
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



18 

Singularity Analysis, Constraint Wrenches  
and Optimal Design of Parallel Manipulators 

Nguyen Minh Thanh1, Le Hoai Quoc2 and Victor Glazunov3 
1Department of Automation, Hochiminh City University of Transport, 

2 Department of Science and Technology, People’s Committee of Hochiminh City, 
3Mechanical Engineering Research Institute, Russian Academy of Sciences, 

1,2Vietnam 
3Russia 

1. Introduction 

In recent years, numerous researchers have investigated parallel manipulators and many 

studies have been done on the kinematics or dynamics analysis. Parallel manipulators has 

been only mentioned in several books, as in (Merlet, 2006; Ceccarelli, 2004; Kong, & 

Gosselin, 2007; Glazunov, et al., 1991). Reference (Gosselin, & Angeles, 1990) has 

established singularity criteria based on Jacobian matrices when describing the various 

types of singularity. Then, in (Glazunov, et al. 1990) proposed other singularity criteria for 

consideration of these problems the screw theory based on the approach of the screw 

calculus, as in (Dimentberg, 1965). Those criteria are determined by the constraints imposed 

by the kinematic chains, as in (Angeles, 2004; Kraynev, & Glazunov, 1991), taking into 

account some problems the Plücker coordinates of constraint wrenches can be applied in 

(Glazunov, 2006; Glazunov, et al. 1999, 2007, 2009; Thanh, et al. 2009, 2010a). 

Dynamical decoupling allows increasing the accuracy for the parallel manipulators 

presented as in (Glazunov, & Kraynev, 2006; Glazunov, & Thanh, 2008). It is necessary to 

develop optimal structure have combined (Thanh, et al. 2008), as well as algorithms and 

multi-criteria optimization (Statnikov, 1999; Thanh, et al. 2010b) obtaining the Pareto set. It 

is very important to taking into account possible singularity configurations, to find out how 

they influence the characteristics of constraints restricting working space (Bonev, et al. 2003; 

Huang, 2004; Arakelian, et al. 2007). 

The trend towards highly rapid manipulators due to the demand for greater working 

volume, dexterity, and stiffness has motivated research and development of new types of 

parallel manipulator (Merlet, 1991). This paper is focused the constraints and criteria 

existing in known parallel manipulators in form of a parallel manipulator with linear 

actuators located on the base. 

2. Kinematic of parallel manipulator 

In this section, let us consider a 6-DOF parallel manipulator with actuators situated on the 
base. The mechanical architecture of the considered robot is illustrated in Fig. 1. 
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Fig. 1. Parallel manipulator with linear actuators located on the base 

The parallel manipulator as seen in Fig. 1 is composed of a mobile platform connected to a 
fixed base via six kinematic sub-chains (legs) comprising of one prismatic, one universal and 
one spherical pair (PUS pairs). Parameters of design of the platform and the base form an 
irregular hexagon positioned in the (x-y) plane. Ai, Bi (i=1,…,6) are coordinates of the points 
of the mobile platform (the output link) and of the base respectively. The points A1A3A5 and 
A2A4A6 make form equilateral triangles, the angle ψp determines their location and Rp is the 
radius of the circumscribed circle (Fig. 2, a). Similarly, the angle ψb and the radius Rb 
determines the location of the equilateral triangles B1B3B5 and B2B4B6 located on the base. Let 
the distance between the centers of the universal and spherical pairs Ai and Ci of the i-th leg 
be li. In addition, the generalized coordinates, which are equal to the distance between the 
points Bi and Ci are designated θi. The radius-vectors of the points Ai and Ci are ri(xAi, yAi, zAi) 
and si(xCi, yCi, zCi) respectively (i=1,…,6). We could note that the coordinates of the points Bi 
and Ci are xCi=xBi, yCi=yBi, zCi=θi. 
 

