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1. Introduction  

During almost three decades, the study on theory and applications of artificial neural 
network has increased considerably, due partly to a number of significant breakthroughs in 
research on network types and operational characteristics, but also because of some distinct 
advances in the power of computer hardware which is readily available for net 
implementation. In the last few years, recurrent neural networks (RNNs), which are neural 
network with feedback (closed-loop) connects, have been an important focus of research and 
development. Examples include bidirectional associative memory (BAM), Hopfield, cellular 
neural network (CNN), Boltzmann machine, and recurrent back propagation nets, etc.. RNN 
techniques have been applied to a wide variety of problems due to their dynamics and 
parallel distributed property, such as identifying and controlling the real-time system, 
neural computing, image processing and so on. 

RNNs are widely acknowledged as an effective tool that can be employed by a wide range 
of applications that store and process temporal sequences. The ability of RNNs to capture 
complex, nonlinear system dynamics has served as a driving motivation for their study. 
RNNs have the potential to be effectively used in modeling, system identification, and 
adaptive control applications, to name a few, where other techniques may fall short. Most of 
the proposed RNN learning algorithms rely on the calculation of error gradients with 
respect to the network weights. What distinguishes recurrent neural networks from static, or 
feedforward networks, is the fact that the gradients are time dependent or dynamic. This 
implies that the current error gradient does not only depend on the current input, output, 
and targets, but rather on its possibly infinite past. How to effectively train RNNs remains a 
challenging and active research topic.  

The learning problem consists of adjusting the parameters (weights) of the network, such that 
the trajectories have certain specified properties. Perhaps the most common online learning 
algorithm proposed for RNNs is the real-rime recurrent learning (RTRL), which calculates 
gradients at time (k) in terms of those at time instant (k-1). Once the gradients are evaluated, 
weight updates can be calculated in a straightf__Gorward manner. The RTRL algorithm is 
very attractive in that it is applicable to real-time systems. However, the two main drawbacks 
of RTRL are the large computational complexity of O(N4) and, even more critical, the storage 
requirements of O(N3), where N denotes the number of neurons in the network.  
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RNNS are mathematical abstractions of biological nervous systems that can perform 
complex mappings from input sequences to output sequences. In principle one can wire 
them up just like microprocessors, hence RNNs can compute anything a traditional 
computer can compute. In particular, they can approximate any dynamical system with 
arbitrary precision. However, unlike traditional, programmed computers, RNNs learn their 
behavior from a training set of correct example sequences. As training sequences are fed to 
the network, the error between the actual and desired network output is minimized using 
gradient descent, whereby the connection weights are gradually adjusted in the direction 
that reduces this error most rapidly. Potential applications include adaptive robotics, speech 
recognition, attentive vision, music composition, and innumerably many others where 
retaining information from arbitrarily far in the past can be critical to making optimal 
decisions. Recently, Echo State Networks ESNs and a very similar approach, Liquid State 
Machines, have attracted significant attention. Composed primarily of a large pool of hidden 
neurons (typically hundreds or thousands) with fixed random weights, ESNs are trained by 
computing a set of weights from the pool to the output units using fast, linear regression. 
The idea is that with so many random hidden units, the pool is capable of very rich 
dynamics that just need to be correctly “tapped” by setting the output weights 
appropriately. ESNs have the best known error rates on the Mackey-Glass time series 
prediction task.( Abraham, 2005) 

Two main methods exist for providing a neural network with dynamic behavior: the 
insertion of a buffer somewhere in the network to provide an explicit memory of the past 
inputs, or the implementation of feedbacks. As for the first method, it builds on the structure 
of feed forward networks where all input signals flow in one direction, from input to 
output. Then, because a feed forward network does not have a dynamic memory, tapped-
delay-lines (temporal buffers) of the inputs are used. The buffer can be applied at the 
network inputs only, keeping the network internally static as in the buffered multilayer 
perceptron (MLP) or at the input of each neuron as in the MLP with Finite Impulse 
Response (FIR) filter synapses (FIRMLP). The main disadvantage of the buffer approach is 
the limited past-history horizon, which needs to be used in order to keep the size of the 
network computationally manageable, thereby preventing modeling of arbitrary long time 
dependencies between inputs and outputs it is also difficult to set the length of the buffer 
given a certain application. 

The second method, the most general example of implementation of feedbacks in a neural 
network is the fully recurrent neural network constituted by a single layer of neurons fully 
interconnected with each other or by several such layers. Because of the required large 
structural complexity of this network, in recent years growing efforts have been 
propounded in developing methods for implementing temporal dynamic feedback 
connections into the widely used multi-layered feed forward neural networks. Recurrent 
connections can be added by using two main types of recurrence or feedback: external or 
internal. External recurrence is obtained for example by feeding back the outputs to the input 
of the network as in NARX networks; internal recurrence is obtained by feeding back the 
outputs of neurons of a given layer in inputs to neurons of the same layer, giving rise to the 
so called Locally Recurrent Neural Networks (LRNNs) ( Francesco et al., 2006 ) 

The major advantages of LRNNs with respect to the buffered, tapped-delayed feedforward 
networks and to the fully recurrent networks are:  
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1. The hierarchic multilayer topology which they are based on is well known and efficient. 
2. The use of dynamic neurons allows limiting the number of neurons required for 

modeling a given dynamic system, contrary to the tapped-delayed networks. 
3. The training procedures for properly adjusting the network weights are significantly 

simpler and faster than those for the fully recurrent networks. 

