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1. Introduction 

Train braking is a very complex process, specific to rail vehicles and of great importance by 
the essential contribution on the safety of the traffic. This complexity results from the fact 
that during braking occur numerous phenomena of different kinds - mechanical, thermal, 
pneumatic, electrical, etc. The actions of these processes take place in various points of the 
vehicles and act on different parts of the train, with varying intensities. The major problem 
is that all must favorably interact for the intended scope, to provide efficient, correct and 
safe braking actions. 

The purpose of braking action is to perform controlled reduction in velocity of the train, 
either to reach a certain lower speed or to stop to a fixed point. In general terms, this 
happens by converting the kinetic energy of the train and the potential one - in case of 
circulation on slopes - into mechanical work of braking forces which usually turns into heat, 
which dissipates into the environment. 

At first, the rather low locomotives power and traction force allowed braking using quite 
simple handbrakes that equipped locomotives and eventually other vehicles of the train. As 
the development of rail transport and according to increasing traffic speeds, tonnages and 
length of trains, it was found that braking has to be centralized, operated from a single 
location - usually the locomotive driver's cabin and commands have to be correctly 
transmitted along the entire length of the train.  

As a consequence, along the time, for railway vehicles have been developed various brake 
systems, whose construction, design and operation depend on many factors such as running 
speed, axle load, type, construction and technical characteristics of vehicles, traffic 
conditions, etc.  

Among various principles and constructive solutions that were developed, following the 
studies and especially the results of numerous tests, the indirect compressed air brake 
system proved to have the most important advantages. Therefore, it was generalized and 
remains even nowadays the basic and compulsory system for rail vehicles. 

It is still to notice that, regarding the classical systems used for railway vehicles, there are also 
several major challenges that may affect the braking capacity. These aspects must be very well 
known and understood, so as to find appropriate solutions in such a manner that the problems 
to be overcome by applying different constructive, functional, operational and other kinds of 
measures. 
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For example, one of these issues is the basic braking systems dependency on the adhesion 

between wheel and rail, which can lead to wheel blocking during braking. This determines 

not only the lengthen of the stopping distance, but also the development of flat places on the 

rolling surface of wheels, generating strong shocks transmitted both to the way and to the 

vehicle, with damage to traffic safety and comfort of passengers or goods transported 

integrity. This has generated particular concerns regarding the design and implementation 

of more efficient wheel slip prevention devices capable to avoid the above-mentioned 

phenomena with as small as possible reduction of braking capacity. 

Another major problem is the friction between wheel and brake shoes, brake pads and disc 

respectively, which leads to severe thermal regimes and special thermal fatigue nature 

efforts, requiring specific constructive and operating standards. 

More than that, due to the air compressibility and to the length of trains, the pneumatic 

commands propagates with limited speed in the brake pipe and, as a result, there always is 

a delay in the braking of neighboring vehicles. As a consequence, the rear vehicles are 

running into the front ones, producing large dynamic longitudinal reactions in buffers and 

couplers. The induced compression and tensile forces can reach significant levels, affecting 

both the rolling stock and the track, even conducting to deteriorations of safety operation of 

the trains. 

Railway high speed operations also determined more severe requirements for braking 

systems, given to the necessity to develop higher braking forces and to dissipate larger 

amounts of energy in a short time, not to mention the problem of wear in the case friction 

brakes. In that case, complementary systems whose performance and reliability are safety 

relevant were developed to enhance the braking capacity.   

These several issues, even briefly presented, reveal not only the importance and complexity of 

braking systems used for rail vehicles, but also the necessity of knowledge and understanding 

the problems in order to develop equipments increasingly more efficient and reliable. 

Some of these aspects are presented in this chapter. 

2. Classification of braking systems 

Given the constructive, functional and operational characteristics of rolling stock, the 
braking systems must meet certain specific requirements, providing multiple performance 
exigencies. Some of the most important are then pointed out. 

While achieving safe and effective brake actions to allow speed reductions, fixed-point stops 
and vehicle or train maintenance on slopes in complete safety, it is very important that brake 
operation and performance should not be influenced by environmental conditions. 

A matter of great concern for the traffic safety requires for the braking systems that in cases 
of specific dangers to take action beyond the control or command of the driver and to 
perform an emergency braking action for all the train’s vehicles. 

Also, the centralized control of braking and release actions, as well as the transmission of 
braking commands along the whole train have to be simple, safe, effective and of maximum 
reliability. The braking systems have to allow adequate brake and release levels, giving the 
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driver the possibility to adopt and adapt correctly the braking force targets to the 
instantaneous traffic conditions. Moreover, transient phenomena developed during braking 
should not lead to high longitudinal dynamic forces in the body of the train that may affect 
the traffic safety.  Still, the achievable braking forces should not affect the integrity of 
transported goods or the passengers comfort, neither due to decelerations and shocks along 
the train, nor by annoying vibrations and noises, bad odor, etc. 

Regarding the construction of the braking systems components, especially those mounted 
under the vehicle chassis or on the bogie, they must have low mass and such sizes and shapes 
to fit the rolling stock gauge. By design, the mobile mechanical elements of the brake installation 
and mainly the brake riggings have to function correctly and optimally transmit forces, 
regardless of the fact that the vehicle is empty or loaded at maximum capacity and as long as 
the wear of all constructive elements of the vehicle are within the limits allowed by regulations. 

The wear of friction elements used for achieving the necessary forces to decelerate or stop 
the train (brake blocks, pads, etc.) have to be as reduced as possible and their action must 
not affect the geometry of wheels or rails profile. 

It is also very important that the thermal regime developed during braking to remain within 
acceptable limits, without affecting the braking capacity or other elements of the vehicle or 
of the track. 

Last, but not least, commands, achievement and maintaining the effective braking actions 
must neither affect the environment, nor interact in any way with other systems, elements, 
and circuits of the track or situated in its vicinity.  

An overall image over the braking systems for railway vehicles may be achieved following 
some classification criteria, as follows. 

Depending on how the command actions are performed and according to the mean that 
braking forces are basically developed, there are: 

- handbrakes, which are applied by hand action to a wheel or lever on the vehicle. 
Nowadays are generally used for securing unattended or unpowered vehicles against 
unplanned movement, not for braking actions while operating. That is why are usually 
known as parking brakes. Recent developments conducted to a kind of automation 
using a spring-applied concept, which release when compressed air for the basic 
pneumatic brakes is available. While such braking system is mandatory for traction 
vehicles and passenger carriages, only a part of wagons must be provided with it;  

- pneumatic brakes, which use air pressure variations both to command and to apply the 
brake blocks or pads, generating braking/releasing actions and forces. The vast 
majority of trains use compressed air, changing the level of air pressure in the brake 
pipe determining a change in the state of the brake on each vehicle. In the case of 
straight air brake system, the increase of air pressure in the pipe determines the increase 
of air pressure in the brake cylinders of each vehicle. In the case of indirect air brake 
system, braking actions are commanded by decreasing the pressure in the train’s pipe, 
generating by special features the increase of air pressure in the brake cylinders of each 
vehicle. In the same pneumatic category is also the vacuum brake system where the 
brakes on each vehicle are actuated by the action of atmospheric pressure over a 
specially created vacuum in the train’s pipe as long as the brakes must be released;  
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- electro-pneumatic brakes, that have an electrical command while compressed air is 
used to increase the pressure in the brake cylinders of each vehicle to apply the brake 

blocks or pads for generating braking forces; 
- rail (track) brakes, which are usually electric commanded and the braking force is 

achieved due to strong magnetic forces induced by large electromagnets hung under 
the vehicle’s bogie, over the top surface of the rails. If the braking forces are generated 

by the frictional forces between the electromagnets and rails it is an electromagnetic rail 
brake. If the electromagnetic fields generate eddy currents in the rails, creating forces 

acting in the opposite direction of the movement of the train, it is a linear eddy current 
brake system. On the same principle is the rotary eddy currents brake system, the 

metallic mass being either the wheels, or discs attached to the wheelsets; 
- electric braking, which is based on the reversibility of the electric engine, in particular 

the electric traction motors are reconnected in such a way that they act as generators 
which provide braking effort. Practically, the kinetic and/or the potential energy (while 

running on slopes) are converted into electric energy. If the power generated during 
braking is dissipated as heat through on-board resistors it is about a rheostatic braking. 

On electric railways, it is also possible to convert the energy of the train back into usable 
power by diverting the braking current into traction supply line, this being the case of 

regenerative braking. Most regenerative systems include on board resistors to allow 
also rheostatic braking if the traction supply system is not receptive, the choice being 

automatically selected by the traction control system. It is to notice that regarding the 
sustainable development of railway transportation, the regenerative braking is suitable 

for hybrid vehicles (Givoni et al., 2009; Uherek et al., 2010) and developments have been 
done for diesel powered traction rail vehicles; 

- hydraulic brakes, which act using hydraulic oil and, depending on the achievement of 
braking forces, there may be hydrostatic, when is due to oil pressure increasing, or 

hydrodynamic when the kinetic energy of the vehicle is converted in the rotor of a 
hydraulic pump in heat which is dissipated through the oil cooling system.   

Considering the effective way to achieve the braking force: 

- friction brakes, based on Coulomb type friction between specific surfaces. It is the case 

of brake blocks (shoe brakes), disk brakes, electromagnetic rail brakes; 
- dynamic brakes, based on other processes and phenomena than friction in achieving the 

braking forces. It is the case of eddy current, electric and hydrodynamic brakes. It is to 
notice that the electric end eddy current brakes are particularly preferred for high speed 

railway vehicles because, in the absence of direct contact, it results a significant decrease 

of wear caused by friction, important aspect considering the high energy to be 
dissipated. For the same reason, the electric braking is also preferred in case of 

commuter trains, metros and tramways, due to the frequent and often quite strong 
braking actions, even if running speeds are usually not very high.   

Considering the influence of wheel-rail adhesion, there are: 

- adhesion-dependent brake systems, when the braking torque is generated directly on 
the wheelset. In these cases, whenever the braking force exceeds the adhesion one, 
either due to excessive braking, or to local poor adhesion between wheel and rail, will 
cause the wheel locking and skidding during braking. The main effects are an increase 
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in braking distances and the development of flats, damage spots on wheel tread, both 
affecting primarily the safety of traffic; 

- adhesion-independent brake systems, usually used as complementary braking systems 
whenever the maximum braking forces developed by the adhesion-dependent ones is 
insufficient to provide the necessary braking capacity. 

Regarding the brake system reaction in special cases, there are: 

- automate brakes, meaning that in case of important accidental drop of air pressure in 
the brake pipe all the vehicles of the train are submitted to an emergency brake action, 
independent of driver control. Also, by the operation, a direct link of general pipeline to 
atmosphere can be established through an alarm signal put to reach of passengers in the 
coach; 

- no automate brakes which, in similar situations, do not determine o brake command 
and even they can become inactive, unable to perform braking action. 

According to the air pressure evolution within the brake cylinders, the compressed indirect 
air brake systems may be: 

- fast-acting, meaning a filling time of 3...5 s and a releasing time of 15...20 s; 
- slow-acting, meaning a filling time of 18...30 s and a releasing time of 45...60 s. 

Depending on the possibility to modify the braking force level during the action, there are:   

- moderable brakes, which can perform various braking steps during braking or/and 
releasing actions; 

- unmoderable brakes, which can achieve a unique braking force level that cannot be 
modified by the driver and release is only complete, not gradual. 

3. Basic braking systems 

Basic braking systems provide consistent controllable braking forces on the entire traffic 
speed domain, permitting speed reductions, stop at fixed point and to maintain the vehicle 
standstill on slopes, usually being also automate.  

