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1. Introduction 

Parallel manipulators are mechanisms where all the links are connected to the ground and 
the moving platform at the same time. They possess high rigidity, load capacity, precision, 
structural stiffness, velocity and acceleration since the end-effector is linked to the movable 
plate in several points (Kang et al., 2001; Kang & Mills, 2001; Merlet, J. P. 2000; Tsai, L., 1999; 
Uchiyama, M., 1994). Parallel manipulators can be classified into two fundamental 
categories, namely spatial and planar manipulators. The first category composes of the 
spatial parallel manipulators that can translate and rotate in the three dimensional space. 
Gough-Stewart platform, one of the most popular spatial manipulator, is extensively 
preferred in flight simulators. The planar parallel manipulators which composes of second 
category, translate along the x and y-axes, and rotate around the z-axis, only. Although 
planar parallel manipulators are increasingly being used in industry for micro-or nano-
positioning applications, (Hubbard et al., 2001), the kinematics, especially dynamics analysis 
of planar parallel manipulators is more difficult than their serial counterparts. Therefore 
selection of an efficient kinematic modeling convention is very important for simplifying the 
complexity of the dynamics problems in planar parallel manipulators. In this chapter, the 
inverse dynamics problem of three-Degrees Of Freedom (DOF) RRR Fully Planar Parallel 
Manipulator (FPPM) is derived using DH method (Denavit & Hartenberg, 1955) which is 
based on 4x4 homogenous transformation matrices. The easy physical interpretation of the 
rigid body structures of the robotic manipulators is the main benefit of DH method. The 
inverse dynamics of 3-DOF RRR FPPM is derived using the virtual work principle (Zhang, 
& Song, 1993; Wu et al., 2010; Wu et al., 2011). In the first step, the inverse kinematics model 
and Jacobian matrix of 3-DOF RRR FPPM are derived by using DH method. To obtain the 
inverse dynamics, the partial linear velocity and partial angular velocity matrices are 
computed in the second step. A pivotal point is selected in order to determine the partial 
linear velocity matrices. The inertial force and moment of each moving part are obtained in 
the next step. As a last step, the inverse dynamic equation of 3-DOF RRR FPPM in explicit 
form is derived. To demonstrate the active joints torques, a butterfly shape Cartesian 
trajectory is used as a desired end-effector’s trajectory.  

2. Inverse kinematics and dynamics model of the 3-DOF RRR FPPM 

In this section, geometric description, inverse kinematics, Jacobian matrix & Jacobian 
inversion and inverse dynamics model of the 3-DOF RRR FPPM in explicit form are 
obtained by applying DH method. 
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2.1 Geometric descriptions of 3-DOF RRR FPPM 

The 3-DOF RRR FPPM shown in Figure 1 has a moving platform linked to the ground by 

three independent kinematics chains including one active joint each. The symbols i and i 
illustrate the active and passive revolute joints,  respectively  where  i=1, 2 and 3. The link 
lengths and the orientation of the moving platform are denoted by lj and , respectively, j=1, 
2, ··· ,6. The points B1, B2, B3 and M1, M2, M3 define the geometry of the base and the moving 
(Figure 2) platform, respectively. The {XYZ} and {xyz} coordinate systems are attached to the 
base and the moving platform of the manipulator, respectively. O and M1 are the origins of 
the base and moving platforms, respectively. P(XB, YB) and  illustrate the position of the 
end-effector in terms of the base coordinate system {XYZ} and orientation of the moving 
platform, respectively. 
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Fig. 1. The 3-DOF RRR FPPM 

The lines M1P, M2P and M3P are regarded as n1, n2 and n3, respectively. The γ1, γ2 and γ3 
illustrate the angles BP撫M怠, M態P撫B, and BP撫M戴, respectively. Since two lines AB and M1M2 

are parallel, the angles  PM撫怠M態 and PM撫 態M怠 are equal to the angles AP撫M怠 and M態P撫B, 
respectively. P(xm, ym) denotes the position of end-effector in terms of {xyz} coordinate 
systems. 
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Fig. 2. The moving platform 

2.2 Inverse kinematics 

The inverse kinematic equations of 3-DOF RRR FPPM are derived using the DH (Denavit 
& Hartenberg, 1955) method which is based on 4x4 homogenous transformation matrices. 
The easy physical interpretation of the rigid body structures of the robotic manipulators is 
the main benefit of DH method which uses a set of parameters (α辿貸怠, a辿貸怠, θ辿		and	d辿岻 to 
describe the spatial transformation between two consecutive links. To find the inverse 
kinematics problem, the following equation can be written using the geometric identities 
on Figure 1.  