This chapter consists of the following items: 

 Types of RNN. 
 Some Special Recurrent Networks 
 Training algorithms for recurrent neural networks 
 Inverse kinematic For Humanied manipulator with 27-DOFs  
 Solution of IKP by using RNN  
 Simulation of the humaniod manipulator based upon Virtual Reality 
 Conclusion 

2. Types of RNN  

The categories of RNN is very difficult where many parameters can be division according to 
consideration, therefore the division will explain by: 

2.1 Types of RNN according to the performance of NN  

There are many classes of RNN architectures. All architectures can be best described using 
the state-space model from systems theory. This state-space model is explain in many 
references (Cheron et al., 2007) (Cruse, 2006)(Dijk, 1999), the following architectures or 
classes of architectures are presented: 

- Fully Recurrent Neural networks (FRNN). 
- Subsets of FRNN: Recurrent Neural Networks (RNN). 
- Partially Recurrent Networks (PRN). 
- Simple Recurrent Networks (SRN). 

These architectures emerge by applying constraints to the general state-space model. The 
architectures have been investigated and tested in applications by many researchers. In the 
following subsections, these specific constraints will be listed and the resulting architectures 
will be discussed. Each class is presented together with a quick look at some properties and 
examples of their application. 

The architectures treated can be ordered hierarchically since some architecture is special 
cases of more general architectures. This hierarchy is visualized in Fig.1. The most general 
architectures are at the left, specific architectures are at the right. The accolades show what 
architectures are parts of a more general architecture description. 

2.1.1 Fully recurrent neural networks (FRNN) 

The Fully Recurrent Neural Network (FRNN) is first described here in terms of individual 
neurons and their connections, as was done in [Williams e.a., 1989]. Then the FRNN is 
considered as a special case of the general state-space model and a convenient matrix 
notation of the network is given. 
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The name Fully Recurrent Neural Network for this network type is proposed by [Kasper 
e.a., 1999]. Another name for this type of network is the .Real-Time Recurrent Network.. 
This name will not be used further, because the name strongly implies that training is 
accomplished using the Real-Time Recurrent Learning (RTRL) algorithm proposed for this 
network in [Williams e.a., 1989] which is not necessarily the case because other algorithms 
can be used. In general a FRNN has N neurons, M external inputs and L external outputs. In 
Fig.2 an example of a FRNN is given which has N=4 neurons, M=2 external inputs u 1(n), 
u2(n) and L=2 external outputs y1(n), y2(n).( Dijk, 1999 ). 

 

Fig. 1. Recurrent neural network architectures hierarchy (numbers indicate sections) 

The network is called Fully Recurrent because the output of all neurons is recurrently 
connected (through N delay elements and N2 weighted feedback connections) to all neurons 
in the network. The external network inputs are connected to the neurons by N*M feed 
forward connections without delay element. A bias (also called threshold) can be introduced 
for every neuron by applying a constant external input u1(n) = 1 to the network. 

For static neural networks, the number of layers in the neural network can be clearly defined 
as the number of neurons an input signal passes through before reaching the output. For the 
FRNN however the same definition is ambiguous, because signals applied at time n are fed 
back and reach the output at times n, n+1, and so on. The term layer therefore appears to be 
never used in literature in FRNN descriptions. By redefining the concept of layer to: the 
minimum number of neurons an input signal passes through before reaching the output, a 
workable definition is obtained for the FRNN. 
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Fig. 2. Example of a fully recurrent neural network (of type 1) (Dijk, 1999). 

2.1.2 Subsets of FRNN: Recurrent neural networks (RNN) 

Additional restrictions can be imposed on the FRNN architecture described in the previous 
subsection to create other (restricted) Recurrent Neural Network (RNN) architectures. This 
subsection will describe some of these restricted architectures. Because the FRNN can be 
written as a state-space model, all .subsets. of FRNN are in many cases most conveniently 
written as state-space models. 

The following categories of restrictions can be used (individually or in a combination): 

1. forcing certain weights to zero (called removing or pruning the weight) 
2. forcing weights to non-zero value (called fixing the weight or making the weight non-

learnable) 
3. forcing weights to be equal to other weights (called sharing of weights) or 

approximately equal to other weights (called soft sharing of weights) 

These restrictions will be looked at in this subsection. Note that the three restrictions listed 

are fairly general and can be applied to other neural networks architecture than the FRNN, 

for example to the standard feedforward network. 

All three restrictions have a property in common: the number of free parameters of the 
network is reduced when compared to a non-modified FRNN. Reasons for doing so will be 
given now. More reasons for applying restrictions will be given in the category descriptions. 
The training of a neural network is in fact a procedure that tries to estimate the parameters 
(weights) of the network such that an error measure is minimized. Reducing the number of 
parameters to be estimated may simplify training. Another good reason for reducing the 
number of free parameters is to reduce training algorithm overhead, which often grows 
quickly for an increasing number of weights NW.(Cruse, 2006). 
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Fig. 3. One example RNN presented as (a). a two-layer neural network with delays and 
recurrent connections; and (b) as a FRNN with removed connections. 

2.1.3 Partially recurrent networks (PRN) 

The output vector (n) of the FRNN consists of the first L elements of the state vector [(n), as 
was shown in Fig. 2. So the output signals are a .subset. of state signals. In a general state 
space description this is certainly not the case, the output is determined by a separate 
calculation (the output equation) which is some function of the external input and the state. 
To obtain a network that effectively has separate state and output units (analogous to a state 
space system that has separate process and output equations), the feedback connections 
from all L output neurons yi(n) with i=1.L are removed. An example of the partially recurrent 
neural network (PRN) [Robinson e.a., 1991], also named the simplified recurrent neural network 
[Janssen, 1998], that results is shown in Fig. 4. The name partially recurrent neural network. 
will be used in this report to avoid confusion in the terms simple/simplified recurrent 
networks in the next subsection. 

 

Fig. 4. Example of a partially recurrent neural network 
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2.2 Types of RNN according to NN structure 

Some neural network architectures can be best described as modular architectures. The 
definition of a modular architecture as used in this report is: an architecture that consists 
of several static neural networks, that are interconnected in a specific way. There is, in 
most cases, not a clear boundary between a modular network and a single neural network 
because the total modular architecture can be looked at as a single neural network, and 
some existing single networks can also be described as modular networks. It is rather a 
convenient way of describing complex neural networks.( Paine W. Rainer  & Tani Jun, 
2004). 

