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Opole University of Technology 
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1. Introduction 

Wiener process, as a special mathematical model of Brownian motions, has been 
investigated and modelling in many probabilistic examples. In the topic literature it is easy 
to find many procedures of numeric probabilistic simulations of the Wiener process. Fuzzy 
modelling does not give us more accurate models than probabilistic modelling. Fuzzy 
knowledge-based modelling allows to determine linguistic description of non-precise 
relationships between variables and to derive the reasoning procedure from non-crisp facts. 
More over, using the notions of probabilities of fuzzy events, it is possible to determine a 
frequency of a conclusion as well as its expected value.  
Wiener process and a random walk are very often used for modelling phenomena in physics, 
engineering and economy. In the area of robot control theory these processes can represent 
some time-varying parameters of the environments where the object of control operates. Fuzzy 
models of these processes can constitute a part of a fuzzy model of a tested  complex system.  
In paragraph 2. of this chapter, the mathematical descriptions of Brownian motions has been 
reminded, according to the theory of probability and stochastic processes. Some basics of 
fuzzy modelling has been presented in paragraph 3., to show the method of creating the 
knowledge base and rules of reasoning. Attention is focused on identification techniques for 
building empirical probabilities of fuzzy events from input-output data. Exemplary 
calculations of knowledge bases for real stochastic processes, as well as, some remarks on 
future works have been presented in paragraphs 4 and 5.  

2. Mathematical models of Brownian motion 

The Brownian motion it is well known in physics, a random movement of a particle 
suspended in a liquid or a gas. The name of the movement is given after the botanist Robert 
Brown (1827), who was studying the movement of pollen grains suspended in water. There 
are many similar phenomena, where the time evolutions of the object depend on stochastic, 
microscopic contacts (collisions) with elements of the surrounded system. In mathematics, 
many models describing Brownian motion are well known and applied, e.g. the random 
walk stochastic process, Wiener stochastic process, Langevin stochastic differential equation, 
general diffusion  equations and others.  

Observations of the microscopic particle behavior show, that at any time step, the particle is 
changing its position in the space, according to collisions with liquid particles. Crashes of 
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particles are frequent and irregular. It is usually assumed by mathematicians, that the 
displacements of the particle 1 2, ,..., ,...nZ Z Z  at particular time steps, are independent, 
identically distributed random variables. The stochastic process { , 1,2,..., .,...}iZ i n is 
named random walk. 
In macroscopic scale, if the time between two observations of the particle, t  , is larger 

than the time between successive crashes, then the increment of the particle positions, 

tX X , is a sum of many small displacements, 
1,...,

t i
i k

X X Z


   . Since the increments  

tX X  constitute sums of independent, identically distributed random variables, they are 

normal distributed random variables.  

In mathematics, scalar stochastic process  , 0tX t   , is the Wiener process  if and only if  

i. increments tX X , 0 t     are homogeneous (stationary) and independent for 

disjoint time intervals, 

ii. the initial condition, 0( 0) 1P X   , is fulfilled, 

iii. trajectories of the process  , 0tX t    are continuous (almost surely),  

iv. random variables tX , are normal distributed, with the probability density function 

 
2

22

1
( , ) exp

22

x
f t x

tt  

 
   

 
.  (1) 

Wiener process is also known as the Brownian motion process (Fisz, 1967; van Kampen, 1990; 

Kushner, 1983; Sobczyk, 1991). 

The increments, tX X , 0 t    , are normal distributed random variables with the 
expected value and variance as follows: 

 ( ) 0tE X X  , 2 2( ) ( )tD X X t     .  (2) 

Random variables 
1
,...,

nt tX X , where 

 
1 2 1 1

( ) ... ( )
n n nt t t t t tX X X X X X


      , (3) 

are also normal distributed with parameters:  

 ( ) 0
ktE X  , 2 2( )

kt kD X t  , k=1,2,…,n;  (4) 

and with a non-zero covariance matrix.  

If 2 1   then  , 0tX t    is the standard Wiener process. 