 OB辿 + B辿M辿 = OP + PM辿 (1) 

where i=1, 2 and 3.  If the equation 1 is adapted to the manipulator in Figure 1, the T托套拓套 怠  and T托套拓套 態 transformation matrices can be determined as 

T托套拓套 怠 = 頒な ど ど o淡套ど な ど o湛套ど ど な どど ど ど な 番 頒
cosθ辿 −sinθ辿 ど どsinθ辿 cosθ辿 ど どど ど な どど ど ど な番 頒

cosα辿 −sinα辿 ど l態辿貸怠sin糠辿 cosα辿 ど どど ど な どど ど ど な 番 頒な ど ど l態辿ど な ど どど ど な どど ど ど な 番  

 					= 頒cos岫θ辿 + α辿岻 −sin岫θ辿 + α辿岻 ど o淡套 + l態辿cos岫θ辿 + α辿岻 + l態辿貸怠cosθ辿sin岫θ辿 + α辿岻 cos岫θ辿 + α辿岻 ど o湛套 + l態辿sin岫θ辿 + α辿岻 + l態辿貸怠sinθ辿ど ど な どど ど ど な 番 (2) 

 T托套拓套 態 = 頒な ど ど P凧田ど な ど P蛸田ど ど な どど ど ど な 番 頒cos岫ぐ辿 + ϕ岻 −sin岫ぐ辿 + ϕ岻 ど どsin岫ぐ辿 + ϕ岻 cos岫ぐ辿 + ϕ岻 ど どど ど な どど ど ど な番 頒
な ど ど n辿ど な ど どど ど な どど ど ど な番  
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 = 頒cos岫ぐ辿 + ϕ岻 −sin岫ぐ辿 + ϕ岻 ど P凧田 + n辿cosぐ辿cosϕ − n辿sinぐ辿sinϕsin岫ぐ辿 + ϕ岻 cos岫ぐ辿 + ϕ岻 ど P蛸田 + n辿cosぐ辿sinϕ + n辿sinぐ辿cosϕど ど な どど ど ど な 番 (3)  

where 岫P凧田	, P蛸田岻 corresponds the position of the end-effector in terms of the base {XYZ} 

coordinate systems,  ぐ怠 = 講 + 購怠 and ぐ態 = −購態.  Since the position vectors of T托套拓套 怠  and T托套拓套 態 

matrices are equal, the following equation can be obtained easily. 

 釆l態辿cos岫θ辿 + α辿岻l態辿sin岫θ辿 + α辿岻挽 = 峪 P凧田 + b淡套cosϕ − b湛套sinϕ−o淡套 − l態辿貸怠cosθ辿P蛸田 + b淡套sinϕ + b湛套cosϕ − o湛套 − l態辿貸怠sinθ辿崋 (4) 

where  b淡套 = n辿cosぐ辿 and b湛套 = n辿sinぐ辿. Summing the squares of the both sides in equation 4, 
we obtain, after simplification,  

 l態辿貸怠態 − にP蛸田o湛套 − にP凧田o淡套 + b淡套態 + b湛套態 + o淡套態 + o湛套態 + 鶏凧田態 + 鶏蛸田態   

 +にl態辿貸怠b槻套[sin岫ϕ − θ辿岻 − cos岫ϕ − θ辿岻] + にcosϕ盤P凧田b淡套 + P蛸田b湛套 − b淡套o淡套 − b湛套o湛套匪  

 +にsinϕ盤P蛸田b淡套 − P凧田b湛套 − b淡套o湛套 + b湛套o淡套匪 + にl態辿貸怠 cos θ辿岫o淡套 − P凧田岻  

 +にl態辿貸怠 sin θ辿盤o湛套 − P蛸田匪 − l態辿態 =0 (5) 

To compute the inverse kinematics, the equation 5 can be rewritten as follows  

 A辿sinθ辿 + B辿cosθ辿 = C辿 (6) 

where 

 A辿 = にl態辿貸怠盤o湛套 − b淡套sinϕ − b湛套cosϕ − P蛸田匪  

 B辿 = にl態辿貸怠盤o淡套 + b湛套sinϕ − b淡套cosϕ − P凧田匪  

 C辿 = −範l態辿貸怠態 − にP蛸田o湛套 − にP凧田o淡套 + b淡套態 + b湛套態 + o淡套態 + o湛套態 + 鶏凧田態 + 鶏蛸田態 − l態辿態   