In this section the category of modular recurrent neural network architectures is looked at, 
modular architectures that all have one or more internal feedback connections. The 
modular recurrent neural network architectures were not introduced in previous sections, 
because they do not fit very well in the state-space system description or the NARX 
description. 

Formally they can be described as a state-space system (like any dynamic system) but this 
could result in a very complicated and unnecessarily large state-space system description. 
In this section three classes of modular recurrent neural network architectures are 
presented: 

- Recurrent Multi-layer Perceptron (RMLP). 
- Block Feedback Networks (BFN) framework. 
- General modular neural network framework. 

2.2.1 Recurrent multi-layer perceptron (RMLP) 

The first model (RMLP) is a rather specific one and it is included as an example of a 
modular architecture. Undoubtedly, many more such architectures are proposed in 
literature and they cannot all be listed here. Another example is the Pipelined Recurrent 
Neural Network found in [Haykin, 1998] and applied to speech prediction in [Baltersee e.a., 
1998]. The second model is far more general and was meant to provide a structured way to 
describe a large class of recurrent neural networks and their training algorithms. The third 
model attempts to do the same and it turns out that this model is the most general one: it 
incorporates the first two as special cases, so in this section the attention will be mainly 
focussed on the third model, the general modular network framework. An extension of the 
regular MLP has been proposed by Puskorias e.a. (see [Haykin, 1998]) which adds self-
feedback connections for each layer of the standard MLP. The resulting Recurrent 
Multilayer Perceptron (RMLP) structure with N layers is shown in Fig 5. 

Each layer is a standard MLP layer. The layer outputs are fed forward to the inputs of the 
next layer and the delayed layer outputs are fed back into the layer itself. So the layer output 
of time n-1 for a certain layer acts as the state variable at time n for this layer. The global 
state of the network consists of all layer states [i(n) together. Effectively, this type of network 
can have both a very large total state vector and a relatively small number of parameters 
because the neurons in the network are not fully interconnected. There are no recurrent 
interconnections across layers. All recurrent connections are local (1-layer-to-itself).(Sit, 
2005). 
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Fig. 5. Recurrent multi-layer perceptron (RMLP) architecture with N layers 

2.2.2 Block feedback networks (BFN) framework 

A framework for describing recurrent neural networks that has been introduced by [Santini 
e.a., 1995b] provides a systematic way for modular design of networks of high complexity. 
This class of networks is called Block Feedback Neural Networks (BFN), referring to the 
blocks that can be connected to each other using a number of elementary connections. The 
term feedback is used because one of the elementary connections is a feedback connection, 
thus enabling the construction of recurrent neural networks. The network that results from 
the construction can in turn be considered a .block. and it can be used again as a basic 
building block for further construction of progressively more complex networks. 

So a recursive, modular way of designing networks is provided. The training algorithm for 
any BFN is based on backpropagation training for MLP and the backpropagation through time 
(BPTT) algorithm for recurrent networks. It is recursively constructed along with the network 
structure. So the BFN framework introduces a class of (infinitely many) recurrent networks, 
which can be trained using a correspondingly constructed backpropagation algorithm. The 
basic unit is a single neural network layer, an example of which is shown in Fig 6.a. The 
corresponding matrix notation is shown in Fig 6.b. $ is a 6-by-3 matrix and )(.) is a 6-by-6 
diagonal mapping containing the neuron activation functions (of the form of equation 1). One 
such layer is defined as a single layer block N.( Zhenzhen Liu & Itamar Elhanany, 2008) 

  

Fig. 6. a) example of a single network layer ; b) the layer in BFN block notation as a block N 
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This block computes the function: 

 ( ) ( . ( ))o n F A i n  (1) 

Single layer blocks can be connected together using the four elementary connections shown 
in Fig. 7. They are called the cascade, the sum, the split and the feedback connection. Each of 
these connections consists of one or two embedded BFN blocks (these are called N1 and N2 
in the figure) and one connection layer (which has the structure of a single-layer block). This 
connection layer consists of the weight matrices $ and %, and the vector function )(.). Each of 
the four elementary connections itself is defined as a block and can therefore be used as the 
embedded block of yet another elementary connection. 

 

Fig. 7. The four elementary BFN connections: the cascade (a), feedback (b), split (c) and sum 
(d) connection. 

2.2.3 General modular neural network framework 

 In [Bengio, 1996] a general modular network framework is introduced. This framework is 
similar to the BFN framework: it can be used to describe many different modular networks 
which are built of neural network modules linked together. Each module is a static 
feedforward neural network and the links between the modules can incorporate delay 
elements. The purpose of this framework is: 

- to describe many types of recurrent neural networks as modular networks 
- to derive a training algorithm for a network that is described as a modular network 

The use of the framework for developing such a training algorithm, that can do joint training 
of the individual network modules.( Dijk O. Esko, 1999). 
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3. Some special recurrent networks 

There are many special recurrent networks according to purpose of application or structure 
of networks. From these types can be explain the following: 

3.1 Elman nets and Jordan nets 

As was mentioned earlier, recurrent networks represent the most general format of a 
network. However, there is yet no general theoretical framework that describes the 
properties of recurrent nets. Therefore, several networks will be discussed below which 
have a specifically defined structure. In the first example, most layers have only 
feedforward connections, and only one contains specified recurrent connections. This 
example is given by Elman (1990) (Fig. 8.a). The system has an input layer, a hidden layer, 
and an output layer all of which are connected in a feedforward manner. The hidden 
layer, however, is not only connected to the output layer but also, in a simple 1 : 1 
connection, to a further layer called the context layer. To form recurrent connections, the 
output of this context layer is also inputted to the hidden layer. Except for these 1 : 1 
connections from hidden to context layer, the weights of which are fixed to 1, all other 
layers may be fully connected and all weights may be modifiable. The recurrent 
connections of the context layer provide the system with a short-term memory; the hidden 
units do not only observe the actual input but, via the context layer, also obtain 
information on their own state at the last time step. Since, at a given time step, hidden 
units have already been influenced by inputs at the earlier time steps, this recurrency 
comprises a memory which depends on earlier states (though their influence decays with 
time).( Cruse Holk, 2006 ).  