Probability, that a particle occurs in some interval [a, b], at the moment t, is given by the 
relationship 

 
2

22

1
Pr{ [ , ]} ( , ) exp

22

b b

t

a a

x
X a b f t x dx dx

tt  

 
     

 
  . (5) 

For any 1 2t t  probability density function of the random vector variable 
1 2

( , )t tX X  can be 
obtained as follows: 
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11 1 2 2 2 2 1 1 1 1( , ; , ) ( , / , ) ( , )tf t x t x f t x t X x f t x   (6) 

where  

 
1

2
1 2

2 2 1 1 2
2 1 2 1

1 ( )
( , / , ) exp

2 ( ) 2( )
t

x x
f t x t X x

t t t t 

 
      

 (7) 

is a conditional probability density function, and 1 1( , )f t x  is given by formula (1) with 

parameters: 
1

( ) 0tE X  , 
1

2 2
1( )tD X t  . 

For any 1 2 ... nt t t      probability density function of the multidimensional random vector 

1
( ,..., )

nt tX X  can be obtained, taking into account Markov features of the process and using 

(3), as follows (Sobczyk, 1991): 

 
2

1
1 1 1,..., 2

1,...,1 1

( )1
( , ,..., , ) exp

2 ( ) 2( )
i i

n n i n
i ni i i i

x x
f t x t x

t t t t 



 

 
      

 . (8) 

Stochastic vector process  1[ ( ),..., ( )], 0nX t X t t    is called the nD stochastic Wiener 

process if its every component,  ( ), 0iX t t   , i=1,…,n, is the scalar stochastic Wiener 

process and particular scalar stochastic processes are independent. 
As an example of the 3D stochastic Wiener process we can show three coordinates of the 
Brownian particle trajectory. 
The Wiener process is also the special diffusion stochastic process, fulfilling the Fokker-
Planck diffusion equation 

 
2

2

( , ) ( , )f x t f x t

t x


 


 
, 

 2
0, 0
lim 2

t x

x
const

t


   


 


  (9) 

where the solution is given by the normal probability density function, and the diffusion 

coefficient is equal to 2 / 2   (van Kampen, 1990). 
In macroscopic scale, in physics and in industrial practice, the probability value f(x)dx that 
scalar variable X assumes its value from the interval [x, x+dx] is equivalent to the quotient 
n/N (concentration of particles), where n defines the power of subset of particles, whose 
feature X determines the value over the interval [x, x+dx], and N is the population size. This 
idea is consistent with Einstein’s experiments who considered collective motion of Brownian 

particles. He assumed that the density (concentration) of Brownian particles ( , )x t  at point 

x at time t, met the following diffusion equation: 

 
2

2

( , ) ( , )x t x t

t x

  


 
 (10) 

where γ is a diffusion coefficient. The solution has the known exponential form. From the 
analytical form of the solution the second central moment of the displacement is expressed 
as  

 2( ) 2tE X t  (11) 
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Diffusion coefficient, γ, has been expressed by Einstein as a function of macro- and 
microscopic parameters of the fluid and particles, respectively. Einstein confirmed statistical 
character of the diffusion law (cited by van Kampen, 1990).  

3. Fuzzy knowledge representation of the ‘short memory’ stochastic process 

3.1 Stochastic process with fuzzy states 

Let X(t) be a ‘short memory’ stochastic process, the family of time-dependent random 

variables, where X R  , t T R   and B is the Borel σ-field of events. Let p be a 

probability, the normalized measure over the space ( , )B . 

Moreover, assume that according to human experts’ suggestions, in  the universe of process 

values, the linguistic random variable has been determined with the set of linguistic values, 

L(X)={LXi}, i=1,2,…,I e.g. L(X)={low, middle, high}, according to Zadeh’s definition of the 

linguistic variable (Zadeh, 1975). The meanings of the linguistic values are represented by 

fuzzy sets Ai, i=1,2,…,I determined on χ  by their membership functions, ( ) : [0,1]Ai x   , 

which are Borel measurable functions, fulfilling the condition 

 
1

( ) 1,
i

I

A
i

x x 


   . (12) 

According to above assumptions, the probability distribution of linguistic values of the 
process X(t) can be determined as follows 

  ( ) ( , 1,2,...,t iP X P A i I   , (13) 

based on Zadeh’s definitions of the probability of  fuzzy events (Zadeh, 1968) 

 ( ) ( )
n

A

R

P A x dp






  . (14) 

The following conditions must be fulfilled 

 0 ( ) 1iP A  , i=1,2,…,I  ;       
1

( ) 1
I

i
i

P A


 . (15) 

Let now 1 2 2 1, ,t t t t t t    be fixed, so the stochastic process at that moments is 

represented by two random variables  1 2( ), ( )X t X t . Assume, that 2( , , )B p  is a probability 

space, where 2 2R  , B  is the Borel σ-field of events and p is a probability, the normalized 

measure over  2( , )B . The assumptions mean that the probability distribution 

1 2
( , )t tp x x over the realizations  

1 2
,t tX X   exists.  