 +にcosϕ盤P凧田b淡套 + P蛸田b湛套 − b淡套o淡套 − b湛套o湛套匪 + に sinϕ盤P蛸田b淡套 − P凧田b湛套 − b淡套o湛套 + b湛套o淡套匪飯  

The inverse kinematics solution for equation 6 is 

 θ辿 = Atanに岫A辿, B辿岻 ∓ Atanに 峭謬A辿態 + B辿態 − C辿態, C辿嶌 (7a) 

Once the active joint variables are determined, the passive joint variables can be computed 
by using equation 4 as follows. 

 α辿 = Atanに岫D辿, E辿岻 ∓ Atanに 峭謬D辿態 + E辿態 − G辿態, G辿嶌 (7b) 

where 

 D辿 = −sinθ辿, E辿 = cosθ辿  
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and 

 G辿 = 盤P凧田 + b淡套cosϕ − b湛套sinϕ−o淡套 − l態辿貸怠cosθ辿匪 l態辿⁄   

Since the equation 7 produce two possible solutions for each kinematic chain according to 

the selection of plus ‘+’ or mines ‘–’ signs, there are eight possible inverse kinematics 

solutions for 3-DOF RRR FPPM.  

2.3 Jacobian matrix and Jacobian inversion 

Differentiating the equation 5 with respect to the time, one can obtain the Jacobian matrices. 

 B恵岌 = A鼠岌   
 煩d怠 ど どど d態 どど ど d戴晩 崛θ

岌怠θ岌 態θ岌 戴崑 = 煩a怠 b怠 c怠a態 b態 c態a戴 b戴 c戴晩 頒
P岌凧田P岌訓田ϕ岌 番 (8) 

where 

 a辿 = −に盤P凧田 − o淡套 + b淡套cosϕ − l態辿貸怠cosθ辿 − b湛套sinϕ匪  

 b辿 = −に盤P蛸田 − o湛套 + b湛套cosϕ − l態辿貸怠sinθ辿 + b淡套sinϕ匪  c辿 = −に範l態辿貸怠b湛套 cos岫ϕ − θ辿岻 + l態辿貸怠b淡套 sin岫ϕ − θ辿岻 + cosϕ 盤P蛸田b淡套 − P凧田b湛套 − b淡套o湛套 + b湛套o淡套匪
 +sinϕ盤b淡套o淡套+b湛套o湛套 − P凧田b淡套 − P蛸田b湛套匪飯  

 d辿 = に範l態辿貸怠 cos θ辿盤o湛套 − P蛸田匪 + l態辿貸怠 sin θ辿盤P凧田 − o淡套匪 − l態辿貸怠b湛套 cos岫ϕ − θ辿岻  
 −l態辿貸怠b淡套 sin岫ϕ − θ辿岻飯  

The A and B terms in equation 8 denote two separate Jacobian matrices. Thus the overall 

Jacobian matrix can be obtained as  

 J = B貸怠A = 琴欽欽
欽欣叩迭辰迭 但迭辰迭 達迭辰迭叩鉄辰鉄 但鉄辰鉄 達鉄辰鉄叩典辰典 但典辰典 達典辰典筋禽禽

禽禁
 (9) 

The manipulator Jacobian is used for mapping the velocities from the joint space to the 

Cartesian space  

 θ岌 = Jχ岌  (10) 

where χ岌 = [P岌凧田 P岌訓田 ϕ岌 ]鐸and θ岌 = [θ岌怠 θ岌 態 θ岌 戴]鐸 are the vectors of velocity in the Cartesian 
and joint spaces, respectively.  
To compute the inverse dynamics of the manipulator, the acceleration of the end-effector is 

used as the input signal. Therefore, the relationship between the joint and Cartesian 

accelerations can be extracted by differentiation of equation 10 with respect to the time. 
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 θ岑 = Jχ岑 + J岌χ岌  (11) 

where χ岑 = [P岑凧田 P岑蛸田 ϕ岑 ]鐸and θ岑 = [θ岑怠 θ岑 態 θ岑 戴]鐸 are the vectors of acceleration in the 
Cartesian and joint spaces, respectively. In equation 11, the other quantities are assumed to 
be known from the velocity inversion and the only matrix that has not been defined yet is 
the time derivative of the Jacobian matrix. Differentiation of equation 9 yields to 

 J岌 = 煩K怠 L怠 R怠K態 L態 R態K戴 L戴 R戴晩 (12) 

Ki, Li and Ri in equation 12 can be written as follows.  

