingly with the MUSIC routine. A detailed procedure for segmentation involves 
calculating the bicoherence squared and mapping a particular region for each individual 
segment to confirm existence of quadratic non-linearity before moving on to interrogate 
another segment or skip a few segments up to the next R peak. This controlled skipping 
helps to avoid the highly non-linear T wave of the present cycle and the P wave of the 
adjacent one. 

The Volterra filtering can be used to partially suppresses motion artifact only in those 

cases of missing LFQRSSPs and the MUSIC routine is repeated over the same cardiac 

cycle for confirmation of the presence or absence of QRSs. This has been found to be 

necessary in extreme cases and in the absence of QRS waves (ventricular fibrillation). Off-

line calculations of the cumulant diagonal and wall 1-d slices are performed on those 

segments suspected of having LPs as depicted in Fig. 5.1. It is clearly seen that 

abnormality is manifested in the eminent petal pattern (a horizontal slice has a petal 

shape) in the cumulant domains. Five thousand cardiac cycles of normal and abnormal 

ECGs were put to the test. An arbitrarily chosen non-linear function modifies the 

envelope of the so-called ‘petal pattern’ to enhance its peculiarity against background 

artifact. The non-linear function is then sampled across the input layer of the neural 

network. 

5.3 Design of the neural classifier 

Fig. 5.2 shows the network preceded by a preprocessing unit which performs the task of 

determining a set of meaningful and representative features in the HOS domains. A sigmoid 

logistic function is used to describe the input-output relation of the non-linear device. The 

neural network is designed to classify two classes; normal and abnormal third-order 

cumulants. The combined use of skewness and kurtosis can provide more accuracy in 

difficult cases.The utility of the diagonal slice of the fourth-order cumulant can be of more 

help when used in the desired response for the third output. The use of higher than the 

third-order statistics adds more complexity to the network.  

5.3.1 Block adaptive weight adjustment 

Initially the classification was attempted by feeding cumulant slices of short ST segments of 

the order of 10 to 30 samples at 500 Hz sampling rate. This attempt was 80% successful as 

the network missed low profile petal patterns with low levels of signal-to-noise ratios in 

their vicinity as a result of short data segmentation. A function was introduced to strengthen 

the relative magnitude of the discriminant cumulant slice features. The function is sampled 

across the input layer and its parameters (,) can be adaptively changed for each cumulant 

slice fed during the training phase which usually takes up to 10 modified cumulant slices 

every 1000 cardiac cycles. Obviously the shape of function can be changed to cater for other 

types of abnormalities. 

www.intechopen.com



 
Recurrent Neural Networks and Soft Computing 

 

246 

  
(a) (b) 

Fig. 5.1. Typical third-order cumulants and their 1-d diagonal and wall slices shown in 

insets (left, right) of (a) a normal subject and (b) a subject having infarction in the ventricular 

muscle.  

 

Fig. 5.2. Architecture of the four-layerd neural network. (a) Neuron or processing unit in the 

network. (b) The four-layer neural network. Only 1-d slice of the weight function modifies 

the corresponding cumulant slice.  

5.3.2 Modification to the back-propagation algorithm 

The back propagation method (Hush and Salas, 1988) used in the supervised learning of a 
multi-layer neural network is basically a gradient descent method. Although this method 
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has become the most popular learning algorithm for multi-layer networks, its rate of 
convergence is often found to be too slow for practical applications. Well established 
methods have been adopted (Hush and Salas, 1988). In the modified back-propagation 

method, every weight wij in the network is given its own learning rate ij, and the training 
data set is divided into a number of epochs each containing K training patterns (training 
patterns are 1-d cumulants from overlapping segments of the ST region). The weight wij 

and learning rate ij are updated every time after an entire training epoch (10 cumulants) 
has been presented to the network. The weight and learning rate updating rules of the 
modified back-propagation algorithm can be summarized as follows (Hush and Salas, 
1988). 
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The index n refers to the nth epoch in the training data; the index k refers to the kth pattern 

in an epoch containing K patterns; kj is the modulated error signal of neuron j with the kth 
pattern in an epoch; yki refers to the actual computed output of neuron I with the kth pattern 

in an epoch; k is the index performance to be minimised by the weight update rule with the 

kth input pattern; finally, , , and  (all of which have values between 0 and 1) are the 
control parameters. 