   
             (a)                 (b) 

Fig. 2. Parametrical and geometrical design of parallel manipulator 
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With this approach, the linear actuators can be firmly fixed on the base to reduce high 
acceleration movements because the power is not used to move heavy actuators but 
lightweight links. However, the obstacle is a smaller working space in comparison with a 
Stewart platform, due to the movement of the linear actuators. Moreover, forces acting on 
the actuator have a perpendicular component, whereas forces exerted upon Stewart 
actuators have a longitudinal component. 
Let us consider an inverse kinematic problem of position of parallel manipulators, which 
has characteristic relation between the numbers of chains. The manipulator with six 
kinematic chains offers convenience in optimization of working space in terms of decreased 
rigidity and load-bearing capacity. 
Likewise, the generalized coordinates of the i-th segment (the length) which are equal to the 
distance between the points Ai and Bi, can be expressed as: 

      22 2
, 1,...,6i Ai Bi Ai Bi Ai Bif x x y y z z i        (1) 

By geometrical method, the distance between the points Ci and C’i (Fig. 2, b): 

 2 2( ) ( ) , 1,...,6i i Aig f z i    (2) 

when the length of the link li is known, the distance between the points Ai and C’i (Fig. 2, b): 

    22
i i ih l g   (3) 

We could obtain the generalized coordinate θi (Fig. 2, c) as follows: 

 i Ai iz h    (4) 

It is the solution of the inverse kinematic problem. The inverse kinematics for parallel 
manipulator can be formulated to determine the required actuator heights for a given pose 
of the mobile platform with respect to the base. The pose consists of both position and 
orientation in the Cartesian system. Actuators are considered to act linearly in the vertical 
direction, parallel to the z-axis, in order to simplify the mathematics, although that needs not 
be the case. 

3. Multi-criteria optimization 

Influence of singularities on parameters of the working space of the parallel manipulator is a 
significant factor worth investigating. In these singularity configurations, the system is out 
of control and that greatly affects its functionality. It is necessary to determine the extent of 
the lack of control to see how that affects the parameters of the working space. These 
singularity configurations also affect the optimization results. 
The constraint wrenches of zero pitch acting to the output link from the legs are located 

along the unit screws: Ei=ei+eoi, (i=1,…,6) where ei is the unit vector directed along the axis 

of the line CiAi of the corresponding leg,  is the Clifford factor, 2=0 (for a vector, ei eoi=0). Ei 

consists of the unit vector ei and its moment eoi=siei corresponding with eoxi = sCyieCzi - sCzieCyi; 
eoyi = sCzieCxi - sCxieCzi; eozi = sCxieCyi - sCyieCxi and can be expressed by Plücker coordinates Ei = (xi, 

yi, zi, xoi, yoi, zoi). These coordinates make form the 6 6 matrix (E): 
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 (5) 

Optimization of parameters of the parallel manipulator with linear actuators located on the 
base is considered. Let us take in account three criteria: working volume, dexterity and 
stiffness of parallel manipulator. The first criterion Np is the quantity of the reachable points 
of the centre of the mobile platform. The second criterion Nc is the average quantity of 
orientations of the mobile platform in each reachable point. The third criterion De is the 
average module of the determinant │det(E)│ in each configuration. Determinant │det(E)│ 
constructed from coordinate axes of the drive kinematic couples is used as a third criterion 
of optimization. Since the value of this criterion is related to one of the important 
characteristics of the manipulator - its stiffness or load capacity. If determinant are more 
qualifiers, then the manipulator away from the singularity configuration and the stiffness of 
the above. 
Let us consider optimization of the parameters of the manipulator for different values of the 
criterion of proximity to singular configurations, as well as the influence of this criterion in 
the optimization results. We set up four coefficients H1, H2, H3 and H4 expressed four 
parameters of optimization. The coefficient H1 characterizes the length l = li of the links AiCi 
(i=1,…,6) (in Fig. 2, b). The coefficient H2 characterizes the angle ψp (Fig. 2, a) determining 
the location of the triangles A1A3A5 and A2A4A6 of the mobile platform. The coefficient H3 
characterizes the angle ψb determining the location of the triangles B1B3B5 and B2B4B6 on the 
base. Moreover, the coefficient H4 characterizes the relation between the radius Rp and the 
radius Rb of the circumscribe circles of the platform and of the base respectively. 
The algorithm of determination of the Pareto-optimal solutions can be presented as follows: 

Step 1. Establish the limits of the parameters of optimization. 