 K辿 = 叩岌 套辰套貸叩套辰岌 套辰套鉄  (13) 

 L辿 = 但岌 套辰套貸但套辰岌 套辰套鉄  (14) 

 R辿 = 達岌 套辰套貸達套辰岌 套辰套鉄  (15) 

where 

 a岌 辿 = −に盤P岌凧田 − ϕ岌 b淡套sinϕ + θ岌 辿l態辿貸怠sinθ辿 − ϕ岌 b湛套cosϕ匪  

 b岌 辿 = −に盤P岌蛸田 − ϕ岌 b湛套sinϕ − θ岌 辿l態辿貸怠cosθ辿 + ϕ岌 b淡套cosϕ匪  

 c辿 = −に範−l態辿貸怠b湛套盤ϕ岌 − θ岌 辿匪 sin岫ϕ − θ辿岻 + 盤ϕ岌 − θ岌 辿匪l態辿貸怠b淡套 cos岫ϕ − θ辿岻  

 									−ϕ岌 sinϕ盤P蛸田b淡套 − P凧田b湛套 − b淡套o湛套 + b湛套o淡套匪 + cosϕ盤P岌蛸田b淡套 − P岌凧田b湛套匪  

 										+ϕ岌 cosϕ盤b淡套o淡套+b湛套o湛套 − P凧田b淡套 − P蛸田b湛套匪 − sinϕ盤P岌凧田b淡套 + P岌蛸田b湛套匪飯  d岌 辿 = に範−l態辿貸怠 θ岌 辿sin θ辿盤o湛套 − P蛸田匪 − l態辿貸怠 cos θ辿P岌蛸田 + l態辿貸怠θ岌 辿cosθ辿盤P凧田 − o淡套匪 + l態辿貸怠 sin θ辿P岌凧田  

 									+l態辿貸怠b湛套盤ϕ岌 − θ岌 辿匪sin岫ϕ − θ辿岻−l態辿貸怠b淡套盤ϕ岌 − θ岌 辿匪cos岫ϕ − θ辿岻飯  

2.4 Inverse dynamics model 

The virtual work principle is used to obtain the inverse dynamics model of 3-DOF RRR 

FPPM. Firstly, the partial linear velocity and partial angular velocity matrices are computed 

by using homogenous transformation matrices derived in Section 2.2. To find the partial 

linear velocity matrix, B2i-1, C2i-1 and M3 points are selected as pivotal points of links l2i-1, l2i 

and moving platform, respectively in the second step. The inertial force and moment of each 

moving part are determined in the next step. As a last step, the inverse dynamic equations 

of 3-DOF RRR FPPM in explicit form are derived. 

2.4.1 The partial linear velocity and partial angular velocity matrices 

Considering the manipulator Jacobian matrix in equation 10, the joint velocities for the link 

l2i-1 can be expressed in terms of Cartesian velocities as follows. 
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 θ岌 辿 = 峙叩套辰套 但套辰套 達套辰套峩 頒P岌凧田P岌蛸田ϕ岌 番 ,				i = な, に	and	ぬ. (16) 

The partial angular velocity matrix of the link l2i-1 can be derived from the equation 16 as 

 磁匝兄貸層 = 峙叩套辰套 但套辰套 達套辰套峩 ,				i = な,に	and	ぬ. (17) 

Since the linear velocity on point Bi is zero, the partial linear velocity matrix of the point Bi is 
given by 

 阻匝兄貸層 = 峙ど ど どど ど ど峩 ,				i = な,に	and	ぬ. (18)
 

To find the partial angular velocity matrix of the link l2i, the equation 19 can be written 

easily using the equality of the position vectors of  T托套拓套 怠 and T托套拓套 態	matrices. 

 峪o淡套 + l態辿cos岫θ辿 + α辿岻 + l態辿貸怠cosθ辿o湛套 + l態辿sin岫θ辿 + α辿岻 + l態辿貸怠sinθ辿 崋 = 峪P凧田 + b淡套cosϕ − b湛套sinϕP蛸田 + b淡套sinϕ + b湛套cosϕ崋 (19)
 

The equation 19 can be rearranged as in equation 20 since the link l2i moves with げ辿 = θ辿 + α辿 
angular velocity.  