5.4 Experimental results  

Three orthogonal leads ECG were recorded from several subjects confirmed of having VT 
with a prior myocardial infarction (MI). Two subjects suspected of having MI but time- and 
frequency-domains analysis had not shown any abnormality, and several normal subjects. A 
total of 3,000 cardiac cycles for this pilot study. Their feature extraction and enhancement 

were performed. The parameter  and  of the exponential weight function applied across 

the input layer were chosen to fall in the region of 1-2 and 0.25 – 0.5 for  and , 

respectively. The initial learning rates ij(0) were all chosen to be 0.06. The momentum 

factor, , was fixed at 0.09. The control parameters ,  and  were chosen to be 0.03, 0.1 
and 0.5 respectively. The classifier described here achieved very high (90%) classification 
rate. The remaining 10% failure mainly arose because the MI suspected cases were not 
invasively examined and confirmed. 
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6. Statistical analysis of ECG detection methods 

ECG signals are predominantly non-Gaussian (Rizk and Zgallai, 1999 and Rizk et al., 1995), 

and exhibit quadratic and higher-order non-linearities supported by third- and fourth-order 
statistics, respectively. ECG signals do contain measurable quantities of quadratic and cubic 

non-linearities. Such quantities if not synthesised and removed before any further 
processing for the purpose of signal identification and classification could lead to poor 

performance with regard to fetal QRS-complex detection rates. The non-linearity in the ECG 
signal can be detected using the bicoherence squared. The bicoherence squared has peaks at 

the frequency pairs of (6 Hz,15 Hz) and (14 Hz,14 Hz) for the fetal scalp cardiac cycle, (15 
Hz,15 Hz) for the maternal chest cardiac cycle, and (7.5 Hz,7.5 Hz) for the maternal 

transabdominal cardiac cycle. These bicoherence peaks support non-linearity (Zgallai, 2007). 
There is a general consensus that individual cardiac cycles are locally stationary. However, 

when applying a highly dimensional signal such as the transabdominal ECG that have 
several individual non-linear and deterministic signals overlapping both in the time and 

frequency domains, all coexisting in a cocktail of noise and motion artefact, it is prudent to 
re-examine the validity of the stationarity assumption in relation to such signals. It is only 

natural to expect that the proximity of two non-linear signals such as the maternal and fetal 
QRS-complexes would result in non-linear (quadratic and higher-order) coupling and this in 

turn would invoke non-stationarity.  The bispectral  OT region is insepcted  (Nikias and 
Petropulu, 1993) for the maternal bispectral contour maps at a level of -30 dB. When the two 

R-waves of the maternal and fetal QRS-complexes are separated by 200 msec, the resultant 

bispectrum does not support the OT region (Zgallai, 2007). However, the situation is totally 
different when the two R-waves are as close as 35 msec. The OT region of the bispectrum is 

fully occupied and non-stationary (Zgallai, 2007). Hence, conventional signal processing 
techniques to separate the maternal and fetal QRS-complexes cannot be used. This problem 

has been adequately solved by linearising (at least removing quadratic coupling) the 
transabdominal signal before attempting to separate individual QRS-complexes. 

Correlartion-based second-order statistics do not show any distinguishable features that 

could be used to differentiate between maternal QRS-complex, fetal heartbeat with maternal 

contribution, and QRS-free ECG contributions. The FFT method reveals a fetal scalp 

electrode ECG principal spectral peak at 30 Hz (Zgallai, 2007). The FFT method for the 

transabdominal cardiac cycle reveals the maternal principal spectral peak of 15 Hz (Zgallai, 

2007). However, the FFT does not clearly show fetal spectral peak from the segmented 

transabdominal signal. There could be a shallow peak as low as    28 Hz or a shifted peak as 

high as 42 Hz (Zgallai, 2007).  

Statistical analysis of ECG data, including Pearson’s correlation analysis and higher order 

moments have been carried out (Rizk and Zgallai, 1999). The value of Pearson’s product-
moment correlation coefficient for both the third-order cumulant and the bispectral contour 

method is within the range of  -0.1 to +0.1.  

The Receiver Operating Characeteristics (ROC) analysis has been used to statistically 
analyse the results of the two propsoed detection methods, third-order cunulant and 
bispectral contour, compared to the second-order statistics method. The Area Under Curve 
(AUC) has been used as a measure for diagnostic accuracy and discriminating power. The 
second-order statistics-based, third-order cumulant slice, and the bispectral controue 
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methods have AUC values of 0.731, 0.794, and 0.843, respectively. This suggests that the 
third-order cumulant is a better detection method than second-order statistics-based, and 
that the bispectral contour method outperforms the third-order cumulant method.  