H1min ≤ H1 ≤ H1max, H2min ≤ H2 ≤ H2max, H3min ≤ H3 ≤ H3max, H4min ≤ H4 ≤ H4max. The number 
of steps of scanning in the space of parameters is np. The limits of the scanned Cartesian 
coordinates of the centre of the moving platform and the limits of the scanned 
orientation angles of this platform in interval are xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ 

zmax, min ≤  ≤ max, min ≤  ≤ max, γ min ≤ γ ≤ γ max. As well as the number nc of steps of 
scanning in the space of these coordinates and the limitation of changing of the 
generalized coordinates θimin ≤ θi ≤ θi max (i=1,…,6). The limit of the determinant │det(E)│ 
≥ ε. At this step assume i=0, by this the parameters are H10 = H1min, H20 = H2min, H30 = 
H3min, H40 = H4min , Np = Nc = De= 0. 

Step 2. Determine the values of the criteria for all the values of the parameters. 

2.1. Determine the parameters H1i,…, H40, assume j=0, by this x0 = xmin, y0 = ymin, z0 = 

zmin, 0 = min, 0 = min, γ0 = γmin. 
2.2. Determine θi (i=1,…,6) and │det(E)│; if all the θi min ≤ θi ≤ θi max (i=1,…,6) and 
│det(E)│ ≥ ε then Nc = Nc+ 1, De = De+│det(E)│; if xj ≠ xj-1 or yj ≠ yj-1 or zj ≠ zj-1 then Np = 
Np+ 1. 
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2.3. j = j+1, if j ≤ nc then go back to 2.2. 
2.4. Determine the criteria Npi= Np , Dei= De / Nc, Nci= Nc / Np; assume Np = Nc = De= 0. 
2.5. i = i+1, if i ≤ np then go back to 2.1. 

Step 3. Determine the Pareto-optimal solutions (matrix (Par)). 

3.1. Assume i= 1, (by this Npi= Np1, Dei= De1, Nci= Nc1), k= 0. 
3.2. Determine Npi, Dei, Nci; assume j= 1, the criteria of optimal solution K1=1, K2=0. 
3.3. Determine Npj, Dej, Ncj; if Npi > Npj or Dei> Dej or Nci> Ncj  then K2=1; if Npi= Npj and 
Dei= Dej and Nci= Ncj  then K2=1. 
3.4. If K2≠1 then K1=0; K2=0; j=j+1; if j ≤ np then go back to 3.3. 
3.5. If K1 = 1 then k = k + 1, Par1k= H1i, …, Par7k= Nci, i=i+1; if i ≤ np then go back to 3.2. 

Singularity of the manipulator is determined by closeness to zero of determinant of matrix 

(E) of Plücker coordinates of unit wrenches. Let us fix certain value >0 as a criterion of 

singularity (the manipulator is in singular position if │det(E)│≤). If =0 then the 
construction of the working space of the manipulator shows that the same results we can get 
without singularity constraint. Giving various values of the criterion of the singularity, we 
can get interval of the determinant of matrix (E). 
Further, analysis influences of the criterion of singularity ε, │det(E) │≤ε on the value of the 
working volume. With the value of the criterion of singularity is equal to ε=0.01 there exist 
81 available solutions, but only 8 of them are Pareto-optimal. By the condition of the 
criterion of singularity is equal to ε=0.01 and the condition ε=0, there Pareto-optimal set 
consists of 6 and 29 solutions correspondingly. Therefore, the value of ε influences on the 
results of optimization. 
Value of the criterion that determines the proximity to singular configurations is equal to 
zero, we can assume that the constraints associated with the singularity in general, are not 
imposed in the analysis of each specific configuration. However, the criterion for 
determining the load capacity occurs. As a result, the number of Pareto-optimal variants 
varies very much. Here, 29 variants satisfy the conditions of Pareto set. 
Limiting possible module of a determinant of matrix (E) to singularity configurations changes 
the Plücker coordinates of the wrenches transmitted on the output link. Methodology for 
analyzing the singularities on optimization appearing in the parallel manipulator and their 
impact in the working space is proposed. The practical significance from the fact is the results 
obtained in this work increase the effectiveness of design automation. 