Compressed air straight brake system is the simplest continuous brake, both in constructive 
and functional terms (see fig. 1).  

The installation consists of a compressor (1) as source of air under pressure, a main reservoir 
for compressed air storage and backup container for the entire brake system (2), the general 
brake pipe of the train (3), consisting of the air pipes of each vehicle (3a), linked together by 
flexible coupled hoses (3b), each boasting angle cocks (3c) that acts as insulation. For the 
centralized command and control of braking it is a driver’s brake valve (4) which must be 
able to put into effect at least three pneumatic functions: linking the main reservoir to the 
general air pipe of the train for supplying it; establishing the pneumatic link between the 
general air pipe and atmosphere; to be able to ensure the pneumatic insulation of the train 
general air pipe both to the main reservoir and atmosphere.  

On each vehicle it is at least a brake cylinder (5), the forces developed at the piston rod (5a) 
being amplified and transmitted through the brake rigging (6) to the brake shoes (7) or disc 
pads. 
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Fig. 1. Schematic of straight compressed air brake system:  
1 – compressor; 2 – main reservoir; 3 – train’s brake pipe; 3a – vehicle’s brake pipe;  
3b – flexible coupled hoses; 3c – angle cock; 4 – driver’s brake valve; 5 – brake cylinder;  
5a – piston rod; 6 – brake rigging; 7 – brake shoe. 

The operating principle is simple: to control braking, the driver’s brake valve connects the 
main reservoir to the general air pipe, which is supplied, implicitly increasing pressure in 
the brake cylinders. Brake cylinders act on the brake riggings, resulting in clamping shoes 
on wheels. When the train braking force is sufficient, through the driver’s brake valve one 
stop any air supply to the general air train pipe. The system is very adaptive because, at 
least theoretically, by appropriate handling of the driver's brake valve it is possible to get a 
large range of pressure levels in the brake cylinders and, accordingly, to have a fine control 
of the commanded braking forces. For the control of brake release, through the driver’s 
brake valve, pneumatic connection is established between the brake pipe and atmosphere, 
the air pressure coming from the brake cylinders including. By using the isolation position 
of the driver’s brake valve, one can also get numerous release steps of the train brakes. 

This type of braking control was quickly abandoned, the main reason being that a fault in 
the general pipeline leads to complete releasing of the brake without the driver to be warned 
in some way and without the possibility of restoring the action of the brakes, aspect 
particularly dangerous in terms of safety of the traffic. 

In addition, the use of straight brake system involves a number of disadvantages, such as: a 
long duration of the braking propagation rate in the long of the train; high pressure 
differences between the brake cylinders in the transitional stages; development of large 
longitudinal reactions that may affect traffic safety and comfort of passengers because of 
slow braking wave propagation.  

Also, the straight air brake system requires a large amount of compressed air when 
commanding braking action, which, in case of long trains, involves the use of large main 
reservoirs. 

For these reasons, the straight air brake is now used on railway vehicles only as 
complementary brake for locomotives, railcars and some special vehicles. Even so, 
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according to regulations, straight brake can be used only for individual moving vehicles and 
not for a multi-vehicle train, when a much safer brake system must be used. 

The indirect compressed air brake system was conceived in order to eliminate the main 

disadvantage of straight brake system. The main operational particularity is that brakes are 

released as long as in the train’s brake pipe pressure is maintained the regime one. 

Generally, almost worldwide the regime pressure in the general air brake pipe system has 

been established at 5 bar (relative pressure). There are also exceptions, such as former Soviet 

countries, that use a regime pressure of 5.5 bar, or the USA where, depending on type of 

train, were imposed (by AAR - Association of American Railroads) 4.8 bar, 6.2 and 7.6 bar. 

Braking commands are given by lowering the pressure regime within the general air pipe of 

the train. 

Indirect air brake is a continuous brake, basically having the same subsets, with identical 

functions as for straight brake (see fig. 2).  

 

Fig. 2. Schematic of indirect (automate) compressed air brake system:  

1 – compressor; 2 – main reservoir; 3 –train’s brake pipe; 3a – vehicle’s brake pipe;  

3b – flexible coupled hoses; 3c – angle cock; 4 – driver’s brake valve; 5 – brake cylinder;  

5a – piston rod; 6 – brake rigging; 7 – brake shoe; 8 – auxiliary reservoir; 9 – air brake distributor. 

In addition, each vehicle is equipped with an auxiliary air reservoir (8), which is the only 

compressed air supply reserve for the brake cylinders and an air distributor (9) that, 

depending on pressure variations within the brake pipe of the train, controls and commands 

locally the braking and release actions.  

Air distributor may provide pneumatic links between brake pipe and auxiliary reservoir, 

between auxiliary reservoir and brake cylinder, and between brake cylinder and 

atmosphere. 

To operate correctly, when increasing the general train brake pipe pressure, the air 

distributor should ensure the following pneumatic connections, in the specified order: 

interruption of the pneumatic link between auxiliary reservoir and brake cylinder, linking 
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the brake cylinder to the atmosphere and establishing a pneumatic link between the brake 

pipe and the auxiliary reservoir. 

In the case of pressure drop in the general train pipe, the air brake distributor must first 
interrupt the pneumatic link between auxiliary reservoir and pipeline, then to cut the 
pneumatic link between air brake cylinder and atmosphere and finally to establish the 
pneumatic link between the auxiliary reservoir and the brake cylinder. 

Air pressure in the brake cylinder depends on the brake pipe pressure according to UIC 
leaflet no. 540 requirements that impose the characteristic shown in fig. 3.  

 

Fig. 3. Dependence of brake cylinder air pressure on brake pipe pressure. 

It is noted that the manageability of this brake system is located between the values of 4.8 ... 
(3.4 ... 3.7) bar of relative air pressure in the general train pipe. Train driver can adjust the 
intensity of braking by controlling the pressure in the brake pipe between the above 
specified values. The maximum air pressure level in the brake cylinders is usually 3.8±0.1 
bar. 

The main advantage of the indirect air brake is the safety on operation, due primarily to the 

operating principle that makes it an automate brake, meaning that any accidental important 

drop of air pressure in the general air pipe determines an emergency braking command for 

the entire train brake system, independent of driver control. Also, by the operation, one 

could be put to reach a simple and safe passenger braking control of the train for emergency 

situations by establishing a direct link of the general pipeline to atmosphere with an alarm 

signal. It is to notice that modern passenger trains are equipped with an emergency brake 

override system, to avoid stopping the train in inadequate places and situations which tend 

to be more dangerous than continuing the route, at least until the reach of a much safer 

location. An example, for instance, is in case of an on-board fire, while the train is running 

through long tunnels or viaducts.  

The specific pneumatic command system is recognized as very reliable and simply 
constructive, the command and execution actions are provided by a single air pipe. Also, 
compared to straight compressed air brake, the indirect one presents several advantages, 
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including a significant increase of braking propagation rate along the train and, consequently, 
a decrease of dynamic in-train forces in the first stages of braking and releasing actions. 

The main disadvantages of purely air brake systems rely on the transmission of the air signal 
which is initiated from the front of the train and has to be sent to all vehicles along the train to 
the rear. Due to the air compressibility and to the length of the train, there will always be a 
time lapse between the reaction of the leading vehicle and the reaction of one at the rear. 
Corresponding to the propagation rate of air pressure signal, the air distributors will come into 
action successively and the braking of vehicles begins at different times along the train so that, 
while some cars are slowing down, others are trying to push, still unbraked, from the rear. 
This creates conditions while transitional braking stages, immediately following the command 
of pressure variation in the brake pipe, to develop important longitudinal in-train reactions 
causing stress to the couplers and affecting passenger comfort and, sometimes, even the traffic 
safety. To mitigate such phenomena, it was necessary to achieve a certain delay of filling, 
respectively emptying the brake cylinders, accepting however an inevitable slight decrease in 
braking performance. That is why there are in operational use the fast-acting (or P, or type 
"travel") and slow-acting brakes (or G, or type "cargo"). 

The electro-pneumatic brake system is an improvement of the indirect compressed air brake 
destined primarily to overcome the longitudinal dynamic reactions generated by the 
gradually successive onset of brakes action due to the pneumatic command.  

Basically, the electro-pneumatic system has been designed so that it can be added to the 
traditional air brake system to allow more rapid, practically instantaneous responses to the 
driver’s braking commands (see fig. 4). As a consequence, vehicles were provided with 
braking electrovalves to evacuate the general brake pipe simultaneous along the train, 
according to the electric braking signal transmitted through the control wires running the 
length of the train. The pressure drop is present at the same time for each air distributor and 
the braking forces are developed simultaneous along the train. To perform the same for 
release commands, vehicles were also provided with electrovalves to supply the barke air 
pipe from a main air pipe which is directly connected to the main reservoir (8...10 bar), 
avoiding delays in releasing actions along the train.  

Normally, the electrical control is additional to and superimposed upon the automatic air 
brake, although more recent systems incorporate a failsafe electrical control which 
eliminates the need for a separate brake pipe. Still, taking into account the safety of 
operating, international regulations impose that the electro-pneumatic brake must always be 
able to operate as a classical compressed air brake. 

Usually, the braking commands are provided from the same driver's brake valve as the air 
brake, but using new positions to apply and release the electro-pneumatic brake. Electrical 
connections that are attached to the driver's brake valve send commands along the train to 
the electrovalves on each car. The electrical connections are added to the operating spindle 
so that movement of the handle can operate either brake system. 

There are many types of electro-pneumatic brake systems is use today. There were 
developed systems that operate as a service brake while the air brake is retained for 
emergency use but with no compromise regarding the fail-safe or "vital" features of the air 
brake. Meanwhile, the main air pipe is also used for other auxiliary features, especially in 
the case of passenger vehicles: automatic door operation, supply of pneumatic suspension, etc. 
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Fig. 4. Schematic of electro-pneumatic brake system: 1 – compressor; 2 – main reservoir;  
3 – brake pipe; 3’ – main reservoir pipe; 3” – electric brake command;  
4 – driver’s brake valve; 5 – brake cylinder; 5a – piston rod; 6 – brake rigging; 7 – brake shoe; 
8 – auxiliary reservoir; 9 – air distributor; 10 – braking vehicle’s electrovalves;  
11 – releasing vehicle’s electrovalves; 12 – one-way valve. 

The main technical issues relating to the operation and design parameters to be complied 
with electro-pneumatic brake in order to be admitted to equip rail vehicles are regulated by 
UIC leaflets no. 541-5, 541-6. 

Even if the main advantage of the electro-pneumatic brake is the simultaneity in brake-
release operation, extremely important in the case of long trains, as the freight ones, there 
are not many developments because of the diversity of wagons and the cost of conversion, 
not to mention that getting an electric signal to transmit at a low voltage down a very long 
train is difficult. 

It is to notice that, due to the advantages, the electro-pneumatic brakes are largely used also 

in combination with other complementary braking systems such as the electric and the 

electromagnetic brake systems, for trams and metro trains, not to mention the high speed 

trains. 

That is why the electro-pneumatic brakes equip mainly passenger vehicles and multiple unit 
passenger trains, the electric command being suitable for simultaneous on-board computer 
braking control of multiple braking systems usually in use. 

At least in historic terms, among the basic brake systems, it is to mention the vacuum one, 

which constructively resembles with the straight compressed air brake (see fig. 5), having a 

vacuum pump instead the compressor.  

It operates very simple, the brakes are released while the vacuum is maintained in the air 
pipe of the train and, implicitly, in the braking cylinders. The braking actions are 
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commanded by increasing the air pressure in the air pipe to the atmospheric pressure 
through the driver’s tap.  