 峪o淡套 + l態辿cosげ辿 + l態辿貸怠cosθ辿o湛套 + l態辿sinげ辿 + l態辿貸怠sinθ辿 崋 = 峪P凧田 + b淡套cosϕ − b湛套sinϕP蛸田 + b淡套sinϕ + b湛套cosϕ崋 (20)
 

Taking the time derivative of equation 20 yields the following equation. 

 峪−l態辿げ岌 辿sinげ辿 − l態辿貸怠θ岌 辿sinθ辿l態辿げ岌 辿cosげ辿 + l態辿貸怠θ岌 辿cosθ辿 崋 = 峪P岌凧田 − ϕ岌 b淡套sinϕ − ϕ岌 b湛套cosϕP岌蛸田 + ϕ岌 b淡套cosϕ − ϕ岌 b湛套sinϕ崋 (21)
 

Equation 21 can also be stated as follows. 

 釆−sinげ辿cosげ辿 挽 l態辿げ岌 辿 + 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 θ岌 辿 = 峪な ど −b淡套sinϕ − b湛套cosϕど な b淡套cosϕ − b湛套sinϕ 崋 頒P岌凧田P岌蛸田ϕ岌 番 (22) 

If θ岌  in equation 16 is substituted in equation 22, the following equation will be obtained.  

 釆−sinげ辿cosげ辿 挽 l態辿げ岌 辿 = 峭峪な ど −b淡套sinϕ − b湛套cosϕど な b淡套cosϕ − b湛套sinϕ 崋 − 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 峙叩套辰套 但套辰套 達套辰套峩嶌 頒P岌凧田P岌蛸田ϕ岌 番 (23)
 

If the both sides of equation 23 premultiplied by [−sinげ辿 cosげ辿], angular velocity of link l2i 
is obtained as. 

 げ岌 辿 = 峙− 坦辿樽置套狸鉄套 達誰坦置套狸鉄套 峩 峭峪な ど −b淡套sinϕ − b湛套cosϕど な b淡套cosϕ − b湛套sinϕ 崋 − 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 峙叩套辰套 但套辰套 達套辰套峩嶌 頒P岌凧田P岌蛸田ϕ岌 番 (24)
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Finally the angular velocity matrix of l2i is derived from the equation 24 as follows. 

 降態沈 = 峙− 坦辿樽置套狸鉄套 達誰坦置套狸鉄套 峩 峭峪な ど −b淡套sinϕ − b湛套cosϕど な b淡套cosϕ − b湛套sinϕ 崋 − 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 峙叩套辰套 但套辰套 達套辰套峩嶌 (25)
 

The angular acceleration of the link l2i is found by taking the time derivative of equation 21.  

 峪−l態辿盤げ岑 辿sinげ辿 + げ岌 辿態cosげ辿匪 − l態辿貸怠盤θ岑 辿sinθ辿 + θ岌 辿態cosθ辿匪l態辿盤げ岑 辿cosげ辿 − げ岌 辿態sinげ辿匪 + l態辿貸怠盤θ岑 辿cosθ辿 − θ岌 辿態sinθ辿匪 崋  

 = 峪P岑凧田 − 盤ϕ岑 b淡套sinϕ + ϕ岌 態b淡套cosϕ匪 − 盤ϕ岑 b湛套cosϕ − ϕ岌 態b湛套sinϕ匪P岑蛸田 + 盤ϕ岑 b淡套cosϕ − ϕ岌 態b淡套sinϕ匪 − 盤ϕ岑 b湛套sinϕ + ϕ岌 態b湛套cosϕ匪崋 (26)
 

Equation 26 can be expressed as 

 釆−sinげ辿cosげ辿 挽 l態辿げ岑 辿 = 峙s辿怠s辿態峩 (27) 

where 

 s辿怠 = P岑凧田 − 盤ϕ岑 b淡套sinϕ + ϕ岌 態b淡套cosϕ匪 − 盤ϕ岑 b湛套cosϕ − ϕ岌 態b湛套sinϕ匪 + l態辿げ岌 辿態cosげ辿  

 									+l態辿貸怠盤θ岑 辿sinθ辿 + θ岌 辿態cosθ辿匪  

 s辿態 = P岑蛸田 + 盤ϕ岑 b淡套cosϕ − ϕ岌 態b淡套sinϕ匪 − 盤ϕ岑 b湛套sinϕ + ϕ岌 態b湛套cosϕ匪 + l態辿げ岌 辿態sinげ辿  

 										−l態辿貸怠盤θ岑 辿cosθ辿 − θ岌 辿態sinθ辿匪  

If the both sides of equation 27 premultiplied by [−sinげ辿 cosげ辿], angular acceleration of link 
l2i is obtained as. 