 

Fig. 8. Two networks with partial recurrent connections. (a) Elman net. (b) Jordan net. Only 
the weights in the feed forward channels can be modified. 

Recurrent networks are particularly interesting in relation to motor control. For this 
purpose, Jordan (1986) proposed a very similar net (Fig. 8.b). A difference is that the 
recurrent connections start from the output, rather than the hidden layer. Furthermore, the 
layer corresponding to the context, here called state layer, comprises a recurrent net itself 
with 1:1 connections and fixed weights. 

- a - - b - 
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Another difference is that the network was used by Jordan so that a constant input vector is 
given to the net, and the output of the net performs a temporal sequence of vectors. The 
variation in time is produced by the two types of recurrent connections, namely those from 
the output layer to the state layer and those within the state layer. For each input vector, 
another temporal sequence can be produced. However, as the Elman net and the Jordan net 
are quite similar, each can be used for both purposes. Both types of networks have the 
advantage that only weights in the forward connections are modifiable and therefore no 
special training methods for recurrent nets have to be introduced. 

3.2 Echo state networks  

When we are interested to construct a recurrent neural network that shows a complex, but 
given dynamic behavior, back propagation through time can be applied as described above. 
A much simpler solution, however, is to use echo state networks (Jaeger and Haas 2004). An 
echo state network consists of two parts, a recurrent network with fixed weights, called 
dynamic reservoir, and output units that are connected to the neuroses of the dynamic 
reservoir. Only one output unit is depicted in Fig. 9 for simplicity.  

 

Fig. 9. Echo state network. 

The dynamic reservoir consists of recurrently, usually sparsely connected units with logistic 
activation functions. The randomly selected strengths of the connections have to be small 
enough to avoid growing oscillations (this is guaranteed by using a weight matrix with the 
largest eigenvector smaller than 1). To test this property, the dynamic reservoir, after being 
excited by an impulse-like input to some of the units, may perform complex dynamics 
which however should decrease to zero with time. These dynamics are exploited by the 
output units. These output units are again randomly and recurrently connected to the units 
of the dynamic reservoir. Only those weights that determine the connections from the 
dynamic reservoir to the output units are learnt. All other weights are specified at the 
beginning and then held fixed (Hafizah et al., 2008 ). 

y

x
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3.3 Linear differential equations and recurrent neural networks 

With respect to their dynamical properties, recurrent neural networks may be described as 
showing fixed point attractors. How is it possible to design a neural network with specific 
dynamics? Dynamical systems are often described by differential equations. In such cases 
the construction of a recurrent network is easily possible: Any system described by a linear 
differential equation of order n can be transformed into a recurrent neural network 
containing n units (Nauck et al., 2003). To this end, the differential equation has first to be 
transferred into a system of n coupled differential equations of the order one. 

3.4 MMC nets 

A specific type of recurrent neural networks that show fixed-point attractors and that are 
particularly suited to describe systems with redundant degrees of freedom are the so called 
MMC nets. The easiest way to construct such a net is to start with a simpler version. Given a 
linear equation with n variables 

Each of these n equations represents the computation performed by one neuroid. So the 
complete network represents Multiple Solutions of the Basis Equation, and is therefore 
termed MSBE net. Different to Hopfield nets, the weights are in general asymmetric (apart 
from the special case that all parameters a are identical, i.e. a1 = a2 = a3), but follow the rule 
wij = 1/wji . The diagonal weights, by which each unit excites itself, could be zero, as in the 
example, or any positive value di, if all weights of this equation are further normalized by 
multiplication with 1/(di+1). Positive diagonal weights influence the dynamics to adopt 
low-pass filter-like properties, because the earlier state of this unit is transferred to the actual 
state with the factor d/(d+1). As di can arbitrarily be chosen (di ≤ 0), the weights may then 
not follow the rule wij = 1/wji anymore. Starting this net with any vector a, the net will 
stabilize at a vector fulfilling the basic equation. This means that the attractor points form a 
smooth, in this example two-dimensional, space. This is another difference to Hopfield nets 
which show discrete attractor points. Furthermore, there are no nonlinear characteristics 
necessary. 

This network can be expanded to form an MMC net. MMC nets result from the combination 
of several MSBE nets (i.e. several basis equations) with shared units. Such MMC nets can be 
used to describe landmark navigation in insects and as a model describing place cells found 
in rodents (Cruse 2002). However, the principle can also be used to represent the kinematics 
of a body with complex geometry (Steinkühler and Cruse 1998). As a simple example, we 
will use a three-joint arm that moves in two dimensional space, therefore having one extra 
degree of freedom (Fig. 10.a)( Le Yang &Yanbo Xue, (2009). 

The properties of this type of network can best be described by starting with a simple linear 
version (Fig. 10.b). As we have a two-dimensional case, the complete net consists of two 
identical networks. The output values correspond to the Cartesian coordinates of the six 
vectors shown in Fig.10.a, the x coordinates of the vectors given by the net shown with solid 
lines, the y coordinates by dashed lines. To obtain the weights, vector equations drawn from 
the geometrical arrangement shown in Fig. 10.a are used as basis equations. This means in this 
case there are several basis equations possible. For example, each three vectors forming a 
triangle can be used to provide a basis equation (e.g. L1 + L2 - D1 = 0). As a given variable (e.g. 
L1) occurs in different basis equations, there are several equations to determine this variable.  
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Fig. 10. An arm consisting of three segments described by the vectors L1 L2, and L3 which 
are connected by three planar joints. 