It is to notice that, despite of the simplicity, it is an automate brake.  

The main disadvantage determining its obsolescence is connected to the fact that the same 
braking force requires double diameter brake cylinder compared to the compressed air 
brake system. The system also raises operational problems related to air leakages 
detection. 

 

Fig. 5. Schematic of vacuum brake system: 1 – vacuum pump; 2 – driver’s brake valve;  
3 – general air pipe; 4 – brake cylinder; 5 – brake rigging; 6 – brake shoe. 

4. Complementary braking systems 

Generally the complementary braking systems provide consistent controllable braking 

forces permitting speed reductions but, unlike the basic ones, the braking efficiency 

decreases at low running speeds. As a consequence, there have to be used together with a 

basic braking system to ensure the capability of stopping at fixed point and of maintaining 

the vehicle standstill on slopes. 

Complementary braking systems add braking power without having the thermal 

capacity limitations of the friction wheel or disc brakes that would necessitate expensive 

solutions or lead to excessive wear from harder use. More than that, those which are 

independent of wheel/rail adhesion improve safety by enabling shorter stopping 

distances when applied by giving a reduced dependency between stopping distance and 

adverse adhesion conditions caused by moisture, ice, leaves or other pollution on the top 

of the rails, etc. 

That is why usually the decision to equip rail vehicles with complementary braking systems 

relies either on the incapacity of basic wheel-rail adhesion dependent brakes to ensure the 

braking necessary capacity for high speed trains and, in that case, there are necessary 

adhesion independent braking systems, or to diminish the wear of the friction based braking 

systems, in that case being useful the dynamic braking systems. 
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The magnetic rail brake operation is based on developing electromagnetic attractive forces 
towards the rail (see fig. 6), which causes a normal application force acting on their contact 
surfaces that are in relative displacement. This leads to friction forces between the magnetic 
brakes and rails, opposing the vehicle’s direction of motion, which generate braking forces. 
The electromagnetic brake is used as additional wheel-rail adhesion independent braking 
system, generally associated to the brake disc. 

There are two magnetic track brake positioned between the wheels on each side, normally 
mounted and attached to each bogie frame. The braking surface is of steel alloy or cast iron 
and is usually built up of sections with gaps between the sections and these are mounted to 
a sledge, which can be lowered from a parking position in the bogie. Using a rather low 
excitation power, about 1 kW/magnetic track brake, it is possible to obtain important 
application forces, about 50...70 kN and accordingly, for a normal vehicle installation (four 
axles coach), braking force per shoe between 4...10 kN. 

 

Fig. 6. Operating principle of magnetic rail brake system: 1 – coil; 2 – yoke; 3 – rail. 

As stated, the main advantage of the system is the wheel/rail adhesion independence, 
important for the safety of operation by enhancing the braking power of classical basic 
braking system. Moreover, the friction between the braking surface and rail can sometimes 
significantly improve adhesion between wheel and rail due to vigorous cleaning of the tread 
rails during operation. As a result, for the classic braking systems is usually avoided the 
wheels slide even in adverse conditions. It is also to notice that given the mass of the 
magnetic rail brake assembly and its fastening system, the gravity center of the bogie is 
lowered, with positive dynamic effects for the vehicle, especially in high speed domain.   

The main disadvantages are determined by the frictional operation of the system that lead to 
several drawbacks due not only to the relatively rapid wear of the braking surfaces 
especially for high traffic speed, but also to the increasing dependence of the shoe-track 
friction coefficient corresponding to the decrease of the running speed. As a consequence, 
the magnetic rail brake is designated only for emergency braking and is usually 
automatically released when the running speed is less than 50 km/h. This particular 
operation mode gives the complementary character of this system. 
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When designing the magnetic rail brake is important to consider also the interaction with 
the rails and generally with the track. Width and length of the magnetic brake shoe is critical 
in relation to the safe passage over the unguided area of switches and crossings, 
check/guard rails and other track design features or permanent way installations. On the 
other, the length is limited by the bogie wheel base, but the length of the braking surface 
must be kept equal to or above 1000 mm. Also, if too wide, parts of the frog can be hit 
outside the normal wheel-rail contact area or, in the extreme, fouling check rails. UIC leaflet 
no. 541-06 specifies the width of the friction plate to 65 – 72 mm, which is within the 
railhead width of UIC 46 to UIC 60 rails. The braking surface has to be flared at the ends in 
order to negotiate discontinuities in the rail head and the end elements of the brake shoes 
have both the characteristics of crossings with a tangent above or equal to 0.034 and the 
check rails. The general features of magnetic track brakes applicable to railway vehicles are 
stated in UIC leaflet no. 541-06. 

The operating principle of the magnetic track brake by using a magnetic field may 
determine incompatibilities with train detection systems working on magnetic principles. 
Consequently it is advisable to be equipped with shields to reduce the adverse effects. Also, 
the friction operating may lead to abrasion of primarily shoe material, conducting to 
possible bridging of isolated rail joints for track circuits and to the formation of ridges on the 
shoe surface leading to reduced performance. 

Because the magnetic track brake may develop high braking forces, one must not exceed an 
equivalent total deceleration of 2.5 m/s2 over the train length, avoiding also excessive 
longitudinal track forces in track with low longitudinal resistance or prone to rail creep. 

 

Fig. 7. Constructive solutions for magnetic track brake: a – high suspended; b – low 
suspended. 

According to the maximum running speed, there are two constructive solutions (see fig. 7) 
regarding the release position: high suspended, with a distance between the braking 
surfaces and rails of 60...150 mm, common for running speeds exceeding 100 km/h and low 
suspended in the case of vehicles running up to 100 km/h, usually applied to tramways, the 
distance being 6...12 mm. 

In the first case, pneumatic cylinders are used to descend the magnetic track brake up to the 
rails and only afterwards the electric circuits are activated. In the second case, due to the 
quite small air gap, the electromagnetic attraction forces are high enough to determine 
descending of the magnetic brake, too. 

The eddy current brake system is a dynamic no mechanical contact one, based on the action 

of a magnetic field operating across an air gap between a set of electromagnets oriented 

successively N-S poles versus a metallic mass (see fig. 8). Consequently, it is a wear-free and 
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silent system, requiring minimal maintenance. Eddy currents are induced by movement in a 

magnetic field and the kinetic and, eventually, the potential energy of the train is absorbed 

by the metallic mass and converted into heat that dissipates in the environment.  

Retardation depends on speed - the faster the train, the greater the braking force, on the 

intensity of the magnetic field and on the air gap. If the air gap is maintained constant, the 

braking force can be accurately controlled by regulation of the magnetic field while it is 

created using electromagnets fed from an external power supply, offering a useful solution 

as a frictionless moderable braking system for high speeds. Because the braking forces have 

a marked decrease at low running speeds, the eddy current brake is a complementary one 

and cannot be used for stopping at fixed points, nor as parking brake.    

Depending on the element used as metallic mass, there are two constructive solutions: rail 

and rotary eddy current brake. 

 

Fig. 8. Principle of eddy current brake system (Fm – magnetic force; Fat – attraction force;  
Fb – braking force). 

In the case of rail brake, the braking electromagnets are disposed in a linear alignment with 

an alternating sequence of north and south poles, above each rail, apparently resembling to 

the rail electromagnetic brake. On each bogie, the magnet sets are connected through 

crossbeams to form a single assembly, which can be raised or lowered by a ring bellow. In 

order to prevent inadvertent mechanical contact between the solenoid coil housings and the 

track, damage to the magnet, or dampness leading to corrosion, the brake housing is fitted 

with an energy absorbing guard plate and sealed with a synthetic resin.  

The main advantage of this system is the independence of wheel/rail adhesion, enhancing 

the braking power over the limits of classical basic disc brake usually associated with. 

The rotary eddy current brake uses as metallic mass disks mounted on the axle or the 

wheels themselves, which rotate towards the electromagnets set in a housing and disposed 

also in alternating sequence of north and south poles (see fig. 9). The housing can be 

attached directly within the bogie frame, or can be supported on the weheelset, but in that 

case it must be secured against rotation. The first solution is simpler as design, but due to 

vertical and transversal relative displacements between the wheelsets and bogie frame one 

must achieve a large enough air gap, which consequently requires a higher excitation 

power. The second solution allows a smaller air gap, but the construction is more 
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complicated and expensive and determines an increase of the unsprung weight of the 

vehicle, particularly undesirable in the high speed domain. 

 

Fig. 9. Rotary eddy current brake: 1 – metallic disc; 2 – magnets; 3 – housing; 4 – wheel. 

There are at least two major disadvantages of rotary eddy current brake. Due to the fact that 
the retarder couple is developed directly on the wheelset, it is an adhesion dependent brake 
and consequently unable to enhance the braking capacity of the mandatory basic system. 
The other is determined by thermal aspects, limitations being caused by the possibilities to 
dissipate the heat generated by the eddy currents in a relatively small mass, aspect 
enhanced due to specific aspects if the system operates on wheels. 

Thermal aspects are certainly connected to the rail brake, but in case of a train, Sookawa et 
al. (1971), have shown that at 12 mm below the tread of the rail, in case of a 10 mm air gap, 
the rail temperature increase does not exceed 100C.  It is obvious that the temperature of the 
tread of the rail attains higher values, but it was found that in approximately 10...20 minutes 
the temperature evens within the rail mass (Pouillet, 1974; Sookawa et al., 1970, 1971), but 
normally, there do not seem to raise difficulties. In that case, the issue that had to be 
addressed is the heating of the rails as a result of repeated brake applications made in much 
the same locations, which is usual due to operational and signaling reasons. So, in the case 
of a high train frequency there is a potential risk that the rails will not be able to cool 
sufficiently between brake applications that may affect the track structure, turnouts and 
other critical elements such as bridges. Still, only periodicities of the sequences of trains 
braking in the same area less than 10 minutes might appear critical (Sookawa et al., 1970, 
1971). 

Regarding the air gap, independent recommendations are concordant. Studies and 
experiments conducted by Pouillet (1974) showed that the optimum value of air gap is 7...8 
mm, while according to manufacturer Knorr-Bremse and DB's practical experience on the 
German ICE 3 train, the air gap between the magnets and the railhead should be between 6 
and 7 mm when the brake assembly is lowered into its operating position (Schykowski, 
2008). 

www.intechopen.com



 
Reliability and Safety in Railway 

 

44

Eddy-current brakes, especially the linear ones, seem ideally suited for high speed railways, 
improving rail safety by enabling shorter stopping distances and reduced dependency 
between stopping distance and wheel/rail adhesion, particularly during adverse adhesion 
conditions and offering braking power, both for service and emergency actions, which is 
difficult to achieve with other methods.  

More than that, there are also other desirable effects in their use, such as mitigating the 
thermal capacity problems of brake pads and discs associated with conventional friction 
braking systems and avoiding harder application of conventional friction brakes leading to 
excessive wear of the pads and brake discs. 

However, due to the operating principle, eddy current brakes raises issues of compatibility 
with infrastructure that can potentially impair both safety and technical reliability, meaning 
electromagnetic and physical compatibilities with train detection installations and line side 
equipment for train condition monitoring. It is also to mention that longitudinal, vertical 
and lateral supplementary forces induced by that braking system must fit the constructive 
track resistance.  

5. Braking capacity 

The main goal in designing and operating is to provide the necessary braking capacity 
appropriate to the type and specific running speed of the vehicles/trains according to the 
traffic safety. 

Braking capacity is a significant feature of any railway vehicle and train which states the 

overall design and functional capability to stop from a maximum running speed according 

to the maximum braking forces developed during an emergency braking.  