 げ岑 辿 = 峙− 坦辿樽置套狸鉄套 達誰坦置套狸鉄套 峩 峙s辿怠s辿態峩 (28) 

where i=1,2 and 3. To find the partial linear velocity matrix of the point Ci, the position 

vector of  T大套拓套 怠 is obtained in the first step. 

 T大套拓套 怠 = 頒な ど ど o淡套ど な ど o湛套ど ど な どど ど ど な 番 頒
cosθ辿 −sinθ辿 ど どsinθ辿 cosθ辿 ど どど ど な どど ど ど な番 頒

な ど ど l態辿貸怠ど な ど どど ど な どど ど ど な 番  
 									= 頒cosθ辿 −sinθ辿 ど o淡套 + l態辿貸怠cosθ辿sinθ辿 cosθ辿 ど o湛套 + l態辿貸怠sinθ辿ど ど な どど ど ど な 番 (29) 

The position vector of T大套拓套 怠 is obtained from the fourth column of the equation 29 as 

 T大套拓套 沢岫淡,湛岻怠 	= 峪o淡套 + l態辿貸怠cosθ辿o湛套 + l態辿貸怠sinθ辿崋 (30) 
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Taking the time derivative of equation 30 produces the linear velocity of the point Ci. 

 鉱寵日 = 辰辰担 岾 T大套拓套 沢岫淡,湛岻怠 峇 = 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 θ岌 辿 (31) 

If θ岌  in equation 16 is substituted in equation 31, the linear velocity of the point Ci will be 
expressed in terms of Cartesian velocities.  

 鉱寵日 = 釆−l態辿貸怠sinθ辿l態辿貸怠cosθ辿 挽 峙叩套辰套 但套辰套 達套辰套峩 頒P岌凧田P岌蛸田ϕ岌 番  

 = 狸鉄套貼迭辰套 釆−a辿sinθ辿 −b辿sinθ辿 −c辿sinθ辿a辿cosθ辿 b辿cosθ辿 c辿cosθ辿 挽 頒P岌凧田P岌蛸田ϕ岌 番 (32) 

Finally the partial linear velocity matrix of l2i is derived from the equation 32 as  

 阻匝兄 = 狸鉄套貼迭辰套 釆−a辿sinθ辿 −b辿sinθ辿 −c辿sinθ辿a辿cosθ辿 b辿cosθ辿 c辿cosθ辿 挽 (33) 

The angular velocity of the moving platform is given by 

 欠陳椎 = [ど ど な] 頒P岌凧田P岌蛸田ϕ岌 番 (34) 

The partial angular velocity matrix of the moving platform is 

 磁仕使 = [ど ど な] (35)
 

The linear velocity (健塚尿妊) of the moving platform is equal to right hand side of the equation 

22. Since point M3 is selected as pivotal point of the moving platform, the b淡套 	is equal to b淡典.  

 健塚尿妊 = 峪な ど −b淡典sinϕ − b湛典cosϕど な b淡典cosϕ − b湛典sinϕ 崋 頒P岌凧田P岌蛸田ϕ岌 番 (36) 

The partial linear velocity matrix of the moving platform is derived from the equation 36 as  

 士仕使 = 峪な ど −b淡典sinϕ − b湛典cosϕど な b淡典cosϕ − b湛典sinϕ 崋 (37) 

2.4.2 The inertia forces and moments of the mobile parts of the manipulator 

The Newton-Euler formulation is applied for deriving the inertia forces and moments of 

links and mobile platform about their mass centers. The m2i-1, m2i and mmp denote the 

masses of links l2i-1 , l2i and moving platform, respectively where i=1,2 and 3. The c2i-1 c2i and 

cmp are the mass centers of the links l2i-1, l2i and moving platform, respectively. Figure 3 

denotes dynamics model of 3-DOF RRR FPPM.  
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Fig. 3. The dynamics model of 3-DOF RRR FPPM 