4. Twist inside singularity 

The approach based on matrix (E) consisting of the Plücker coordinates of the constraint 
wrenches allows determining the twists of the platform inside singularity (Glazunov, 2006). 
Let us consider the increases of the Plücker coordinates of the unit screws Ei after an 
infinitesimal displacement $ = (dφ, dr) = (drx, drx, drx, dφx, dφy, dφz)T of the platform 
corresponding to displacement dri = (dxAi, dyAi, dzAi,)T of the point Ai of the manipulator 
presented on the Fig. 1. 

 

,

,

Ai x y Ai z Ai

Ai y z Ai x Ai

Ai z x Ai y Ai

dx dr d z d y

dy dr d x d z

dz dr d y d x

 

 

 

  

  

  

 (6) 

www.intechopen.com



 
Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization 

 

364 

The generalized coordinate after mentioned infinitesimal displacement (dxi, dyi, dzi) is:  

    222
i i Ai Ai i Ai Ai Ci Ai Ai Cid z dz l x dx x y dy y            (7) 

After transformations the increase of the generalized coordinate is: 

 
     

 
Ai Ci Ai Ai Ci Ai Ai Ci Ai

i
Ai Ci

x x dx y y dy z z dz
d

z z


      


 (8) 

The unit screw Ei can be rewritten as Ei+dEi or as ei+dei and eoi + deoi.  
Using (6), (7), and (8) the coordinates of the dei and deoi can be expressed as: 

 ................................................................................

i i i i i i
i x y z x y z

x y z x y z

o o o o o
i i i i i

x y z x
x y z x y

o
i

x x x x x x
dx d d d dr dr dr
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dz d d d dr d

r r
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  
  
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     
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y z
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r dr

r





 (9) 

where 

   
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1
0, , , , 0, 0,
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Other partial derivatives also can be obtained from Eqs. (6), (7), and (8). 
By means of the properties of linear decomposition of determinants d[det(E)] can be 
obtained as the sum of 36 determinants (Glazunov, 2006). From this, d[det(E)] can be 
presented as: 
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       

     

det( ) det( ) det( )
det( )

det( ) det( ) det( )

x x y y z z

x x y y z z

E E E
d E

d d d

E E E

r dr r dr r dr
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   

  

  
  

  

 (10) 

Using (10) the criterion of the singularity locus can be presented as d[det(E)]=0. This 

condition imposes only one constraint. Therefore, there exist five twists of motions of the 

platform inside singularity.  

For example, let us obtain five inside singularity of manipulator. Set up the coordinates of 

the vectors be ri are r1(-1, 0, 4), r2(-0.5, 1, 4), r3(0.5, 1, 4), r4(1, 0, 4), r5(0.5, -1, 4), r6(-0.5, -1, 4); si 

are s1(-1.5, 0, 0.866), s2(-1, 1.5, 0.707), s3(1, 1.5, 0.707), s4(1.5, 0, 0.866), s5(1, -1.5, 0.707), s6(-1, -

1.5, 0.707). From here, we can see the generalized coordinates as (0.136, 0.305, 0.305, 0.136, 

0.305, 0.305). Matrix (E) is determined as: 
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 

The determinant consisting of the Plücker coordinates of the unit screws is det(E) = 0. Their 
partial derivatives are: 

     det( ) det( ) det( )
0.02, 0, 0,

x y z

E E E

r r r

  

  
     

     det( ) det( ) det( )
0, 0.002, 0

x y z

E E E

  

  

  
    

Using the approach presented above, we find five independent twists inside singularity: 
$1(1, 0, 0, 0, 0, 0), $2(0, 0, 1, 0, 0, 0), $3(0, 0, 0, 0, 1, 0), $4(0, 0, 0, 0, 0, 1), $5(0, 4.433, 0, 1, 0, 0). The 
twist-gradient is calculated to be $*(-0.02, 0, 0, 0, 0.002, 0). This twist-gradient is practically 
important as it offers the highest speed. 