The braking capacity of a railway vehicle depends on numerous factors and some of the 

most important are: running speed, weight, type of brakes, constructive and functional 

characteristics of the brake rigging, braking characteristics, thermal phenomena, etc. In 

assessing the braking capacity of a train, additional parameters are involved: the train type, 

composition and length, the braking wave propagation characteristics, etc. Therefore, a 

direct and consistent assessment of braking capacity is difficult to achieve. 

Specific for the railway vehicles, the possible maximum braking force is critical for the basic 

wheel/rail adhesion dependent braking systems. The main condition imposed is that 

braking forces at the wheel-rail contact surface Fb ,max must not exceed the wheel-rail 

adhesion force Fa, for designing purposes considered in normal conditions: 

 ,maxb aF F   (1) 

Considering a vehicle having Qv weight, relation (1) gets particular expressions for the case 
of being equipped with n brake shoes (see fig. 10, a): 

  ,max ,
1

n

b s s i a v
i

F P Q 


      (2) 

respectively with n brake discs (see fig. 10, b): 
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where: Ǎa is the wheel/rail adhesion coefficient, Ps and Pd are the clamping force on a brake 

shoe, respectively pad, Ǎs and Ǎd the friction coefficient between brake shoes and wheel 

tread and brake pad and disc respectively, Do the wheel diameter and rm the medium 

friction radius. 

The braking forces are essentially influenced by the friction coefficients involved, their 

dependence on different parameters having important role on braking characteristics of the 

vehicle. There are many factors determining the evolution of friction coefficients, among 

them the most important proved to be the running speed, the clamping forces, the surface 

contact pressure and temperature.  

Orientation towards a certain friction material for braking equipments is strongly influenced 

by the constructive and operational characteristics of the vehicle, mainly the maximum 

running speed, as well as by the dependence of friction coefficient on the previous specified 

parameters.  

It is known that the friction coefficient between cast iron braking shoes and wheel tread 

strongly depends on the instantaneous running speed, the applying force on each shoe 

and the contact pressure, while the use of plastic (composite) materials for brake shoes or 

pads enables an independence of the friction coefficient on the mentioned parameters (see 

fig. 11).    

In practical calculus, for the friction coefficient between cast iron brake shoes and wheel 

tread there are recommended different empirical relations, determined by experiments, 

depending on most important influencing factors, meaning mainly the running speed V 

[km/h], the applied forces on a break shoe Ps [kN] or the surface contact pressure ps 

[N/mm2]. An example is UIC formula:  

  

87510 100100
3.6, 0.49
35 2860

100 100
3.6

s

s s

s

pV g
V p

V p
g


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  
   

 (4) 

or Karvatzki formula: 
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 (5) 

where 9.81g  m/s2. 

In the case of plastic brake shoes the friction coefficient is about 0.25, while for brake pads is 
about 0.35.  
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Fig. 10. Braking forces at wheel/rail limit adhesion: a – brake shoes, b – disc brake. 

 

Fig. 11. Dependence of friction coefficient on running speed for different braking systems. 
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Due the above mentioned independency on running speed and taking into account the high 
value (0.35) of the friction coefficient, according to international regulations, the disc brake is 
mandatory as basic brake system for vehicles running with 160 km/h or more. 

Sill the main problem is that friction interface between the brake pads and disc must not 
exceed temperatures of 350...3750C, else severe and sudden wear of pads occurs. Practically, 
the thermal regime determines the necessity of several brake discs mounted on the wheelset, 
even four in the case of high speed vehicles. 

The vehicle mass is one of the factors influencing the necessary braking force, being 
proportional with the kinetic energy to dissipate during braking actions. When the vehicle’s 
mass may have important variations, the braking forces have to be adjusted subsequently in 
order to avoid wheel slip and locking of wheelsets (for empty vehicle), unacceptable 
lengthening of the braking distance and enhancement of dynamic longitudinal in-train 
reactions. This issue is specific to freight wagons and some passenger cars, such as the 
double-decked, the post and/or luggage and those for transporting cars in passenger trains, 
characterized by a maximum possible load greater or comparable to the weight of the empty 
vehicle. 

According to the type and constructive running speed there are two technical possibilities to 
solve the problem: either a step, or a self-adjusting load-proportional braking system. The 
first is used in the case of freight wagons with constructive running speeds less than 120 
km/h, while the second is compulsory for passenger cars and freight wagons running with 
120 km/h or more. 

A step-adjusting load-proportional brake system has a manual or automatic empty-loaded 
control device which usually enables two clamping force levels on the friction elements 
(determining two braking forces) at the same pressure command of the driver, according to 
the size of the actual mass of the vehicle in relation to a switching mass.  

The system requires either two amplification ratios of the brake rigging, or a classical brake 
rigging actuated by a double brake cylinder (see fig. 12).  

 

Fig. 12. Double brake cylinder. 

The air pressure within the double brake cylinder is univocally determined by the air brake 
distributor, according to the driver’s command in the brake pipe. Depending on the empty 
or loaded position of the device, the compressed air is directed to one of the segments of the 
brake cylinder. For the same air pressure, one may obtain two braking force levels, 
according to the diameter of the segment involved. The automatic empty-loaded control is 
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based on a mechanical or pneumatic determination of the suspended weight of the vehicle 
based on the deformation or size of the forces acting on the suspension springs. 

The self-adjusting load-proportional braking system is capable of an accurate and 

continuous adaptation of the braking force to the weight of the vehicle. The system requires 

a weighing valve situated in the suspension and determining a command pressure which is 

send to a pressure relay. This device operates together with the air distributor and adjusts 

the air pressure within the brake cylinders that is commanded through depression in the 

brake pipe of the train according to the command pressure proportional to the vehicle’s 

load. That means that for the same braking command, the real pressure in the brake 

cylinders differs for different loads. Usually, taking into account an uneven distribution of 

load in the vehicle, there are at least two weighing valves placed diagonally in opposite 

sides and in the case of unique air distributor on the vehicle, a middle pressure valve is 

added to the system. Its role is to transmit to the pressure relay a mediated value of 

command pressures received from the weighing valves of the vehicle. 

Very important is the brake cylinder pressure characteristic of the pressure relay. This 

shows the dependence between the maximum pressure within the brake cylinder and the 

weight of the vehicle and is determined based on the condition that, regardless of the load, 

the same braking distance to be achieved. The constrains are to respect the maximum 3.8±0.1 

bar pressure within the brake cylinder for maximum load and not to decrease below 1.1 ... 

1.3 bar for the empty vehicle, in order to obtain a consistent braking force even for low 

braking steps.  

The braking distance, usually defined as the distance covered by a vehicle or a train since 

the command of emergency braking from the maximum running speed, to a complete stop, 

is the minimum distance to stop using the full braking capacity available.  

The braking distance seems to be extremely appropriate for designating the braking 

capacity, because it is direct effect of braking forces and all other implied factors, being 

measurable and permitting comparisons for evaluating the braking efficiency. 

For an analytical determination of the braking distance of a rail vehicle it is important to 

take into account numerous factors, such as the running speed when the brakes are applied, 

the vehicle’s weight, the evolution of braking forces dependent on the type, constructive and 

operational characteristics of the braking systems, resistances, the geography of the track, in 

particular slopes, etc. For trains, there are supplementary aspects involved depending on the 

length, the weight and even the mass distribution in the body of the train, the brake 

propagation rate, etc.  

For accuracy, when theoretically determine the braking distance sb there are considered first 

a “braking preparation space” sp [m] covering the phenomena immediately subsequent 

acting the driver’s brake valve until maximum pressure is established in all brake cylinders, 

continued by the effective braking space sef [m] covered with full braking capacity until stop: 

 b p efs s s  [m] (6) 

Generally for a single vehicle, or for a train in case of electric command supposed to 
propagate almost instantaneous along the train, the braking preparation space can be 

www.intechopen.com



 
Train Braking 

 

49 

calculated considering the pressure evolution during the filling time tf [s] as a step function, 
at half of the duration the pressure becoming instantly maximum, determining beyond that 
moment the action of full brake capacity:   

 
max

3,6

f
p

V t
s 


   [m] (7) 

where Vmax [km/h] is the running speed at the moment of braking command and 

0.5  . In the case of trains equipped with classical UIC air brake, the factor κ is 

recommended between 0.54...0.7 according to the length of the train and to the type of 

brakes.  

Determination of effective braking space considering that the kinetic Ek and potential Ep 

(when running on slopes) energy of the vehicle/train are dissipated by the work of the 

braking and resistance forces. Because the rail vehicles have important masses in rotation, 

their rotation kinetic energy must not be neglected: 

  
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 (8)  

considering v [m/s] the running speed, m [kg] the vehicle/train mass, I [kg.m2] the polar 

inertial moment of the wheelsets, r [m] the wheels radius and 2( )I m r   a term 

accounting the rotational masses involved. 

The potential energy depends on the track gradient i [mm/m] and on the travelled distance 

s [m]: 

 
1000

p

i
E m g s     (9) 

with 9.81g  m/s2. Obviously, on uphill track gradients gravity assists deceleration. 

So, according to previously presented considerations, the braking effective distance sef may 

result from the equation: 
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2 1000
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ef b
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m g s F ds Rds 
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where ( , )bF f v etc [N] is the maximum instantaneous braking force and 2( , , )R f v v etc [N] 

the resistance forces. 

As previously stated, the fundamental problem in establishing a train braking capacity is 

thus to determine the braking distance according to the maximum running speed. As 

shown, this would be a basic mechanics problem unless the implication of many nonlinear 

parameters such as brake propagation factor, the brake cylinder pressure evolution, the 

characteristics and multiple dependencies of the friction laws, the different and sometimes 

unpredictable composition of the train, etc.  
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Given the presented issues, to address current problems related to the safety of rolling stock 

operation regarding braking, it was necessary to define a general, synthetic term able to 

accurately quantify the braking capabilities not only for each railway vehicle, but also to 

enable a rapid, correct and adequate determination of braking capacities of trains, consistent 

to their composition, length and all other characteristic parameters.  

That specific term is called braked mass, it is expressed in tons, constitutes a measure unit 

for braking effect and is compulsory to be inscribed on the vehicle. It has a general and 

synthetic character, it may be less than, equal to or greater than the mass of the vehicle and 

at present has no physically correspondent.   

The term’s designation is traditionally preserved from the time of freight trains using 

generalized hand brake, when the worst case that could meet during specific operating was 

locking of all wheelsets due to excessive action of the braking agents. Under these 

conditions, the maximum braking force Fb,max [kN] depended only on the mass M [t], 

considering an relatively invariant friction coefficient τ between the locked wheels and the 

rolling tread of rails: 

 ,maxbF M g    (11) 

and hence the name of the term. 

Currently, for determining the braked mass, there are taken into consideration not only the 

construction and operation of the brake equipments fitted to vehicles, but also the multitude 

of processes and phenomena that govern the braking action, such as: dependence of friction 

characteristics on instantaneous running speed, pressing forces, specific contact pressure; 

environmental conditions and their influence on friction coefficients as well as on the 

wheel/rail adhesion, being not allowed locking of wheelsets during the braking actions; 

specific pneumatic phenomena that determine the braking rate, the pressure characteristics 

of air distributors; influence of thermal phenomena and braking resultant heat dissipation; 

resistances of the vehicle/train, etc.  

The value of braked mass consequently depends on many factors, processes and complex 

phenomena, which makes it extremely laborious and difficult to be established based on 

analytical calculation, accuracy to real braking actions proving essential given the 

importance on the safety of operation. Therefore, determining the braking mass of 

railway vehicles is mainly based on experiments and tests, but there are also 

relationships based on testing results fitted for some particular cases. Methodologies and 

procedures for determining the braked mass and are regulated by UIC leaflet no. 544-1. 