3.5 Forward models and inverse models 

Using recurrent neural networks like Jordan nets or MMC nets for the control of behavior, 
i.e. use their output for direct control of the actuators. Several models are proposed to 
control the movement of such a redundant (or non-redundant) arm. One model corresponds 
to a schema shown in Fig 11.a, where DK and IK may represent feedforward (e. g., three-
layer) networks, computing the direct (DK) and inverse kinematics (IK) solutions, 
respectively. (In the redundant case, IK has to represent a particular solution)( Liu  Meiqin, 
2006). 

 

Fig. 11. A two-joint arm (a) and a three-joint arm (b) moving in a two dimensional (x-y) 
plane. When the tip of the arm has to follow a given trajectory (dotted arrow), in the 
redundant case (b) an infinite number of joint angle combinations can solve the problem for 
any given position of the tip. 

- b -- a -
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Depending on the sensory system applied, the DK system might belong to the process, for 
example when the position of the tip of the arm is registered visually, or it might be part of 
the neuronal system, for example if joint angles are monitored. In principle, the process can 
be controlled with this feedback network. However, since in biological systems information 
transfer is slow, this solution is not appropriate for fast movements because long delays can 
lead to unstable behavior. A further complication of the control task occurs if there is a 
process with non negligible dynamic properties. This means that computation is more 
complex because not only the kinematics but also the forward and inverse dynamics have to 
be determined. 

A simple solution of this problem would be to expand the system by introducing an internal 
(neuronal) model of the process (Fig. 12.b, FM). By this, the behavior of the process can be 
predicted in advance, e. g., inertia effects could be compensated for before they occur. This 
prediction system is called forward model (FM). Usually, although depicted separately in 
Figure 12.a, in this case the DK is considered part of the forward model. In other words, the 
FM predicts the next state of the arm (e.g. position, velocity) if the actual state and the motor 
command is known. Note that the network consists of serially connected IK and FM 
(including DK) forming a loop within the system and can therefore be represented by a 
recurrent neural network. The additional external feedback loop is omitted in Fig.12.b, but is 
still necessary if external disturbances occur. It should be mentioned that the output of the 
FM, i.e. the predicted sensory feedback, could also be compared with the real sensory 
feedback. This could be used to distinguish sensors effects produced by own actions from 
those produced by external activities.( Karaoglan D. Aslan, 2011). 

 

Fig. 12. Three ways of controlling the movement of a redundant (or non redundant) arm as 
shown in Fig. 11. DK, IK: networks solving the direct or inverse kinematics, respectively. 
FM: forward model of the process. IM: inverse model of the process. The dashed lines in (c) 
denote the error signals used to train the inverse model 
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An even faster way to solve this problem would be to introduce the inverse model (IM), 

which corresponds to the inverse kinematics, but may also incorporate the dynamic 

properties of the process (Fig. 11.c, upper part). Given the desired new state of the arm, the 

inverse model does provide the necessary motor command (x -> α) to reach this state. Using 

such an inverse model, the process could be controlled without the need of an internal 

feedback loop. 

4. Training algorithms for recurrent neural networks 

A training algorithm is a procedure that adapts the free parameters of a neural network in 

response to the behavior of the network embedded in its environment. The goal of the 

adaptations is to improve the neural network performance for the given task. Most training 

algorithms for neural networks adapt the network parameters in such a way that a certain 

error measure (also called cost function) is minimized. Alternatively, the negative error 

measure or a performance measure can be maximized. 

Error measures can be postulated because they seem intuitively right for the task, because 

they lead to good performance of the neural network for the task, or because they lead to a 

convenient training algorithm. An example is the Sum Squared Error measure, which 

always has been a default choice of error measure in neural network research. Error 

measures can also be obtained by accepting some general.  

Different error measures lead to different algorithms to minimize these error measures. 

Training algorithms can be classified into categories depending on certain distinguishing 

properties of those algorithms. Four main categories of algorithms that can be distinguished 

are:( Dijk, 1999) 

1. gradient-based algorithms. The gradient of the equation of the error measure with respect 
to all network weights is calculated and the result is used to perform gradient descent. 
This means that the error measure is minimized in steps, by adapting the weight 
parameters proportional to the negative gradient vector. 

2. second-order gradient-based algorithms. In second-order methods, not only the first 
derivatives of the error measure are used, but also the second-order derivatives of the 
error measure. 

3. stochastic algorithms. Stochastic weight updates are made but the stochastic process is 
directed in such a way, that on average the error measure becomes smaller over time. A 
gradient of the error measure is not needed so an expression for the gradient doesn't 
have to exist. 

4. hybrid algorithms. Gradient-based algorithms are sometimes combined with stochastic 
elements, which may capture the advantages of both approaches. 

The following algorithms for the Fully Recurrent Neural Network and the subsets of the 

FRNN are investigated in this item: 

4.1 Back propagation through time (BPTT) algorithm for FRNN 

The Back propagation Through Time (BPTT) algorithm is an algorithm that performs an 
exact computation of the gradient of the error measure for use in the weight adaptation. In 
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this section the BPTT algorithm will be derived for a (type 1) FRNN using a Sum Squared 
Error measure.(Omlin, 1996) 

Methods of derivation of the algorithm 

There are two different methods to develop the BPTT algorithm. Both are shown in this 
report: 

- derivation by unfolding the network in time, which also gives intuitive insight in how 
the   algorithm works. 

- a formal derivation of the algorithm using the ordered derivative notation. 