Let also two linguistic random variables (linguistic random vector) 
1 2

( , )t tX X  be generated 

in 2 , taking simultaneous linguistic values i jLX LX , i,j=1,2,…,I; corresponding collection 

of fuzzy events  
, 1,...,

i j
i j I

A A


  is determined on 2  by membership functions 
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1 2
( , )

i jA A t tx x  , i,j=1,2,…,I. Membership functions for joint fuzzy events i jA A  should 

fulfill 

 
1 2 1 2

2( , ) 1, ( , )
i jA A t t t t

i j

x x x x     .  (16) 

The joint 2D probability distribution of linguistic values (fuzzy states) of the stochastic 
process X(t) is determined by the joint probability distribution of the linguistic random 

vector 
1 2

( , )t tX X  

 
1 2 , 1,2 ,...,( , ) { ( )},t t i j i j IP X X P A A     (17) 

calculated according to  

 
1 2

2
1 2

( , )

( ) ( , )
i j

t t

i j A A t t

x x

P A A x x dp



 


    (18) 

and fulfilling  

 0 ( ) 1, , 1,...,i jP A A i j I       and  
1 1

( ) 1
I I

i j
i j

P A A
 

   (19) 

(Walaszek-Babiszewska, 2008, 2011). From the joint probability distribution (17), the 
conditional probability distribution of the fuzzy transition  

 
2 1

[( ) /( )]t j t iP X A X A  , j=1,2,…,I;  i=const (20) 

can be determined according to 

 

 
 

2 1

2 1

1

1,...,

1,...,

[( /( )]

( , )

( )

t t i j I

t j t i j I

t i

P X X A

P X A X A

P X A





 

 




. (21) 

The following relationships should be fulfilled for the conditional distributions of fuzzy 
states (probability of the transitions) 

 
2 1

1,...,

[( /( )] 1; .t j t i
j I

P X A X A i const


     (22) 

3.2 Rule based fuzzy model 

The proposed model of the stochastic process, formulated into fuzzy categories, for two 

moments 1 2, ,t t  2 1t t , is a collection of file rules, in the following form (Walaszek-

Babiszewska, 2008, 2011): 

( )iA L X  , i=1,…,I 
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1 2

2

2

( )
1 1/

/

/

: [ ( )] ( )

( )

( )

i
i t i t i

t j j i

t J J i

R w If X isA Then X is A w

Also X is A w

Also X is A w

           

           

 (23) 

or as a collection of the elementary rules in the form 

( )iA L X  , ( )jA L X  , i,j=1,2,…,I 

 
1 2

( , ) : [ ( ) ( )]i j
ij t i t jR w If X is A Then X is A  (24) 

where the weights wi, wj/i, wij  represent probabilities of fuzzy states, determined by (13) – 
(15), (20) – (22) and (17) - (19), respectively. The weights stand for the frequency of the 
occurrence of fuzzy events in particular parts of rules and show the probabilistic structure of 

the linguistic values of the linguistic random vector  
1 2
,t tX X . The weights do not change 

logic values of the conditional sentences.  

3.3 Reasoning procedures   

Considering reasoning procedure, we assume that some non-crisp (vague) observed value 

of the stochastic process at moment t1 is known and equal to 
1

'tX A , , or some crisp value  

1 1t tX x  of the stochastic process at moment t1 is given. Then, the level of activation of the 

elementary rule (24)  is determined according to one of the following formulas 

 'maxmin[ ( ), ( )]
ii A A

x
x x   , (25) 

 
1

( )
ii A tx   , i=1,…,I , (26) 

repectively (Yager & Filev, 1994;  Hellendoorn & Driankov, 1997). The conclusion according 
to the generalized Mamdani-Assilian’s type interpretation of fuzzy models has the following 
form 

 '
2 2/

( ) ( , ( ))
j i j

t i tA A
x T x   , j=1,…,I; i=const; (27) 

thus the conclusion derived based on logic type interpretation of fuzzy models is as follows 