To be more convenient in practical use, it is also defined a specific notion, braked mass 

percentage ratio b, as the ratio between the braked mass B [t] and the train’s or vehicle’s 

mass M [t]: 

 100
B

b
M

  [%] (12) 

It is to notice that using the braked mass B or the braked mass percentage ratio b instead of 
brake space s to appreciate the braking capacity has a mechanical based justification.  
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Considering the simplest case of a train of mass M at a running speed vo subjected to a 
constant deceleration d, the braking space s and the stopping time t are related by known 
mechanical relationships: 

 
2

21
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2 2
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o
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s d t v d t s

d
      


 (13) 

The total braking force Fb of the train is proportional to the total normal applying forces 

acting the brake shoes on wheel tread or the brake pads against the discs NP : 

b NF P   

The proportionality coefficient   might be s  , the friction coefficient between brake 

shoes and wheels or, for the case of vehicles equipped with disc brake, 
4 m

d
o

r

D
 
   (Ǎd the 

friction coefficient between brake pad and disc, Do the wheel diameter and rm the medium 
friction radius). 

By definition, the braked mass is also proportional to the total normal applying forces:  

NB P   

The proportionality coefficient   depends on the vehicle constructive and operational 

characteristics.  

If neglecting the influence of other resistances and considering the definition of braked mass 
percentage ratio b given by eq. (12), then: 
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and, taking into account (13), results: 
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and: 
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Eq. (14) and (15) enhance the inverse proportionality between the braking space s and 
braked mass B, respectively the braked mass percentage ratio b.   

6. Longitudinal dynamics of trains submitted to braking actions 

As previous stated, according to international regulations, the indirect compressed air 
braking system is mandatory for railway vehicles because the pneumatic command is 
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recognized as very reliable and its automat functioning principle is very important for the 
safety on operation.  

In the case of classical UIC brake system, due to the air compressibility and to the length of 

the train, there will always be a time lapse between the reaction of the leading vehicle and 
the reaction of the rear one. Corresponding to the propagation rate of air pressure signal, the 
air distributors will come into action successively and the braking of vehicles begins at 

different times along the train so that, while some cars are slowing down, others are trying 
to push, still unbraked, from the rear. This creates the conditions that during transitional 
braking stages, immediately following the command of pressure variation in the brake air 
pipe, to develop important longitudinal in train reactions causing stress to the couplers and 

affecting passenger comfort and, sometimes, even the traffic safety. 

6.1 Trains braking phases 

After a braking action command, speed begins to decrease due to the kinetic and potential 
energy dissipation mainly through the heat developed by the action of braking systems and 
through the work of the resistance forces that each vehicle and, accordingly, the whole train, 

are submitted to. These processes develop with different intensities in various places of the 
train assembly. So, in the case of a train equipped with standard pneumatic brake system: 

- along the train, the effective action of the brakes begins successively, according to the 
length of the train and depending on the braking propagation rate wave, etc. 

- at each vehicle, the braking forces increase up to the commanded value is time 
dependent, according to the filling characteristics specific to the brake and air 
distributor constructive and functional types; 

- the train’s vehicles can be equipped with various types of braking systems; 
- usually, trains are composed with different types of vehicles and consequently the 

resistance forces differ, while the wheelsets and masses are not uniformly disposed 
along the train; 

- vehicles may have various masses and loads and, depending on the type of brake 
devices that are fitted (basic, step-adjusting or self-adjusting load-proportional braking 
systems), braking forces will develop in different manners, finally being more or less 
adapted to the total weight of the vehicle; 

- if for certain reason there are vehicles with inactive brakes, then even more the braked 
wheelsets are unevenly placed in the train body, etc. 

From the above it follows that if taken separately each vehicle, according to its particular 

operating, constructive and loading features, it would stop on a specific braking space, even 
if submitted to the same braking action and beginning at same running speed. While 
connected in the train body, they will have to stop on a same distance, determining 
longitudinal reactions, certainly amplified by the specific operating mode of the indirect air 

brake system. These reactions that act on the shock and traction apparatus and are 
transmitted through the chassis, can be important under particular conditions, determining 
shocks and even affecting the safety of the traffic. These aspects must be studied in order to 

establish specific conditions in terms of braking features and train composition, as well as 
constructive and operational, to diminish the in-train dynamic reactions in such a manner to 
avoid disturbing or dangerous levels. 
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To easily understand the issues, Karvatski (1950) considered that during braking actions 
four phases occur and, to simplify the problems, he presented them under some 
assumptions, such as: masses and braked wheelsets are evenly distributed in the train body, 
assuming that vehicles are identically constructively and loaded and equipped with the 
same type of brake, all active and providing the same filling characteristics. Two typical 
cases are presented under these assumptions: a passenger train of 20 four-axles vehicles 
equipped with fast-acting brakes and a freight train of 100 two-axles vehicles equipped with 
slow-acting brakes. The time history of certain brake cylinders pressure, representing also 
proportional the evolution of brake forces along the trains, are presented in fig. 13.  

 

Fig. 13. Phases of train braking (continuous line for passenger train, dotted line for freight 
train). 

The first phase is considered between the moment of commanding the brake action until the 
brake propagation ratio attains the last air distributor of the train. During that phase, the 
brakes begin to come into action successively along the train, which is submitted to a 
compression becoming maximum at the end of first phase, corresponding to the brake 
cylinder difference of pressures between the first and the last vehicle of the train 
(proportional to segments ab for passenger train equipped with fast-acting brakes, a’b’ for 
freight train equipped with slow-acting brakes).  

The second phase is considered between the end of the previous one until in the brake 
cylinders of the first vehicle in train the maximum air pressure commanded is attained. 
During this time, pressure continues to increase uniformly in all the brake cylinders, 
maintaining a decreasing pressure distribution along the train, that remains consequently 
compressed, the compression level being similarly proportional to segments cd and c’d’ 
respectively. Moreover, under the assumed simplifying hypothesis, at the end of the first 
phase there are created all necessary condition to initiate an oscillatory motion, due to 
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inertial in excess forces in the second half of the train, which propagates along, pushing 
alternatively the vehicles from the front and the end of the train. The oscillatory motion, 
which overlaps on the existent compression of the train, is damped according to the 
damping coefficient of the buffers and traction gears. 

The third phase lasts from the end of the second one until the maximum pressure is 

established in the brake cylinders of the last vehicle of the train. During this phase the 

maximum pressure is achieved successively in the brake cylinders along the train. As a 

result of successive braking forces equalization, the potential energy accumulated in the 

elastic elements of the buffers during the previous phases compressions is rendered to the 

system. Consequently it develops a “rebound” in succession along the train, its intensity 

depending on the damping characteristics of the shock apparatuses. 

The fourth phase is considered between the end of the previous one until the train stops or a 

brake release command is performed. Because during that phase the maximum pressure 

already existent in all brake cylinders is maintained, braking forces remain constantly to 

their maximum values along the train, so the deformations stop and train length remain 

from now on unchanged.  

It is to notice that even under the simplifying assumptions, the mechanical response of the 

train is extremely complex, the length of the train continuously modifies during the first 

braking phases and the overlap of oscillatory motion propagation determines the 

development of important compression and traction in-train forces. Incidents such as 

broken couplers during braking actions, observed mainly in the case of long, heavy freight 

trains submitted to braking actions, constituted the evidence of practice. 

6.2 Mechanical model of the train 

A classical approach for theoretical studies of the dynamic longitudinal forces developed 

during the braking actions along trains equipped with automated compressed-air brakes is a 

mechanical cascade-mass-point model in which vertical and lateral dynamics are usually 

neglected (Pugi et al., 2007; Zhuan, 2006; Zobory et al., 2000, etc).  

Assuming that the train is composed of n vehicles, these are linked to each other by 

couplers, traditionally based on combined use of draw-gears and buffers. Consequently, the 

model is an elastic-damped lumped system consisting in n individual rigid masses mi 

representing each vehicle, connected through elements having well defined elastic ci and 

damping ρi characteristics (see fig. 14). 

 

Fig. 14. Mechanical model of the train 
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Generally, a certain i vehicle of the train is mainly submitted to the following exterior forces: 
Fb,i the instantaneous braking force of the vehicle, Rmi the vehicle’s main resistance, Rsi the 
supplementary resistance due mainly to the tracking slope and curvature and Pi-1, Pi the in-
train forces between the adjacent vehicles representing cumulated elastic and damping 

forces acting on the shock and traction apparatus between 1i  and i, i and 1i   respectively 

vehicles.  

Considering xi and 
..

ix  the position and the instantaneous acceleration of a certain i vehicle 

of the train submitted to the influence of the exterior forces, the equation of motion is:  

 
..

, 1ii b i i i im x F R P P       (16) 

for i =1, 2, ... , n and 0o nP P  . 

Applied to all component vehicles of the train, eq. (16) constitutes a differential nonlinear 

equation system of second degree. 

For each mi vehicles’ mass, the covered distance, the instantaneous speed and acceleration, 

as well as the instantaneous braking, resistances and longitudinal developed forces in the 

train’s body are mathematically time dependent. 

According to initial applied conditions, the equation system (16) can be solved applying a 

numerical integration process.  

Generally, the main parameters influencing the assembly of the studied problem are: train’s 

composition, number, mass and type of the vehicles, as well as their repartition in the body 

of the train; the braking system functional characteristics; the elastic and damping 

characteristics of the shock and traction devices; the evolution of the friction coefficient 

between the brake shoes and wheels, brake pads and discs respectively, eventually between 

the electromagnetic track brakes and rail, in accordance with the equipments of the train’s 

vehicles.    

6.3 Analysis of main mechanical parameters 

For the case of disc brake equipped vehicle having individual self-adjusting brake rigging, 
the braking force can be calculated: 

  
2

, ,

2

4
bc m

b i bc i R sa t bc d br
o

d r
F p F R i n

D

  
  

         
  

 (17) 

where: dbc is the brake cylinder diameter [m], pbc,i [N/m2] the instantaneous relative air 

pressure in the brake cylinder, FR and Rsa [N] the resistance forces due to the brake cylinders 

back spring and to the self-adjusting mechanism incorporated in the piston rod respectively, 

Do [m] the wheel diameter and rm [m] the medium friction radius. The dimensionless terms 

are: it the brake rigging amplification ratio, nbc the number of brake cylinders of the vehicle, 

Ǎd the friction coefficient between brake pads and disc and ηbr the mechanical efficiency of 

the brake rigging. 
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If the vehicle is equipped with shoe brake having symmetrical brake rigging with self-
adjusting mechanism on the main brake bar, the braking force can be calculated by the 
relationship: 

  
2

, , ,
4

bc
b i bc i R c sa l bc s s i br

d
F p F i R i n n P V

  

  
               

 (18) 

where dbc [m], pbc,i [N/m2], FR [N], Rreg [N] and ηbr have the same significations previously 
assigned. The dimensionless terms are: ic the central brake rigging, il the amplification ratio 
of the brake rigging’s vertical levers, nΔ the number of triangular axels and Ǎs the friction 
coefficient between brake shoes and wheel tread which depends on the clamping force on 
each brake shoe Ps [kN] and on instantaneous running speed Vi [km/h].  

Assuming that certain terms and factors representing constructive and functional 
characteristics are constant for the same vehicle during braking actions, one may be put in 
evidence that during the filling time the brake force for the brake disc is directly depending 

only on the instantaneous relative air pressure in the brake cylinder  , ,b i bc iF f p , while in 

the case of shoe brake, the dependence is more sophisticated due to the friction coefficient 

between brake shoes and wheel tread   , , , ,b i bc i s s iF f p P V . 