The BPTT algorithm can be summarized as follows: 

1. set initial time n = n0 
2. calculate the N neuron output values for time n using the network. 
3. recursively calculate ei(m) then di(m) with backwards in time starting with m= n back to 

m = n0. 
4. calculate for all i,j the weight updates . 
5. update the weights wij 
6. increase time n to n+1 and go back to step 2 

4.2 Real-time recurrent learning (RTRL) algorithm for FRNN 

A real-time training algorithm for recurrent networks known as Real-time Recurrent 
Learning (RTRL) was derived by several authors [Williams e.a., 1995]. This algorithm can be 
summarized by the explanation as: 

In deriving a gradient-based update rule for recurrent networks, we now make network 
connectivity very very unconstrained. We simply suppose that we have a set of input units, 
I = {xk(t), 0<k<m}, and a set of other units, U = {yk(t), 0<k<n}, which can be hidden or output 
units. To index an arbitrary unit in the network we can use  

 
( )

( )
( )

k
k

k

x t if k I
z t

y t if k U


  

 (2) 

Let W be the weight matrix with n rows and n+m columns, where wi,j is the weight to unit i 
(which is in U) from unit j (which is in I or U). Units compute their activations in the now 
familiar way, by first computing the weighted sum of their inputs:  

 ( ) ( )k kI I
I U I

net t w z t
 

   (3) 

where the only new element in the formula is the introduction of the temporal index t. Units 
then compute some non-linear function of their net input  

 ( 1) ( ( ))k k ky t f net t   (4) 

Usually, both hidden and output units will have non-linear activation functions. Note 
that external input at time t does not influence the output of any unit until time t+1. The 
network is thus a discrete dynamical system. Some of the units in U are output units, for 
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which a target is defined. A target may not be defined for every single input however. 
For example, if we are presenting a string to the network to be classified as either 
grammatical or ungrammatical, we may provide a target only for the last symbol in the 
string. In defining an error over the outputs, therefore, we need to make the error time 
dependent too, so that it can be undefined (or 0) for an output unit for which no target 
exists at present. Let T(t) be the set of indices k in U for which there exists a target value 
dk(t) at time t. We are forced to use the notation dk instead of t here, as t now refers to 
time. Let the error at the output units be and define our error function for a single time 
step as  

 
( ) ( ) ( )

( )
0

k k
k

d t y t if k T t
e t

otherwise

 
 


 (5) 

The error function we wish to minimize is the sum of this error over all past steps of the 
network  

 
1

1
1

( , ) ( )
t

total o
to

E t t E



 

   (6) 

Now, because the total error is the sum of all previous errors and the error at this time step, 
so also, the gradient of the total error is the sum of the gradient for this time step and the 
gradient for previous steps  

 ( , 1) ( , ) ( 1)w total o w total o wE t t E t t E t      (7) 

As a time series is presented to the network, we can accumulate the values of the gradient, 
or equivalently, of the weight changes. We thus keep track of the value  

 
( )

( )ij
ij

E t
w t

w
 

  


 (8) 

After the network has been presented with the whole series, we alter each weight wij by 

 
0

1

1

( )
t

ij
t t

w t
 

  (9) 

We therefore need an algorithm that computes  

 
( ) ( )( ) ( )

( )
( )
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k

ij k ij ijk U k U

y t y tE t E t
e t

w y t w w 

  
   
      (10   

at each time step t. Since we know ek(t) at all times (the difference between our targets and 
outputs), we  only need to find a way to compute the second factor 

 ( )k

ij

y t

w




 (11) 
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The key to understanding RTRL is to appreciate what this factor expresses. It is essentially a 
measure of the sensitivity of the value of the output of unit k at time t to a small change in 
the value of wij, taking into account the effect of such a change in the weight over the entire 
network trajectory from t0 to t. Note that wij does not have to be connected to unit k. Thus 
this algorithm is non-local, in that we need to consider the effect of a change at one place in 
the network on the values computed at an entirely different place. Make sure you 
understand this before you dive into the derivation given next.(Baruch, 1999)  

5. Inverse kinematic for humanied manipulator with 27-DOFs  

Humanoid manipulators are the type of manipulator that practically suitable to coexist with 
human in builtfor-human environment because of its anthropomorphism, human friendly 
design and locomotion ability. Humanoid manipulator is different compare to other types of 
manipulators because the physical structure is designed to mimic as much as human's 
physical structure. Humanoid's shape shares many basic physical characteristics with actual 
humans, and for this reason, they are expected to coexist and collaborate with humans in 
environments where humans work and live. They may also be substituted for humans in 
hazardous environments or at disaster sites. These demands make it imperative for 
humanoid manipulators to attain many sophisticated motions such as walking, climbing 
stairs, avoiding obstacles, crawling, etc. 

The model was designed in virtual reality to mimic as much as human characteristic, 
especially for contribution of its joints. The manipulator is consists of total of 27-DOFs: six 
for each leg, three for each arm, one for the waist, and two for the head. The high numbers 
of DOF's provide the ability to realize complex motions. Furthermore, the configuration of 
joints that closely resemble those of humans provides the advantages for the humanoid 
manipulator to attain human-like motion. Each joint feature a relatively wide range of 
rotation angles, shown in Table 1, particularly for the hip yaw of both legs, which permits 
the legs to rotate through wide angles when correcting the manipulator's orientation and 
avoiding obstacles. The specification of each joint rotation range is considered factors such 
as correlation with human's joint rotation range, manipulability of humanoid's manipulator, 
and safety during performing motions.(Nortman, 2001)  

In this chapter, we propose and implement a simplified approach to solving inverse 
kinematics problems by classifying the robot’s joints into several groups of joint coordinate 
frames at the robot’s manipulator [11]. To describe translation and rotational relationship 
between adjacent joint links, we employ a matrix method proposed by Denavit-Hartenberg 
[12], which systematically establishes a coordinate system for each link of an articulated 
chain in the robot body. 