To find the inertia force of the mass m2i-1, one should determine the acceleration of the link 

l2i-1 about its mass center first. The position vector of the link l2i-1 has already been obtained 

in equation 30. To find the position vector of the center of the link l2i-1, the length r2i-1 is used 

instead of l2i-1 in equation 30 as follows  

 T大套拓套 沢達鉄套貼迭怠 	= 釆o淡套 + r態辿貸怠cosθ辿o湛套 + r態辿貸怠sinθ辿挽 (38) 

The second derivative of the equation 30 with respect to the time yields the acceleration of 
the link l2i-1 about its mass center. 

 a達鉄套貼迭 	= 辰辰担峭 辰辰担 釆o淡套 + r態辿貸怠cosθ辿o湛套 + r態辿貸怠sinθ辿挽嶌 = r態辿貸怠 峪−θ岑 辿sinθ辿 − θ岌 辿態cosθ辿θ岑 辿cosθ辿 − θ岌 辿態sinθ辿 崋 (39)  

The inertia force of the mass m2i-1 can be found as 

 擦匝餐貸層 = −m態辿貸怠盤a達鉄套貼迭 − g匪  
 = m態辿貸怠r態辿貸怠 峪 θ岑 辿sinθ辿 + θ岌 辿態cosθ辿−θ岑 辿cosθ辿 + θ岌 辿態sinθ辿崋 (40)

 
where g is the acceleration of the gravity and 傾 = [ど ど]鐸	 since the manipulator operates in 

the horizontal plane. The moment of the link l2i-1 about pivotal point Bi is  

 捌匝餐貸層 = −釆θ岑 辿I態辿貸怠 +m態辿貸怠 岾 辰辰馳套 T大套拓套 沢達鉄套貼迭怠 峇鐸 a台套挽  
 = θ岑 辿I態辿貸怠 (41) 
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where I態辿貸怠, T大套拓套 沢達鉄套貼迭怠 	and a台套, denote the moment of inertia of the link l2i-1, the position vector 

of the center of the link l2i-1 and the acceleration of the point Bi, respectively. It is noted that a台套 = ど.  
The acceleration of the link l2i about its mass center is obtained first to find the inertia force 
of the mass m2i. The position vector of the link l2i has already been given in the left side of 
the equation 20 in terms of げ辿 and θ辿 angles. To find the position vector of the center of the 

link l2i 岾 T托套拓套 沢達鉄套怠 峇, the length r2i is used instead of l2i in left side of the equation 20. 

 T托套拓套 沢達鉄套怠 = 峪o淡套 + r態辿cosげ辿 + l態辿貸怠cosθ辿o湛套 + r態辿sinげ辿 + l態辿貸怠sinθ辿 崋 (42)
 

The second derivative of the equation 42 with respect to the time produces the acceleration 
of the link l2i about its mass center. 

 a達鉄套 	= 辰辰担峭 辰辰担 峪o淡套 + r態辿cosげ辿 + l態辿貸怠cosθ辿o湛套 + r態辿sinげ辿 + l態辿貸怠sinθ辿 崋嶌  

 = 峪−r態辿盤げ岑 辿sinげ辿 + げ岌 沈態cosげ辿匪 − l態辿貸怠盤θ岑 辿sinθ辿 + θ岌 辿態cosθ辿匪r態辿盤げ岑 辿cosげ辿 − げ岌 沈態sinげ辿匪 + l態辿貸怠盤θ岑 辿cosθ辿 − θ岌 辿態sinθ辿匪 崋 (43) 

The inertia force of the mass m2i can be found as 

 	擦匝餐 = −m態辿盤a達鉄套 − g匪  

 = −m態辿 峪−r態辿盤げ岑 辿sinげ辿 + げ岌 沈態cosげ辿匪 − l態辿貸怠盤θ岑 辿sinθ辿 + θ岌 辿態cosθ辿匪r態辿盤げ岑 辿cosげ辿 − げ岌 沈態sinげ辿匪 + l態辿貸怠盤θ岑 辿cosθ辿 − θ岌 辿態sinθ辿匪 崋 (44) 

where 傾 = [ど ど]鐸. The moment of the link l2i about pivotal point Ci is  

 捌匝餐 = −釆げ岑 辿I態辿 +m態辿 岾 辰辰置套 T托套拓套 沢達鉄套怠 峇鐸 a大套挽  

 = −盤げ岑 辿I態辿 +m態辿r態辿l態辿貸怠範sinげ辿盤θ岑 辿sinθ辿 + θ岌 辿態cosθ辿匪 cosげ辿盤θ岑 辿cosθ辿 − θ岌 辿態sinθ辿匪飯匪 (45) 