 '
2 2/

( ) ( , ( ))
j i j

t i tA A
x x    , j=1,…,I; i=const, (28) 

where T denotes a t-norm and I means the implication operator. Aggregation of the 
conclusions from particular rules is usually computed by using any s-norm operator  (Yager 
& Filev, 1994;  Hellendoorn & Driankov, 1997).  
Weights of rules, representing the probability of a fuzzy event in antecedent (wi), as well as, 
the conditional probability of a fuzzy event at the consequence part (wj/i), can be used to 
determine probabilistic characteristics of the conclusion. It is worth to note, that fuzzy 
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conclusions (27) and (28) represent some functions,  ( )L X , of linguistic values of the 

linguistic random variable 
2tX . The fuzzy expected value of the following prediction,  

 
2 1

{( ( )) /[ ']}t j tE X is A X is A A


 , (29) 

computed as the aggregated outputs of all active i-th file rules, can be  determined by the 
following formula (Walaszek-Babiszewska, 2011) 

 '
2 2 / 2/ '( ) ( ) ( )

j ii
t i t i j i A tAA i i j

x w x w w x       . (30) 

where membership functions, 
/' j iA , of the conclusions from elementary rules are given by 

(27) or (28), depending on the type of input data and the interpretation of a fuzzy model. 

Also, it is possible to determine probability of the fuzzy conclusion, taking into account a 

marginal probability distribution 
2

( )tP X  of the output linguistic random variable. 

4. Creating fuzzy models of stochastic processes - Exemplary calculations 

4.1 Fuzzy model of the stochastic time-discrete increments 

First example show the fuzzy representation of the simplest form of the considered above 

stochastic processes, the one-dimensional time-discrete stochastic process of the increments, 

1t t tX X X    . The increments, at given t, are normal distributed random variables, so it is 

useful to use the standard normal probability distribution function, over the domain of the 

process values, [ 3, 3]X R      (Table 1). Linguistic random variable, tY , with the  

 

[ , )x a b  p(x) 
Fuzzy sets (events) Probability of fuzzy 

events 
P(Y) 

( )NH x ( )NL x ( )Z x ( )PL x ( )PH x

[-3, -2.5) 0.00486 1 0    P(NH)=
0.014 

  

[-2.5, -2) 0.01654 0.5 0.5    

P(NL)= 
0.220 

 

[-2, -1.5) 0.044057 0 1      

[-1.5, -1) 0.091848  1 0     

[-1, -0.5) 0.149882  0.5 0.5    

P(Z)= 
0.532 

[-0.5, 0) 0.191463  0 1     

[0, 0.5) 0.191463   1 0    

[0.5, 1) 0.149882   0.5 0.5   

P(PL)= 
0.220 

[1, 1.5) 0.091848   0 1    

[1.5, 2) 0.044057    1 0   

[2, 2.5) 0.01654    0.5 0.5 P(PH)=
0.014 

 

[2.5, 3] 0.00486    0 1   

Table 1. Probability function of random variable tX , fuzzy sets representing linguistic values 
L{Y} of the linguistic random variable tY and probability distribution ( )P Y  
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name ‘Increment at moment t’ has been assumed, with the set of its linguistic values: 
L(Y)={negative high NH, negative low NL, zero Z, positive low PL, positive high PH}. The 
linguistic values are represented by respective fuzzy sets. The probability distribution of the 
linguistic random variable, P(Y), calculated according to (13) - (15), has been  presented in 
Table 1.  

Also, the second linguistic random variable, 1tY  , with the name ‘Increment at moment t-1’ 

has been determined with  the same set of linguistic values L(Y). Increments of the tested 
process are independent random variables, so conditional probabilities (probabilities of 

transitions) fulfill the relationship:  1( / ) ( )t t tP Y Y P Y  . 

The fuzzy knowledge base for the short memory stochastic process consists of the following, 
five file rules (25 elementary rules) with respective probabilities (according to Table  1.): 

R1: 0.014(If 1tY   is NH) Then  ( tY is NH)0.014 

Also ( tY is NL) 0.220    

 Also ( tY is Z) ) 0.532    

 Also ( tY is PL) 0.220    

Also ( tY is PH) 0.014;    

R2: 0.220 (If 1tY   is NL) Then ( tY is NH) 0.014 

 ---------------------------------------------------------------   (31) 

 R5: 0.014(If 1tY   is PH) Then ( tY is NH) 0.014 

----------------------------- 

Also ( tY is PH) 0.014.    

In the created rule base of the stochastic process, the same probability distributions for 
random variables, tX  and 1tX  , have been assumed. It is result of the simplification, 
under the assumption of a constant time interval 1t  . 