Kinematical Solutions for 6-dof Arm 

The humanoid manipulator design has 6-DOF on each arm: 3-DOF (yaw, roll and pitch) at 
the shoulder joint, one DOF (roll) at the elbow joint and 2-DOF ((pitch and yaw) at the wrist 
joint. Fig. 13 shows the arm structure and configuration of joints and links. The coordinate 
orientation follows the right-hand law, and a reference coordinate is fixed at the intersection 
point of two joints at the shoulder. Fig. 13 displays a model of the arm describing the 
configurations and orientation of each joint coordinates. To avoid confusion, only the x and 
z-axes appear in the figure. The arm's structure is divided into seven sets of joint 
coordinate's frames as listed below: 

www.intechopen.com



 
Recurrent Neural Network with Human Simulator Based Virtual Reality 

 

107 

Σ0: Reference coordinate. 

Σ1: shoulder yaw coordinate. 

Σ2: shoulder roll coordinate. 

Σ3: shoulder pitch coordinate. 

Σ4: elbow pitch coordinate. 

Σ5: wrist pitch coordinate. 

Σ6: wrist roll coordinate. 

Σh: End-effector coordinate (at the end of middle fingerer). 
 

Axis 
Humanoid manipulator 

(deg) 
Human (deg) 

Neck (roll and pitch) -90 ~ 90 -90 ~ 90 

Shoulder (pitch) right & left -180 ~ 120 -180 ~ 120 

Shoulder (roll) right/left -135 ~ 30/-30 ~ 135 -135 ~ 30/-30 ~ 135 

Shoulder (yaw) right/left -90 ~ 90/-90 ~ 90 -90 ~ 90/-90 ~ 90 

Elbow (roll) right/left 0 ~ 135/0 ~ -135 0 ~ 135/0 ~ -135 

Wrist (pitch) right/left -30 ~ 60 -30 ~ 60 

Wrist (yaw) right/left -90 ~ 60 -90 ~ 60 

Hip (pitch) right & left -130 ~ 45 -130 ~ 45 

Hip (roll) right/left -90 ~ 22/-22 ~ 90 - 60 ~ 45/-45 ~ 60 

Hip (yaw) right/left -90 ~ 22/-22 ~ 90 - 60 ~ 45/-45 ~ 60 

Knee (pitch) right &left -20 ~150 0 ~150 

Ankle (pitch) right & left -90 ~ 60 -30 ~ 90 

Ankle (roll) right/left -20 ~ 90/-90 ~ 20 -20 ~ 30/-30 ~ 20 

Waist (yaw) -90 ~ 90 -45 ~ 45 

Table 1. Comparison Joint rotation range between humanoid manipulator and Human 

 

Fig. 13. a. Configurations of joint coordinates at the Manipulator arm with 6-DOF.   
b. Structure of humanoid manipulator.  
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Consequently, corresponding link parameters of the arm can be defined as shown in Table 
2. From the Denavit-Hartenberg convention mentioned above, definitions of the 
homogeneous transform matrix of the link parameters can be described as follows: 

 0 ( , ) (0,0, ) ( ,0,0) ( , )Th Rot z Trans d Trans l Rot x   (12) 

Here, variable factor θi is the joint angle between the xi-1 and the xi axes measured about the 
zi axis; di is the distance from the xi-1 axis to the xi axis measured along the zi axis; αi is the 
angle between the zi axis to the zi-1 axis measured about the xi-1 axis, and li is the distance 
from the zi axis to the zi-1 axis measured along the xi-1 axis. Here, link length for the upper 
and lower arm is described as l1 and l2, respectively. The following is used to obtain the 
forward kinematics solution for the robot arm. ( Yussof, 2007) 

 

Link di ai αi θ i 

1 d1 0 π/2 θ* 

2 0 a2 0 θ* 

3 0 a3 0 θ* 

4 0 -π/2 0 θ* 

5 0 π/2 0 θ* 

6 d6 0 0 θ* 

Table 2. DH parameters for the arm of humaniod manipulator.( * ≡ joint variable ). 
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 (13) 

The inverse kinematic is achieved by closed solution of above eqn’s, and the general 
solution of angles of rotation can be summarized as follows: 
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  (14) 

Kinematical Solutions for 6-dof Leg 

Each of the legs has 6-DOFs: 3-DOFs (yaw, roll and pitch) at the hip joint, 1-DOF (pitch) at 
the knee joint and two DOF (pitch and roll) at the ankle joint. A reference coordinate is taken 
at the intersection point of the 3-DOF hip joint. In solving calculations of inverse kinematics 

for the leg, just as for arm, the joint coordinates are divided into eight separate coordinate 
frames as listed bellow. 

Σ0: Reference coordinate. 

Σ1: Hip yaw coordinate. 

Σ2: Hip roll coordinate. 

Σ3: Hip pitch coordinate. 

Σ4: Knee pitch coordinate. 

Σ5: Ankle pitch coordinate. 

Σ6: Ankle roll coordinate. 

Σh: Foot bottom-center coordinate. 

Furthermore, the leg’s links are classified into three groups to short-cut the calculations, 

where each group of links is calculated separately as follows: 

i. From link 0 to link 1 (Reference coordinate to coordinate joint number 1). 
ii. From link 1 to link 4 (Coordinate joint number 2 to coordinate joint number 4). 
iii. From link 4 to link 6 (Coordinate joint number 5 to coordinate at the bottom of the foot). 

Basically, i) is to control leg rotation at the z-axis, 
iv. is to define the leg position, while iii) is to decide the leg’s end-point orientation. 

The solution in details is explain in the reference.(Youssof, 2007).  

6. Solution of IKP by using RNN  

This section introduces the basics of ANN architecture and its learning rule. Inspired by the 
idea of basing the feed forward and back propagation network structure. Fig.14 shows this 
structure , the Learning rule which is used in this paper is fast momentum back-propagation 
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with delta rule structure of network with dimension ( I-M-N). The inputs are the position of 
end-effector in (x,y,z) ,the network is single layer with dimension (33) neurons ( this 
dimension limited by trial and error ). The output dimensions are the angles of rotation and 
translation displacement in joints. 