In the last case, during the filling time, while the pressure in the brake cylinder increases 
and the clamping force Ps increase, the friction coefficient between brake shoes and wheel 
tread tends both to decrease due to Ps increase and to increase due to the running speed 
decrease (see fig. 11). 

It is to highlight that the instantaneous pressure within the brake cylinder, main variable 
parameter, depends on several factors and some of the most important are: the pressure’s 

evolution during the filling time of the air brake distributor; the precise moment of 
reaching the maximum pressure and its value within the brake cylinder, which from that 

moment, all along the braking action duration, can be considered constant, except the case 
if antiskid equipments action occurs; the characteristics of the first time duration of 

braking, defined as the time period of rapid increasing of the brake cylinder pressure, up 
to approximately 10% of the maximum admitted value. It is considered that only at the 

end of the first time duration of braking begins to develop an effective brake force for the 
vehicle.  

Railway vehicles are linked each other by different kinds of couplers that must have certain 
elastic and damping characteristics, because they have remarkable influence not only for the 

protection of the vehicle’s structure and the loading’s integrity, but also for the passengers 
comfort. Generally, the traditional couplers wide used in Europe are composed of a pair of 

lateral buffers, a traction gear and a coupling apparatus at each extremity of the vehicle. 
Their characteristics have significant influences for the longitudinal dynamics of the train, 

with running stability implications. There are specific types of buffers for railway vehicles, 
their characteristics taking into account the requirements determined by mass, potential 

collision shocks and passengers comfort, etc. Therefore, there are different constructive 
solutions, using metallic, rubber, silicon type elastomers, hydraulic, pneumatic or hydro-

pneumatic elastic elements.  
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According to the particular constructive and operational characteristics, the behaviour of 
buffer and draw-gear devices is quite complex due to several non linear phenomena like 
variable stiffness-damping, hysteretic properties, preloads of elastic elements, draw-gear 
compliance, clearance between the buffers discs, etc. 

Buffers and draw-gears still widely equipping railway vehicles are based on metallic elastic 
rings (RINGFEDER type), using friction elements to fulfil the required damping effects. 

The general characteristics of these devices mainly depend on the stroke Δx representing in 

fact the relative displacement between neighbor vehicles and on the relative velocity x

  

and its sign (see fig. 15). The main parameters are: the stiffness ci,j, the precompression forces 
Poc,t, the length of the stroke defining the inflexion of the elastic characteristics Δx2c,t and the  
precompression of the elastic elements Δx1c,t of the shock and the draw-gear devices. The 
elastic characteristics c*i,j might be determined either by experiment, or taking into account 
the damping depending on the accumulated and dissipated potential deformation energy, 
according to international regulations. 

 

Fig. 15. General characteristics of shock (index c) and traction gear (index t) devices. 

For freight wagons there are in use buffers with 75 mm elastic stroke, high capacity buffers 
with 105 mm stroke and high energy absorption capacity buffers with 130 and 150 mm 
stroke, while for coaches there are in use buffers with 110 mm stroke (prescriptions in UIC 
leaflets no. 526-1, 2, 3 and 528). 

The resistances of trains and of each railway vehicle are determined by all forces that oppose 

to their movement. They depend on several factors among which the most important are the 

type and characteristics of rolling stock, running speed, the track characteristics 

(longitudinal and vertical profile), direction and intensity of the wind, etc. 

Taking into account the divers causes and effects, usually there are considered two kinds of 
resistances. The main one summarizes all forces acting permanently whenever the 
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train/vehicle is moving in alignment on a horizontal track. The supplementary one are 
intermittent opposing forces, acting only at certain times and are determined by the 
circulation in curves, on ramps or slopes, by the wind action, etc. and they are added up 
algebraically to the main resistances whenever appropriate.  

To simplify calculations it is common to use the specific resistances r [N/kN] defined as the 
ratio between the resistances R [N] and train/vehicle weight Q [kN]: 

 
R

r
Q

  (19) 

Because the dependency on many factors, for calculate the specific resistance there are 
usually used empirical relations, established on experimental basis. 

For studies regarding the longitudinal dynamics of trains it was previously stated that in-
train reactions are mainly dependent on the instantaneous variation of longitudinal forces 
between vehicles. It is obvious that instantaneous running speed of each vehicle in the train 
body during braking phases are not absolutely identical, but differences can only be very 
small due to the permanent interconnection. Consequently, the instantaneous main 
resistances Rni differences are expected to be almost insignificant compared with braking 
forces Fb,i during the brake stages. The same observation is for the supplementary 
resistances Rsi as long as the train’s vehicles are running altogether on the same track and 
are submitted to the same atmospheric conditions.  

Under these conditions, for theoretical estimations of in-train longitudinal reactions 
evolution during braking actions, it is expected that results would not be significant altered 
if not considering the running resistances, all the more for almost similar vehicles. Still, 
eventually the air drag affecting the first vehicle may interest more.   

6.4 Analysis of main pneumatic parameters 

Generally the main cause of in-train forces is the instantaneous difference of the various 

longitudinal forces acting between vehicles. In the case of braking actions it is obvious that 
braking forces are most important and their time history in the first stages following the 

braking command is crucial. 

While the mandatory basic braking system is the indirect compressed air one, the operation 

is very complex in order to meet the very demanding specifications to assure the safety and 
interoperability between different kinds of vehicles. As previously presented in § 3, the 

braking command is transmitted along the train as pressure reference and the braking 
system of every single vehicle interacts specifically with the complete pneumatic plant of the 

train. 

That is why an adequate study of the pneumatic processes is important for such studies. 

There are two important aspects influencing the longitudinal behaviour of the train 
submitted to braking actions: the moment when each air distributor begins to command the 
filling of the brake cylinders and the subsequent evolution of the air pressure in the brake 
cylinders. Accordingly, there are two different aspects that are usually emphasized: the 
propagation of braking signal along the brake pipe and the response of the distributor. 
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The air movement along the brake pipe and through the calibrated orifices, valves and 

channels of the distributors between the auxiliary reservoir and the brake cylinders is very 

complex and certain simplifying assumptions are usually considered and there are taken 

into account factors that have essential role in the evolution of processes.  

For such pneumatic system, the main basic simplifying hypotheses are: unidirectional air 

flows (generally small flowing sections and quite long pneumatic elements make 

determinant the axial component of air speed and therefore a negligible variation of fluid 

properties in the normal section to flow direction); air is considered to be perfect gas 

(permits air status parameters correlation by Mendeleev-Clapeyron equation and is 

accepted the adiabatic exponent invariance); the flow of air in the pneumatic brake systems 

is accompanied by heat transfer phenomena between air, pneumatic enclosure walls and 

pipes and the environment. 

Air flow modeling - as compressible fluid - in air brake systems is based mainly on the 

application of the laws of mass and angular momentum fluid (in a volume control) 

conservation and on the first two principles of thermodynamics. Also, the model must 

include the equation of state of fluid, which allows correlation of thermodynamic properties 

and, moreover, to consider, when appropriate, that movement of mechanical tasks is 

governed by the second Newtonian mechanics postulate.    

Analyzing the evolution of processes consequently a braking command performed by 

establishing the pneumatic connection between the brake pipe and atmosphere through 

the driver’s brake valve, Karvatski (1950) identified the following stages: the propagation 

of an air wave along the brake pipe, followed by a pressure drop determining the 

successive actuating of each air brake distributor according to its sensitivity and the 

subsequent pressure increase in the brake cylinders in compliance with the filling 

characteristics.   

He explained the air wave propagation mechanism: once opened the pneumatic connection 

between the brake pipe and atmosphere through the driver’s brake valve located at one end 

of the train, one generates and starts to propagate a stream of air to exit. The opening of the 

valve breaks down the overall balance of the air in the outlet vicinity and so, 

successively, the equilibrium of each air layer is broken while losing the support of the 

foregoing. The beginning of air movement at each point of the pipe determines 

consequently a beginning of pressure drop. This process is propagating with a certain speed 

waw [m/s] in the brake pipe to the other end of it:  

 aw

p
w





  (20) 

depending on the absolute air pressure p [N/m2], density ρ [kg/m3] and adiabatic exponent 
 . 

After the passage of the air wave, in each point of general pipe the air pressure begins to 
decrease, depending mainly on the brake pipe length l [m], on the distance between the 
driver’s brake valve and the considered point lx [m], on the air wave propagation speed waw 
[m/s] and the medium pressure drop totally generated Δp [N/m2].   
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Corresponding to his simplified model, Karvatzki (1950) determined the local pressure drop 
rate: 

 
1

2

x

aw

l
n

w
x aw

p
v w e

l

 
     (21) 

where n is a logarithmic decrease factor showing the decrease of local pressure drop along 

the brake pipe, factor to be experimentally determined.  

Analyzing the model, it appears that the main causes of the decrease of local pressure drop 

along the brake pipe are determined by the distributed pressure loss in the pipe and by the 
local pressure loss due to the air flow changes of directions. So, eq. (21) can be improved 

considering 1n  and taking into account the pressure losses.    

Distributed pressures losses occur whenever a fluid flows in a relatively long pipe having a 
comparatively small cross section, due to viscous friction between parallel layers of air, in 

this case. 

The distributed pressure loss coefficient for a pipe of length l [m] and inner diameter d [m] is: 

 d

l

d
    (22) 

where ǌ is the coefficient of Darcy, determined experimentally according to the flow regime 
and the inner surface roughness or, for a laminar flow regime and smooth inner surface of 
the pipe, can be calculated using Poiseuille's relationship as a function of the Reynolds 
number Re:    

 
64

Re
   (23) 

For the case of a straight circular pipe, if laminar flow regime, the pressure loss between two 
flow sections situated at the distance ld [m] along pipe can be calculated based on Hagen-
Poiseuille relationship: 

 
4

4
32

o

d
d

med

l m
p

d





    


 (24) 

where 
o

m [kg/s] is the air flow rate passing through the pipe and ρmed [kg/m3], η [kg/m.s] 

the medium density, respectively dynamic viscosity of the air in given conditions. The 
temperature T [K] air viscosity dependence is: 

 

3

2273.15

273.15
o

C T

T C
          

 (25) 

where 617.09 10o
   [kg/m.s] is the dynamic viscosity of air at 0° C, and C is Sutherland's 

constant C = 112 (for air). 
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Considering air as perfect gas and taking into account the constants values, eq. (23) 
becomes: 

 
 

3

2

4
0.017

112

o

x
x

med

l m T
p

T p d

 
  
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[N/m2] (26) 

permitting an approximate evaluation of the distributed pressures losses at a lx [m] distance 

from the driver’s brake valve along the brake pipe. 

The local pressure losses mainly manifest in the zone of flexible coupled hoses, their 

curvature that determins the air stream to change the flow direction affecting the braking 

wave propagation along the train’s brake pipe.  

Generally, the local pressure losses depend on the local pressure loss coefficient loc , on the 

air density ρ [kg/m3] and fluid velocity vair [m/s] and can be determined with the relation: 

 
2

loc air
loc

v
p

  
   (27) 

In the case of a pair of flexible coupled hoses, considering the interior diameter d [m] and the 

curvature medium radius R [m], the local pressure loss coefficient can be calculated with 

relation: 

 0.131 0.163loc

d

R
     (28) 

The medium speed of air flow in the brake pipe of S [m2] interior cross section may be 

determined from the continuity equation, depending on the air flow rate passing through 

the pipe 
o

m [kg/s] and density ρ [kg/m3], resulting: 

 ,

o

med air

m
v

S 



 (29) 

Consequently, according to eq. (27), (28) and (29), considering the mean values of 

parameters involved, the local pressure losses for the “i” vehicle of the train are: 

  ,

0.131 0.163

1
2

o

loc i

d
m

R
p i

S

    
    


 (30) 

On the other hand, air brake distributors are characterized by certain levels of sensitivity 

and insensitivity that determine the beginning of brake operation consequently to local 

pressure variation in the brake pipe. 