5. Dynamical decoupling 

In this section, let we consider the reduction of the dynamical coupling of the motors of the 
parallel manipulator with linear actuators located on the base. The basic idea is to represent 
the kinetic energy as the quadratic polynomial including only the squares of the generalized 
velocities (Glazunov, & Kraynev, 2006). The kinetic energy can be expressed by means of the 
matrix (E). 
Let m be the mass and Jx, Jy, Jz  be the inertia moments of the platform. Assuming that the 
mass of the platform is much more than the masses of the legs and using the Eqs. (6)-(8), the 
kinetic energy T can be expressed as follows (Dimentberg, 1965; Kraynev, & Glazunov, 
1991): 

www.intechopen.com



 
Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization 

 

366 

 

2 2 26 6 6

1 1 1

2 2 26 6 6

1 1 1

2

2 2 2

o o o
i i ii i i ii i i ii

i i i

yx z
i i ii i i ii i i ii

i i i

m
T p G q G r G

JJ J
p G q G r G

  

  

  

  

                           

     
            

     

  

  

  

  

 (11) 

where i  are the generalized velocities, pi, qi, ri, poi, qoi, roi are the components of the matrix 
(E)-1, Gii are the components of the diagonal matrix (G) (i=1,…,6). 
The Lagrange equation of motion for a parallel manipulator can be written as: 

 i
i i

d T T
Q

dt  
  

  
    (12) 

where Qi are the generalized forces (i=1,…,6). 
The dynamical coupling can be determined using the Eq. (11). The expression of each 
generalized force comprises all other generalized velocities and accelerations. In order to 
reduce the dynamical coupling we represent the kinetic energy as follows: 
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(13)

 

According to the Eq. (13) dynamical decoupling can be satisfied if the columns of the 

following matrix (D) are orthogonal: 
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  (14) 

Let the axes of the links AiCi be parallel to the axes of the links BiCi and the matrix (G) is unit 
matrix. Then in order to satisfy the condition of orthogonal columns of the matrix (D) the 
rows of the inverse matrix (D)-1 = (E)(M)-1 are to be orthogonal. From this, the following 
matrix (E) is proposed: 

 

0 0 1 0 0

0 0 1 0 0

1 0 0 0 0
( )
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z

x
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 
   
  
 
 
    

 (15) 

The determinant of the matrix (E) (15) can be written as: 

 3det( ) 8E J J J mx y z  (16) 

The matrix (15) corresponds to the Fig. 3. Here the center of the mass of the platform 

coincides with the center of the coordinate system xyz and the axes of the links of the legs  

 

 

x y

z
yJ m

 

Fig. 3. Parallel manipulator with dynamical decoupling 

www.intechopen.com



 
Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization 

 

368 

are parallel to the main central inertia axes of the platform. The proposed approach can be 
applicable for manipulators characterized by small displacements and high speeds. 
Moreover, this architecture causes partial kinematic decoupling because if the generalized 
coordinates corresponding to the opposite legs are equivalent then the moving platform 
keeps constant orientation. 

6. Pressure angles 

The parallel manipulators have singularity configurations in which there is an uncontrolled 
mobility because some of the wrenches acting on the output link are linearly dependent. The 
local criterion of singular configurations is the singular matrix of the screw coordinates of 
the wrenches, such as: 

 det(E) = * (17) 

where * is the preassigned minimal determinant value. The pressure angle of the linear 

dependent sub-chain is equal to /2, as a reciprocal twist to five-member group of screws 
has a perpendicular moment at about any points of the axis. All stalled actuators but one the 

manipulator has DOF=1 and its output link can move along some twist  =  + 0 (2 = 0) 
reciprocal to five-member group of the wrenches corresponding to stalled actuators. We can 
find this twist from the reciprocity condition: 

 ( , ) 0, 1,...,5imom R i    (18) 

In general the six-member group of the unit wrenches of zero parameter Ri(ri, rio) (i=1,…,6) is 
acting on the output link of the such manipulators, determinant composed of the screw 
coordinates of these wrenches as given in (5). 
The velocity of any point Ai (i=1,…,6) of the mobile platform can be found as a twist 
moment relative to this point: 

 0 , 1,...,6
i iA AV r i      (19) 

where rAi is radius-vectors of the points Ai. 