4.2 Exemplary fuzzy models constructed based on realizations of stochastic 
processes 
4.2.1 Fuzzy model constructed based on data of a floating particle 

In the object literature the problem of the fulfilling the Wiener process assumptions by 
empirical data is often raised, e.g. the expected values of empirical increments are non-zero 
or increments do not fulfill the criterion of probabilistic  independence. These facts have 

been also observed based on data representing increments of one coordinate, 1t t tx x x    , 

[ 3.3,3.3]x R     , describing the behavior of the particle floating in some liquid. It was 

assumed, that data stand for the realization of a certain stochastic process Y(t). Also, the 

linguistic random variable tY  has been determined, with the name ‘Increment at moment t’. 
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The set of the linguistic values, L(Y)={negative high NH, negative low NL, positive low PL, 
positive high PH} has been assumed. In domain   of the process values, the linguistic values 

are represented by respective fuzzy sets. Also, second linguistic random variable, 1tY  , with 

the name ‘Increment at moment t-1’ has been determined with  the same set of linguistic 
values L(Y). For the tested process, the criterion of independent increments is not fulfilled, 

thus, the conditional probabilities (probabilities of transitions) 1( / )t tP Y Y  should be found. 

The empirical joint probability of two linguistic random variables, 1( , )t tP Y Y  , has been 

calculated according to (16) -  (19), based on the joint probability of numeric values of pairs, 

1( , )t tp x x  , as well as, the assumed fuzzy events, representing the linguistic values 

{ } { , , , }tL Y NH NL PH PL (Table 2). Marginal probability 1( )tP Y   is presented at the last row 

of the table. It is not a symmetrical distribution, the highest value of the probability, 0.39251, 
it is a probability that increments take the linguistic value  ‘Positive Low’. 

Conditional probabilities 1( / )t tP Y Y  , calculated according to (20) – (22) and presented  in 

Table 3, may be treated as the transitions probabilities from fuzzy states {NH, NL, PL, PH} at 

moment t-1 to the particular fuzzy states at moment t. 

 

1( , )t tP Y Y   

{ }tL Y  
1{ }tL Y   

NH NL PL PH 

PH 0.0178 0.05355 0.10702 0.03572 

PL 0.0060 0.06555 0.19024 0.09532 

NL 0.0953 0.05955 0.02975 0.06555 

NH 0.04765 0.03570 0.0655 0.0298 

1( )tP Y   0.16675 0.21435 0.39251 0.22639 

Table 2. Joint probability distribution, 1( , )t tP Y Y  , of linguistic random variables 

representing empirical set of increments at moments t and t-1 

 

1( / )t tP Y Y   

{ }tL Y  
1{ }tL Y   

NH NL PL PH 

PH 0.10675 0.24983 0.27266 0.15778 

PL 0.03600 0.30581 0.48466 0.42104 

NL 0.57150 0.27781 0.07580 0.28955 

NH 0.28575 0.16655 0.16688 0.13163 

1( / )t tP Y Y   1.00000 1.00000 1.00000 1.00000 

Table 3. Conditional probability distributions 1( / )t tP Y Y  of linguistic random variables  
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The fuzzy knowledge base of the behavior of some particle, determined by changes of its 

coordinate tY , consists of four file rules (20 elementary rules) with respective probabilities, 

as follows: 

R1: 0.16675 (If 1tY   is NH) Then  ( tY is NH) 0.28575    

  Also ( tY is NL) 0.57150    

       Also ( tY is PL) 0.036    

  Also ( tY is PH) 0.10675;    

  R2: 0.21435 (If 1tY   is NL) Then ( tY is NH) 0.16655    

 ------------------------------------------------------------------------- (32) 

    R4: 0.22639(If 1tY   is PH) Then ( tY is NH) 0.13163    

----------------------------- 

   Also ( tY is PH) 0.15778.    

Probabilities (weights) at the consequent stand for transitions probabilities.  

4.2.2 Fuzzy model of the stochastic increments observed in some technological 
situation 

In a certain technological situation some parameter of a non-homogeneous grain material 
was measured at discrete moments (Figure 1). It is assumed that observed values X(n), 
n=1,…,400 represent realization of a certain stochastic process whose variance is high and 
changes are very quick. For human experts, engineers of the technological process, it is very  

 

 

Fig. 1. Realization of the stochastic process X(n)  
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important to recognize a probabilistic character of the changes, especially the changes 
determined in linguistic categories, like: Positive Big, Positive Small, Zero, Negative Small, 
Negative Big. To determine characteristic of the process with fuzzy states, first, we have 
calculated the increments  

 DX(n)=X(n)-X(n-1) (33) 

and a joint probability distribution p(DX(n),DX(n-1)) of non-fuzzy values of the process. 