 

Fig. 14. FRBP Network with I inputs, one hidden layer of (M) unit and (N) outputs.(The 
dotted curve lines denote the finite recurrent connection) 

The majority of adaptation learning algorithms are based on the fast momentum back 
propagation the mathematical characterization of a multilayer feed forward network is that 
of a composite application of functions each of these functions represents a particular layer 
and may be specific to individual units in the layer, e.g. all the units in the layer are required 
to have same activation function. The overall mapping is thus characterized by a composite 
function relating feed forward network inputs to output. That is O=fcomposite (x) . Using ( p ) 
mapping layers in a ( p+1 ) layer feed forward net yield: 

 O=f Lp (f Lp-1  (fL1 (x).) ). Thus the interconnection weights from unit ( k ) in L1 to unit ( I ) in  
L2 are wL1-L2 . If hidden units have a sigmoidal activation function, denoted f sig . 
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     (15) 

Above equation illustrates neural network with supervision and composition of non-linear 
function.The learning is a process by which the free parameters of a neural network are 
adapted through a continuing process of simulation by the environment in which the 
network is embedded. The type of learning is determined by the manner in which the 
parameters changes take place. A prescribed set of well defined rules for the solution of a 
learning problem is called learning algorithm. The Learning algorithms differ from each 
other in the way in which the adjustment kj, Δw to the synaptic weight wkj is formulated. 
The basic approach in learning is to start with an untrained network.  

The network outcomes are compared with target values that provide some error. Suppose 
that tk(n) denote some desired outcome (response) for the Kth neuron at time n and let the 
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actual response of the neuron is Ok(n) . Suppose the response yk(n)  was produced when 
x(n) applied to the network. If the actual response yk(n) is not same as tk(n) , we may define 
an error signal as:    ek = tk(n) – yk(n). The purpose of error-correction learning is to minimize 
a cost function based on the error signal ek(n). Once a cost function is selected, error-
correction learning is strictly an optimization problem. 

In case of non-linear neural network, the error surface may have troughs, valleys, canyons, 
and host of shapes, where as in low dimensional data, contains many minima and so many 
local minima plague the error landscapes, then it is unlikely that the network will find the 
global minimum. Another issue is the presence of plateaus regions where the error varies 
only slightly as a function of weights see and. Thus in presence of many plateaus, training 
will get slow. To overcome this situation momentum is introduced that forces the iterative 
process to cross saddle points and small landscapes. 

7. Simulation of the humaniod manipulator based upon virtual reality  

The humanoid manipulator 27-DOF model is built by using VR environment. It is shown in 
Fig. 15. The simulation of this model is achieved by solution the IKP with analytical model 
firstly. The data for analytical solution was using to learning FRNN that is shown in 
previous section with FRNN structure (15-33-27). The inputs are ( I=27 ) six for each two 
arms and two lags ( three position of end-effecter), one for waist and two for neck. The 
output of FRNN has dimension (N=27). The outputs are six angles of joint for each the 
limbs, one for waist and two for neck. 

The initial posture form of humanoid manipulator is shown in Fig. 15. After solution of IKP 
by FRNN and get the joint angles. The values of joint angle were implemented by forward 
kinematic solution to get the posture of humanoid manipulator. The interaction between 
Matlab/Simulink and VR model will used the calculation of IKP by FRNN to implement the 
posture. The overall simulation design is shown in Fig. 16. 

 

Fig. 15. Humanoid manipulator in VR.  
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Fig. 16. The overall simulation of Humanoid Manipulator 27-DOF with Virtual Reality 

The results of the simulation can be display by two methods. The first by running the design 
as one iteration by input one set of position and orientation of the limbs where the results is 
the posture form of humanoid manipulator in VR same as results shown in Fig. 17.a,b,c,d. The 
second method is achieved by enter many sets of coordinates to design. The results were 
movie of model in side the VR environment according to the path of inputs coordinate.    

  

Fig. 17. a, b, c, d. The simulation results for posture of humanoid manipulator 27-DOF. 
Based upon FRNN with VR model. 

- a - b

- d- c
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8. Conclusion 

From the description of the all types of RNN, some of special modified in the main types to get 
special RNN structure related to special application such as the calculation of system 
parameters by identification for the states system, recognition of fault with experience system 
and From the description of main types of training RNN can be seen that the RNN is very 
flexible structure to apply many mathematical algorithms and implement to solving system 
problem. The implement of feedback technique with memory in RNN gives the ability to 
dealing with many problems that needs high calculation with iteration to get the solution. 

The solution of IKP is achieved by different method but the powerful method with practice 
application is the analytical solution. The calculation of posture for human body or 
manipulator which has the similar kinematic structure with human can be achieved by 
analytical solution, but this solution is very difficult because of high mathematic and very 
length calculation. This difficulty is increasing when we need calculated the posture with 
time to get the movie of manipulator. This problem is solving in this chapter by using FRNN 
with back propagation training algorithm.  

The results of calculation are achieved for each limb separately at beginning such as for arm, 
lag and neck. After checking the accuracy of results by applying the forward kinematic to get 
the same coordinate of end- effecter for each part. The overall calculation of IKP is achieved to 
get the posture of manipulator. The data base for IKP is used to identify the FRNN for all point 
of envelop for movement where the internal memory and feedback in FRNN assistance this 
structure to overcame the problems of high calculation in the IKP solution. 

The link between Matlab / Simulink and VR environment and the suitable of Matlab to 
execute any algorithm with high calculation are assistance to implement the posture of 
manipulator with high accuracy for two cases of running (movies and once posture). The 
future works for this design are: 

 The calculation of IKP by RNN can be used as data base for implement the manipulator 
as practice system with human robot 27 DOF. 

 The VR model for manipulator can be used as human – robot interactive system based 
on pc computer or microcomputer chip. 

 Implement the algorithm of IKP solution based FRNN as microprocessor to able used 
with human robot manufacturing for many applications. 
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