Youden’s index, defined as sensitivty + specificity – 1, has also been used for the detection 
methods. The second-order statistics-based methods have indices in the range of 0.42 to 0.55. 
The third-order cumulant method has an index of 0.72. The bispectral contour method has 
an index of 0.80. This suggests that the third-order cumulant is a better detection method 
than second-order statistics-based, and that the bispectral contour method outperforms the 
third-order cumulant method.  

Also, the Partial Area Under Curve (PAUC) measure has been used for a False-Positive Rate 
(FPR) of 10% and sensitivty larger than 75%. The second-order statistics-based method gives 
a PAUC of 0.043. The third-order cumulant method has a corresponding value of 0.125 
whilst that of the bispectral contour method is 0.137. This suggests that the third-order 
cumulant is a better detection method than second-order statistics-based, and that the 
bispectral contour method outperforms the third-order cumulant method.  

7. Conclusion 

The sensitivity, specificity and classification rate for the third-order slice cumulant matching 
hybrid system have been calculated . The technique has been evaluated for diagonal, wall, 

or arbitrary TOC slices, employing both the LMF-based quadratic and cubic Volterra filters. 
The results indicate that a linear combination of diagonal and wall slices of the TOC can 

improve the detection rate by up to 1% over and above the 77.8% obtainable using only 
either slice. Using two more arbitrary slices off-diagonal and off-wall would result in a 

further improvement of up to 1%. Using two slices instead of only one results in an two-fold 
increase in the CPU time of 1 msec using Unix WS. Further improvement of 6% to 8% is 

attainable with maternal transabdominal ECG signal linearisation employing second- and 
third-order Volterra synthesisers, respectively. Based on the first hybrid system using TOC 

slices for signal processing and subsequent single-hidden-layer classification, 100% and 
86.16% classification rates have been achieved for maternal QRS-complex and fetal 

heartbeats, respectively. Note that the classification rates for coincident and non-coincident 
maternal and fetal QRS-complexes are 0% and 95.55%, respectively. The remaining 

undetected 13.84% fetal heartbeats include 9.8% overlap with the maternal QRS-complexes 
and 4% occur during depolarisation of the maternal T-waves. Those events unavoidably 

lead to significant distortion of the fetal TOCs. This means that the cumulant signatures will 
not be close to the TOC template signature stored in the database. Examples of false 

negatives and false positives have been found in the following cases, respectively, (i) a fetal 
heartbeat with maternal contribution TOC diagonal slice was wrongly matched to a QRS-

free ECG TOC diagonal slice template, and (ii) a QRS-free ECG TOC diagonal slice was 
wrongly matched to a fetal heartbeat with maternal contribution TOC diagonal slice 

template.  

Results obtained for the bispectral contour matching hybrid system from 30 cases using the 
non-invasive transabdominally-measured ECG signal, with the simultaneous fetal scalp 
electrode ECG signal as a reference, show that the method has a classification rate of 100% 
for normal, healthy maternal QRS-complexes and 90.12% for fetal heartbeats. It has been 
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shown that an improvement of 1% to 3% is attainable with ECG signal linearisation 
employing second- and third-order Volterra synthesisers, respectively. Conventional 
methods (based on the power spectrum) of fetal heartbeat detection have a success rate in 
the range of 70%. The second hybrid system has a significantly higher classification rate.  
The classification rate of fetal heartbeats for non-coincident maternal and fetal QRS-
complexes is 99.21%. The classification rate of fetal heartbeats for coincident maternal and 
fetal QRS-complexes is 0%. This means that the hybrid bispectral contours technique fails to 
resolve the fetal beat when both the mother and fetal  QRS-complexes are synchronised. The 
bispectral contour template matching technique improved the classification rate by 
approximately 4% over and above that of the third-order cumulant template matching 
technique. The difference in performance is not due to better resolvability of the latter over 
the former in the case of coincident maternal and fetal QRS-complexes, as both techniques 
fail in this respect. But, it is due to the fact that the BIC template matching technique can 
resolve a few of the fetal QRS-complexes occurring within the T-wave region of the mother.  

Non-invasive classification of a particular type of ECG abnormality, late potentials, was 
investigated. This has been achieved by the prudent use of their third-order cumulant 1-d 
slices. A four-layer neural network classifier based on modified back-propagation algorithm 
and incorporating adaptive feature enhancement weights applied to its input layer during 
its learning phase has been successfully tested. Classification rate obtained from 3000 
cardiac cycles of normal, confirmed, and suspected abnormal subjects is 90%.  In a separate 
study conducted on the same data a sophisticated recurrent back-propagation network 
achieved less that 80% success rate. However, the instability issues of the latter network 
have not been fully investigated. 
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