The range of the increments values, a real number interval [-4.8, 4.8], has been divided 

into 14 disjoint intervals and the frequency of the occurrence of measurements in 

particular intervals has been determined. The disjoint intervals have been used for the 

description of membership functions of particular linguistic values of the set 

L{DX(n)}={NB,NS,Z,PS,PB}.  

The empirical joint probability distribution of the linguistic random variables, P(L{DX(n-1)}, 

L{DX(n)}), has been calculated and presented in Table 4. In the last row, the marginal 

probability values of one linguistic random variable, are presented. It is almost symmetrical 

distribution, with the highest value of the probability, 0.6114, for the linguistic value of 

increments equal to ‘Zero’. Conditional probability distributions for particular linguistic 

values of the variable DX(n) have been also calculated and they represent weights of 

particular consequent parts of the rule-base fuzzy model (34). The model of the knowledge 

base consists of the following five file rules with weights: 

R1:  0.6114 IF (DX(n-1) IS Z) THEN (DX(n) IS Z) 0.6450   

 ALSO (DX(n) IS NS) 0.1945   

 ALSO (DX(n) IS PS) 0.1462   

 ALSO (DX(n) IS PB) 0.0113   

ALSO (DX(n) IS NB) 0.0030   

            R2:  0.2123 IF (DX(n-1) IS NS) THEN (DX(n) IS Z) 0.6739   

 ALSO (DX(n) IS PS) 0.2032   

ALSO (DX(n) IS NS) 0.1114   

 ALSO (DX(n) IS PB) 0.0111   

ALSO (DX(n) IS NB) 0.0004   

   R3:  0.1474 IF (DX(n-1) IS PS) THEN (DX(n) IS NS) 0.4258 (34) 

   ALSO (DX(n) IS Z) 0.4181   

ALSO (DX(n) IS NB) 0.0791   

                 ALSO (DX(n) IS PS) 0.0714   
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               ALSO (DX(n) IS PB) 0.0056    

                          R4:  0.0184 IF (DX(n-1) IS NB) THEN (DX(n) IS Z) 0.6044    

               ALSO (DX(n) IS PS) 0.2363    

              ALSO (DX(n) IS NS) 0.1263    

              ALSO (DX(n) IS PB) 0.0330    

        R5:  0.0105 IF (DX(n-1) IS PB) THEN (DX(n) IS NB) 0.4762    

              ALSO (DX(n) IS NS) 0.4286    

 ALSO (DX(n) IS Z) 0.0952.   

 
 

 

P(L{DX(n-1)}, L{DX(n)})

L{DX(n-1)} 

L{DX(n)} NB NS Z PS PB 

PB 0.0051 0.0046 0.0010 0.0 0.0 

PS 0.0115 0.0620 0.0609 0.0104 0.0008 

Z 0.0017 0.1192 0.3953 0.0895 0.0068 

NS 0.0001 0.0235 0.1430 0.0431 0.0023 

NB 0 0.0030 0.0112 0.0044 0.0006 

)})1({( nDXLP 0.0184 0.2123 0.6114 0.1474 0.0105 

 

Table 4. Joint empirical probability distribution of two linguistic random variables 
representing increments  

To determine the predicted value DX(n)=b*, for given value (crisp or fuzzy) DX(n-1)=a*, the 
reasoning procedure, described in 3.3 is used, e.g. for DX(n-1)=1.55, predicted value is 
approximated as equal to DX(n)=0.30538. This value depends on many parameters of the 
fuzzy model and the reasoning procedure. It is very useful to create the computing system 
with many options of changing the reasoning parameters. In Fig. 2 the predicted, mean 
values of the increments has been underlined by thick line. 
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Fig. 2. Realization of the stochastic processes of increments DX(n), DX(n-1) and the 
predicted mean value   

5. Conclusion and future works 

In this chapter the new approach to fuzzy modelling has been presented. Knowledge base in 
the form of weighted fuzzy rules represents in the same time the probability distribution of 
the fuzzy events occurring in the statements. Considered examples show the creating a few 
simple models of stochastic increments processes. In the future, in modelling the Wiener 
process, the time dependent  probability of the increments should be taken into account.  
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