Sensitivity can be defined as a minimum threshold pressure variation Δpsens in the brake 
pipe determining the air distributor coming into action, meaning determining the fill of 
brake cylinders it commands. It is advisable a quite high sensitivity, so that the brakes easily 
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begin operate and to diminish both air consumption and duration of releasing actions. Air 
distributors take action only if the local pressure drop gradient vlim permits, in a finite time t, 
to get:   

 min limsensp p v t      (31) 

Still, because technically is difficult to maintain a perfect tightness of the brake pipe, it is not 

advisable for air distributors to be extremely sensitive, whereas the lowest random pressure 

drop may cause an unsolicited brake application. Therefore, it is also characteristic a certain 

insensitivity level, in the sense of a maximum local rate of pressure variation in the brake 

pipe which does not determine brakes to come into action. Thus, the brakes do not operate if 

the local pressure drop gradient has a sufficient low value in the vicinity of the air 

distributor so that: 

 max lim |insens tp p v t       (32) 

For determining the moment of operation start for the distributor of “i” vehicle situated at 

lx,i [m] distance from the drivers brake valve, the time elapsed since the braking command 

has been performed is: 

 , , , ,i x aw x x d x loc it t t t t       (33) 

In eq. (33), taw,x [s] is the duration of air wave propagation up to the considered air 

distributor, tx [s] the necessary time for air pressure drop to the sensitivity level in ideal 

conditions, Δtd,x and Δtloc,i [s] representing the time to compensate the distributed, 

respectively local pressure losses.   

According to previously presented processes and correspondent equations, the moment of 

acting for each “i” vehicle air distributor, situated at lx,i distance from the drivers brake 

valve can be determined (Cruceanu, 2009): 
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  (34) 

In particular, considering the adiabatic exponent for humid air 1.405  , the interior 

diameter of the brake pipe 25d  mm and the radius of flexible coupled hoses assembly 

between two successive vehicles 1R  m, eq. (34) becomes: 
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 (35) 
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As a numerical example, relation (35) was applied for the case of a passenger train 
composed of locomotive (20 m length) and 10 coaches (25 m length each), coupled through 
flexible hoses (0.5 m length each). The air distributors were considered placed at the middle 
of each vehicle. The initial relative pressure in the brake pipe was considered 5 bar (brakes 
released) and the necessary pressure variation in the brake pipe to determine the air 

distributor coming into action 0.3sensp   bar. It was considered an emergency braking 

action, the medium air flow rate evacuated from the brake pipe in first phases of the process 
being 0.7 kg/s. The main results are shown in fig. 16. For the particular case presented, the 
brakes of the last vehicle in train begin to operate 1.9 s after the brake command given from 
the drivers brake valve situated in the front of the locomotive (first vehicle of the train).        

Even if the propagation of braking wave along the train seems to be almost linear, the 
relative time differences show that the propagation rate slows down along the train, as 
expected according to previously presented arguments.  

The calculated medium propagation rate of the braking wave is in that case 245.5 m/s, 
respectively 266 m/s if considering as reference the moment when the first air distributor 
begins to supply the first brake cylinder. These values are consistent with the rigors of 
international regulations and with general evolution of the process within the brake pipe. 

It is to notice that our model does not take into account the operation of emergency braking 
accelerators, so it represents the minimum propagation rate for the studied case. If the main 
purpose is to determine the maximum values of longitudinal dynamic reactions, then the 
use of the model conducts to estimates that cover the real processes. This affirmation is 
based on the fact that shorter the relative difference in time is, lower the braking forces 
differences between the train’s vehicles are. 

   

Fig. 16. Propagation of braking wave along the a short train (particular theoretical case 
study). 

The other important target of pneumatic studies regarding the in-train forces developed 
during braking actions is the distributor valve, a complex pneumo-mechanic device which is 
devoted to control the brake response on every vehicle according to the air pressure 
variation in the brake pipe. 

Due to the importance of the air brake distributors response to the pneumatic signals 
transmitted through the brake pipe, there were performed numerous theoretical and 
experimental studies regarding these aspects, based on more or less simplifying hypothesis, 
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all tending to highlight mainly the brake cylinders filling characteristics as accurate as 
possible (Belforte et al., 2008; Cantone et al., 2009; Piechowiak, 2010; Pugi et al., 2004, 2008, 
etc.).    

Generally, the pneumatic behaviour of the air distributor may be modelled as a lumped 

system of chambers and orifices, but the influences of numerous mechanic elements 

(pistons, valves, springs, etc.) are also important and these are more difficult to integrate in a 

functional model. Still, the effect of the distributor is the brake cylinders filling 

characteristics which are mainly influenced by the nozzles that determine the filling (and 

releasing) time duration. 

Under these conditions, a simpler way is to emphasize the role of calibrated orifices, 

considering them the main pneumatic resistance of the distributor. In that case, the air mass 

flow 
o

m [kg/s] between the auxiliary reservoir and the brake cylinder may be determined 

considering in a first stage the nozzles as ideal convergent nozzles and affecting with a 

correction coefficient αc that takes into account that in real circular cross section nozzles the 

minimum flow section is smaller than the geometric orifice section (see fig. 17) and pressure 

losses at the entrance lead to differences between actual and theoretical air flow speed 

through the calibrated orifice.  

 

Fig. 17. Model of nozzle: a - ideal convergent nozzle; b – real circular calibrated orifice. 

According to the air flow regime, the air mass flow can be determined for subsonic: 
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and for the supersonic one: 
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where: d12 [m] is the minimum geometric diameter of the nozzle, pin and pou [N/m2] is the air 
inlet, respectively outlet pressure, Tin [K] the inlet air absolute temperature,   the adiabatic 

exponent, 287.12R  [J/kg.K] the constant of the air. 

The air flow regime can be appreciated comparing the outlet/inlet pressures rapport 

according to the critical flow point 
12

1
m

cr
in cr

p

p







   
      

 as follows: if 

1cr ou inp p   than the flowing regime is subsonic and if 0 e in crp p   is sonic (for 

equality) or supersonic, in both last cases the air mass flow is maximum possible in given 
conditions and can be determined using eq. (37). 

Generally, eq. (36) and (37) are quite accurate according to the specific filling time imposed by 
regulations and can be used for initial dimensioning of diverse calibrated orifices used in the 
construction of various braking pneumatic devices for ensuring controlled pressure variations 
in certain pneumatic chambers. Still, when air flow is also mechanically controlled through 
valves actuated by pretensioned springs and commanded through the pressure acting on the 
piston, the air flow rate is certainly dependent on the opening height of the valve, too.   

In the case of "normally open" valves (see fig. 18, a), the instantaneous opening height h 
depends on: the initial hmax opening, the stiffness cs of the actuating spring, the diameter of 
the active surface of the valve’s command piston dp, the instantaneous relative air pressure 
pc in the control chamber, on the initial valve spring prestressing force Fp:  

 
max

4

p
c p

s

d
p F

h h
c

 
 

   (38) 

For instance, in the particular situation of the maximum pressure valve that solely controls 
the pneumatic link between the auxiliary reservoir and the brake cylinder at emergency 
braking command in the case of KE air distributors, considering only the calibrated orifices, 
the theoretical filling characteristics determined using only eq. (36) and (37) are presented in 
fig. 18, b with continuous line. When considering the decrease of air flow ratio determined 
by the closing valve using also eq. (38), the filling characteristics become much closer to 
reality (dotted lines in fig. 18, b). 

 

Fig. 18. Influence of valve opening on filling characteristics: a – schematic of pressure-spring 
controlled valve; b – theoretical filling characteristics (dotted line: valve controlled filling). 
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6.5 Longitudinal dynamic reactions in passenger trains submitted to braking actions 

Studies regarding the longitudinal dynamics of trains during braking actions are mainly 

focused on long, heavy freight trains, due to the more obvious effects determined by the length 

of the brake pipe and numerous big masses interconnected (Belforte et al., 2008; Karvatski, 1950; 

Nasr & Mohammadi, 2010; ORE-Question B 36, 1972,1980; Pugi et al., 2007; Zhuan, 2006; etc). 

Comparatively, issues regarding the longitudinal dynamic reactions in passenger train body 

seem to be less important. In fact, these are generally short, having a constant and much 

uniform composition than freight trains and there are sufficient arguments to support these 

assertions, e.g. passenger railcars are typically two axles bogies vehicles and have almost the 

same length, the mass difference between an empty and fully charged coach is significantly 

lower.  

Still, there are arguments to prove not only the complex evolution of dynamic in-train 

reactions during braking actions, but also that there may exist circumstances in which these 

forces can become significant. Some relevant key features regarding braking actions in the 

case of passenger trains are highlighted below: 

- running speed is significantly higher than in the case of long freight trains, so the 
energy dissipation gradient during braking is consequently greater; 

- vehicles are mandatory equipped with fast acting air brake which, according to the 
admitted limits of filling time, determine an increasing pressure gradient in the brake 
cylinders of 0.7 - 1.2 bar/s, compared with 0.1 - 0.2 bar/s in case of slow action ones 
used in case of long freight trains. Consequently, during the first train braking phases, 
the instantaneous differences among braking forces become higher and are the premise 
of larger in-train forces; 

- in the case of classical passenger trains, the locomotive weight is consistently larger 
compared to each passenger carriage, determining a pronounced nonlinear in-train 
body mass distribution: depending on train composition, the locomotive’s mass may 
represent even 40...50 % of the whole train, constituting a large concentrated mass 
placed in a extremity. Therefore it is expected that longitudinal in-train dynamic 
reactions should be seriously influenced. More than that, it is an obvious tendency for 
train combinations in push-pull operations. In that case, the train can be driven either 
from the locomotive or the alternate cab. If the train is heading in the direction in which 
the locomotive of the train is facing, this is considered “pulling” and if the train is 
heading in the opposite direction, this is considered “pushing”, the driver being located 
in the alternate cab. In that case, the longitudinal dynamics of the train deserves even 
greater attention not only in braking, but also in traction regimes, especially in pushing 
operations, when derailment risks are increased, mainly on switches; 

- the random action of wheel slip prevention equipments, specific for passenger rail 
vehicles, may determine, in condition of poor wheel-rail adhesion, important and rapid 
braking forces variations between the train vehicles, increasing the dynamic 
longitudinal reactions; 

- the action of the electromagnetic track brakes, as complementary system mandatory for 
running speeds exceeding 160 km/h, operating only in emergency braking actions, can 
induce supplementary longitudinal in-train forces in the case of non simultaneous 
releasing at the imposed running speed (see functioning principles in § 4); 
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- when using eddy current brakes, in particular the linear one, the air gap variation can 
determine random instantaneous brake forces variations between vehicles, determining 
an enhancement of longitudinal in-train reactions, etc. 

It is also to highlight that in the case of passenger trains, the comfort is diminished during 
braking actions also due to the longitudinal shocks determined by the longitudinal in-train 
reactions. 

At least these aspects conduct to the idea of studying the problem also for this type of trains. 
In order to determine the influence and effects of previously presented aspects, a team 
formed of members of the Rolling Stock Department from the Faculty of Transports of 
University POLITEHNICA of Bucharest developed certain theoretical studies regarding the 
longitudinal dynamic reactions for the case of passenger trains during braking actions 
(Cruceanu, 2009).  