The pressure angle i for the stalled actuator i-th of the parallel manipulators (Fig.1) can be 
determined as: 

 
.

arccos , 1,...,6
.

i

i

A i
i

A i

V F
i

V F


 
  
 
 

 (20) 

where Fi is the force vector on the actuator axis. For normal functions of the manipulator it is 
necessary that working space be limited by positions: 

 , 1,...,6i KP i    (21) 

where КǾ is maximum pressure angle is defined by friction coefficient. 
The manipulator control system must be provided by algorithm testing the nearness to 
singular configurations based on the analysis of singular matrix (5) or on the pressure angle 
determination. 
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7. Manipulator for external conditions 

In Fig. 4, (a, b) the six-DOFs parallel mechanisms and their sub-chain has a parallel 
connection of links and actuators are shown in (Glazunov, et al. 1999) which were invented 
by (Kraynev, & Glazunov, 1991). Such mechanisms may be utilized to manipulate the 
corrosive medium at all actuators that are located out of the working space. Existence of 
several sub-chains and many closed loops determine the essential complication of the 
mathematical description of these mechanisms. Screw calculus using screw groups is 
universal and effective for parallel mechanisms analysis. Here, 1 describes the fixed base, 2 
describes the output link and 3 describes the actuators. Addition, Ai expresses the spherical 
joint center situated on the fixed base; Bj expresses the center of the spherical joints 
combined with translational; Cj expresses the output link spherical joint centers; li, dj 
expresses the generalized coordinates and sj, fj expresses the link lengths (i=1,…,6; j=1,…, 3). 

 

 
(a) 

 

 
(b) 

Fig. 4. The six-DOFs parallel mechanisms 

In general, the wrench axis corresponding to i-th stalled actuator is located in the plane 
(АiВjǿj), passes through center joint Cj and is directed perpendicular to its possible 
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displacement. With the mechanisms as in (Fig. 3, a) the components of the wrench Ri can be 
find as: 

 
 

1
,

.1 1
i

i jj
i i j

j j j j

r
a bs

p a b
f f s d


               

; 0
ji C ir r   (22) 

where pi - vector defining the wrench axis, ai - vector from point Ai to point Cj, bi - vector 

from point Dj to point Cj and 
jC - radius vector point Cj. 

Besides, with the mechanism as in (Fig. 4, b) the wrench axis (j=1, …,3) coincides with 
actuator axis. The wrench of the i-th stalled actuator (i=, …,3) is given as 

 
 

2

.1
,

i j j
i i

i j

a b b
r a

l d

    
  

; 0
ji C ir r   (23) 

The present approach may be applied for different types of mechanisms such as sub-chains 
with varied actuator connection using spherical pairs. 

8. Conclusion 

Thus in this paper various criteria of design and singularity analysis of parallel 
manipulators are presented. The constraint wrenches imposed to the platform by kinematic 
chains is proposed to rely on the screw theory by determinants of matrix consisting of the 
Plücker coordinates of the unit screws. Criteria for design and singularity analysis of 
parallel manipulators with linear actuators located on the base are presented. The kinematic 
criterion of singularity corresponds to linear dependence of wrenches supporting the mobile 
platform; the static criterion corresponds to the limitation of pressure angles. The dynamical 
decoupling allows increasing the accuracy, parametrical optimization allows designing the 
mechanisms with optimal working volume, dexterity and stiffness, determination of the 
twists inside singularity allows finding the differential conditions of singular loci. 
Furthermore, the use of screw groups in order to determination of the singular zones of the 
multi-DOFs parallel mechanisms that make form of continuous areas and manipulators for 
external conditions are expressed. 
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