Dedicated software was created and numerical simulations for different case models were 
carried out in Matlab with the solver ode45, until numerical stability and reasonable results 
were reached, the relative tolerance of the solver being finally set to 10-9 (Cruceanu et al., 
2009 ). 

The mechanical model of the train is a classical elastic-damped lumped system according to 
§ 6.2 and neglecting additional degrees of freedom due to bogies, suspension system, wheel-
rail interaction, etc. This simplified our approach and was used to predict wagons and train 
compositions with the worst loading condition during the braking phases. In elaborating the 
general model, several initial simplifying assumptions were admitted, generally focused on 
considering that: 

- vehicles are equipped with lateral buffers having a 110 mm stroke, according to UIC 
leaflet no. 528, constructively RINGFEDER type ones, meaning friction damping for 
these devices and the same for traction apparatus, according to UIC leaflet no. 520; 

- the initial compressions of the elastic elements of the shock and traction devices were 
neglected; 

- a tight coupling between the component vehicles, as regulated for passenger trains; 
- an average steady braking wave propagation speed along the train of 250 m/s, the 

minimum imposed regulated value; 
- exploitable braking forces develop only after reaching an approx. 0.4 bar pressure 

within the brake cylinder and once the pressure gets its maximum value, it remains 
constant during the whole braking process; 

- the vehicles main resistances, which are mainly depending on the running speed, as 
well as the supplementary resistances, were neglected because during the braking 
process the relative instantaneous differences between the vehicles of the train are 
almost negligible in comparison with the other forces variations taken into account. 

With the aim of obtaining accurate results, the conceived soft offers the possibility of using 

brake cylinders pressure information either directly from a complex computerized system 

for testing pneumatic braking equipment of rail vehicles, developed within the Scientific 

Research AMTRANS Program (2005/2008), or mathematical approximation functions.  

For simulate diverse filling characteristics, based on the acquisitioned data (see fig. 19, a), it 
was first determined an interpolation polynomial function that approximates accurate 
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enough the air pressure evolution within the brake cylinder for the interest domain of 

2.86t  s:  

 
6 5 4 3 2

,3.16( ) 0.033 0.31 1.081 1.53 0.413 0.88 0.4bcp t t t t t t t              [bar] (39) 

This function was extrapolated for the case of 4 s and 5 s filling time (see also fig. 19, b): 

 
6 5 4 3 2

,4( ) 0.005 0.063 0.3 0.59 0.22 0.643 0.4bcp t t t t t t t              [bar] (40) 

 
6 5 4 3 2

,5( ) 0.001 0.016 0.103 0.26 0.127 0.49 0.4bcp t t t t t t t              [bar] (41) 

 

Fig. 19. Air distributor filling characteristics: a – experimentally determined;  
b – extrapolated functions. 

The model for the shock and traction apparatus had to take into account the characteristics 
shown in fig. 15 which reveal the action of a friction force. Most commonly used is the 
Coulomb friction model which can be formulated as: 

 
( ) 0

0
c

app app c

F sign v if v
P

F if v and F F

    
 (42) 

where P is the friction force, v x   the relative speed and Fapp the applied force on the 

body. Fc is the Coulomb sliding force classically defined as cF N . Due to the properties 

of the sign function, these equations couldn’t be used in the simulation because the 
numerical method proved to be unstable. A solution was to replace tanh function with 
signand so the new model became valid for any value of the speed v as shown in the 
following relation:  

 tanhtanh( )cP F k v    (43) 

where ktanh is a coefficient that determines how fast the tanh function changes from near -1 to 
near +1. Still, even if the model becomes more numerically stable, it has the disadvantage 
that assumes zero friction force at zero relative speed, meaning the acceptance that friction 
force exists only when there is a motion (Andersson et al., 2007).  
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More than that, as shown in fig. 15, the friction force in the shock and traction devices also 

depends on the applied force. This was taken into account considering that the Coulomb 

sliding force has the form: 

 cF c x    (44) 

where x is the relative displacement between the cars and Δc is a constant which acts like a 

variation of the springs medium rigidity cm. Finally, as the buffers and the traction 

apparatus have different rigidities, a ponder function p was used to modify the value of the 

force: 

 tanhtanh( )p k x   (45) 

and the relation for the reactions between the cars, depending on the relative displacement x 

and velocity v is: 

 
   tanh tanhtanh( ) (1 ) tanh( ) (1 )

2
mc c mt tc c k v x p c c k v x p

P
               

  (46) 

The index c is for the buffers, while t is for the traction device. It was assumed that a 

negative value for x means that the apparatus is compressed (the force is given by the 

buffers) and a negative value of v  means that the cars tend to come closer. 

For example, studies were performed taking into account different passenger trains of 4...10 

vehicles, for usual possibilities: train sets and classical trains with locomotive in pulling and 

pushing operations.  

The passenger cars were considered having individual masses of 40...70 t, corresponding to 

usual weights for: coaches, dining, lounge, sleeping, baggage, etc. cars, double-decker 

included, in various in-train combinations, as for the locomotives, there were considered on 

four or six axles and counting on 80 and 120 t, respectively. 

It was considered that trains are submitted to an emergency braking action started at a 

running speed of 180 km/h, being active only the classical UIC disc brake system. 

It was considered that during braking action, no wheel slip prevention equipment 

operates. 

There were considered only air distributors correctly operating and ensuring filling times 

between 3...5, as imposed by international regulations for fast-acting brake systems. 

Some results of simulations are presented in fig. 20. 

Relevant aspects regarding the longitudinal dynamic forces evolution for passenger 

trains submitted to braking actions emerged from the analysis of the results obtained 

based on simulations performed corresponding to previously mentioned cases are 

presented below. In order to appreciate the effects of different parameters, we referred 

mainly to the maximum compression, respectively traction in-forces, which have 

practical importance in offering an image of the maximum efforts the couplings are 

submitted. 
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Fig. 20. Time-history of in-train longitudinal dynamic reactions between vehicles in 

passenger trains for different cases 

So, the evolution of in-train reactions is concordant to the theoretical expectations, meaning 
that compression forces increase during the first braking phases, reaching a maximum value 
at the end of this phase, most of the times at about half of the train. In the second phase, 
these compression forces begin to decrease, while the braking forces are successively 
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increasing along the train. However, in concordance with the brake cylinder filling 
characteristic, the differences of instantaneous braking forces along the train begin to 
decrease. The forces in the buffers are therefore receding, varying slowly while the relative 
displacements remain almost constant. The process is more accentuated in the third phase 
when, while maximum braking forces are achieved along the train, tensile forces increase, 
the maximum value exerting most of the times also at about half of the train. During the last 
braking phase, though the braking forces are of the same magnitude along the train, a 
longitudinal oscillation movement of the vehicles begins and propagates along the train, 
due to the potential energy accumulated in the buffers during the train’s compression. So, 
longitudinal forces continue their evolution, acting successively on the traction and shock 
apparatus. The amplitude of this wave decreases due to the energy dissipation 
corresponding to the friction forces acting in the buffers and the traction devices. 

A remarkable feature of the oscillations period is the fact that about a half of a complete 

cycle is characterized by considerably larger forces than the other half (see fig. 20). The 

reason is that when the relative displacement is negative, the stiffness of the shock and 

traction devices is considerably greater than the opposite situation. The friction forces 

increase or decrease their value, depending on the sign of the relative speed. In 

consequence, each cycle has a “sharp” part and a “soft” one, as a result of the combination 

of friction forces and variable rigidities. 

It is also interesting to note that in the simulations there appear, more or, sometimes, less 

evident, but visible in the presented diagrams (see fig. 20), the oscillatory motion that 

propagates in the train, overlapping on the preexistent compression after the end of the first 

braking phase. 

Regarding the influence of brake cylinders filling time, the first observation is that generally, 

higher the pressure increase gradient is, both maximum compression and traction in-train 

forces increase. For the cases of same filling times for each vehicle of the train, the maximum 

longitudinal dynamic forces diminish their magnitude in average about 24…43% while 

increasing the filling time from 3.16 s to 4, respectively 5 s. However, the disposition of the 

maximum forces remains almost the same along the train. The situation changes if the vehicles 

of the same train are characterized by different filling times. In that case, the magnitude of the 

dynamic longitudinal reactions and their layout along the train strongly depends on the 

position and filling time of each vehicle within the train. Longer filling times, wherever placed 

in the braked train, diminish the traction longitudinal dynamic forces. This assertion is also 

correct regarding the compression forces, but only if the vehicles having longer brake 

cylinders filling times are placed in the first half of the train. Otherwise, the longitudinal 

compression dynamic forces increase, the maximum values being attempted between the 

vehicles situated in the second part of the train. Anywise, at least for the studied case, in spite 

of the almost spectacular forces evolutions due to different filling times, their magnitude can 

not affect severely the shock, traction and coupling apparatuses. 

Regarding the vehicles mass and length of the train, in case of uniform composition, the 

increase of both parameters determine higher dynamic reactions, both for compression and 

traction forces, maximal values exerting mainly between vehicles situated in the middle of 

the train. It is to notice that the evolution and distribution of in-forces along the train are 

similar, indifferent the masses of the identical vehicles are.  
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The dynamic longitudinal reactions have an almost linear dependence on the mass of the 
component vehicles in the considered train set. The maximum traction forces are always 
lower than the correspondent compression forces, in similar conditions. Still, they have a 
more considerable relative increase in respect to the relative growth of the vehicles mass.  

For uneven composition of the train, important variations of the dynamic compression and 
traction reactions occur, both as magnitude and distribution among the vehicles along the train. 

In the case of classical trains, the evolution and the distribution of longitudinal dynamic 
forces along the train are almost similar to train-sets for the middle part of the train. Still, in 
the extremities, a heavier locomotive (120 t) determines higher values between the front 
vehicles, while a lighter one (80 t) conducts to an increase of these reactions between the rear 
vehicles. In the case of push-operated trains, the maximum longitudinal forces are generally 
higher and their distribution between the vehicles is substantially modified. Forces become 
more important in the second part of the train.  

An interesting and useful approach in analyzing the influences of various parameters on the 
dynamic longitudinal reactions between the vehicles of passenger trains submitted to 
braking actions is based on relative percentage forces variation.  

For example, studying the compression and traction forces exerted in the couplers of three 
types of six vehicle trains (train-set, train in “pulling” and in “pushing” operation with 120 t 
locomotive) by reporting to the simulation results to the case of the train-set, the repartition 
and modification of maximum reactions in the train body become more obvious, enhancing 
the effects (see fig. 21). 

 

Fig. 21. Relative evolution of maximum longitudinal dynamic forces in braking actions in 
“pulling” and “pushing” operations reported to similar train-set 

Such relative approaches indicate more clearly the important increase of in-train forces in 
the vicinity of the locomotive, having larger mass than the rest of the train’s vehicles. Also, 
even if in absolute values the maximum traction forces are lower than the compression ones, 
their relative increase in the case of classical trains is much higher for heavier locomotive in 
pull operation. 

It is thus obvious that the dynamic longitudinal response of passenger trains submitted to 
braking actions is very complex and the magnitude and distribution of compression and 
traction in-train forces are strongly influenced by the type, composition and mass 
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distribution along the train. Also, the functional characteristics of the braking devices, 
mainly the air distributors, determine specific reactions, which are all the more influenced 
by their repartition in the body of the train.  

Specific parameters may enhance the dynamic longitudinal reactions between the vehicles 
of passenger trains, either in the train assembly, or in particular sections. Results of studies 
regarding these problems may conduct to interesting and useful recommendations for 
designers and manufacturers of vehicles for passengers and not the least for the operating 
staff, both in terms of composition and driving passenger trains, enhancing the security of 
operations and comfort. 
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