where I態辿, T托套拓套 沢達鉄套怠 	and a大套, denote the moment of inertia of the link l2i, the position vector of 

the center of the link l2i in terms of the base coordinate system {XYZ} and the acceleration of 

the point Ci, respectively. The terms 
辰辰置套 T托套拓套 沢達鉄套怠 	and a大套 are computed as 

 
辰辰置套 T托套拓套 沢達鉄套怠 = 辰辰置套 峪o淡套 + r態辿cosげ辿 + l態辿貸怠cosθ辿o湛套 + r態辿sinげ辿 + l態辿貸怠sinθ辿 崋 = r態辿 釆−sinげ辿cosげ辿 挽 (46) 

 a大套 	= 辰辰担峭 辰辰担 峪o淡套 + l態辿貸怠cosθ辿o湛套 + l態辿貸怠sinθ辿崋嶌 = −l態辿貸怠 峪 θ岑 辿sinθ辿 + θ岌 辿態cosθ辿−θ岑 辿cosθ辿 + θ岌 辿態sinθ辿崋 (47) 

The acceleration of the moving platform about its mass center is obtained in order to find 

the inertia force of the mass mmp. The position vector of the moving platform has already 

been given in the right side of the equation 20.  
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 T托套拓套 態 = 峪P凧田 + b淡套cosϕ − b湛套sinϕP蛸田 + b淡套sinϕ + b湛套cosϕ崋 (48)
 

The second derivative of the equation 48 with respect to the time produces the acceleration 

of the moving platform about its mass center (cmp). 

 a達悼東 	= 辰辰担峭 辰辰担 峪P凧田 + b淡套cosϕ − b湛套sinϕP蛸田 + b淡套sinϕ + b湛套cosϕ崋嶌  

 = 峪P岑凧田 − ϕ岑 盤b淡典sinϕ + b湛典cosϕ匪 − ϕ岌 態盤b淡典cosϕ − b湛典sinϕ匪P岑蛸田 + ϕ岑 盤b淡典cosϕ − b湛典sinϕ匪 − ϕ岌 態盤b淡典sinϕ + b湛典cosϕ匪崋 (49) 

The inertia force of the mass mmp can be found as 

 擦仕使 = −m鱈丹 岾a達悼東 − g峇  

 = −m鱈丹 峪P岑凧田 − ϕ岑 盤b淡典sinϕ + b湛典cosϕ匪 − ϕ岌 態盤b淡典cosϕ − b湛典sinϕ匪P岑蛸田 + ϕ岑 盤b淡典cosϕ − b湛典sinϕ匪 − ϕ岌 態盤b淡典sinϕ + b湛典cosϕ匪崋 (50)

 
where 傾 = [ど ど]鐸. The moment of the moving platform about pivotal point M3 is  

 捌仕使 = −釆ϕ岑 I鱈丹 +m鱈丹 岾 辰辰註 T托典拓套 沢岫淡,湛岻態 峇鐸 a達悼東挽  

 = −盤ϕ岑 I鱈丹 +m鱈丹範P岑凧田盤−b淡典sinϕ − b湛典cosϕ匪 + P岑蛸田盤b淡典cosϕ − b湛典sinϕ匪飯匪 (51) 

where I鱈丹, T托典拓套 沢岫淡,湛岻態 	and a達悼東 , denote the moment of inertia of the moving platform, the 

position vector of the moving platform in terms of {XYZ} coordinate system and the 

acceleration of the point cmp, respectively. The terms  
辰辰註 T托典拓套 沢岫淡,湛岻態 		and a達悼東   are computed as 

 
辰辰註 T托典拓套 沢岫淡,湛岻態 = 辰辰註 峪P凧田 + b淡典cosϕ − b湛典sinϕP蛸田 + b淡典sinϕ + b湛典cosϕ崋 = 峪−b淡典sinϕ − b湛典cosϕb淡典cosϕ − b湛典sinϕ 崋 (52)

 

 a達悼東 	= 峪P岑凧田P岑蛸田崋 (53) 

The inverse dynamics of the 3-DOF RRR FPPM based on the virtual work principle is given 

by 

 蛍脹酵 + 繋 = ど (54) 

where  

 F = ∑ 磐[治匝餐貸層参 磁匝餐貸層参 ] 釆擦匝餐貸層捌匝餐貸層挽卑戴辿退怠 + ∑ 磐[治匝餐参 磁匝餐参 ] 釆擦匝餐捌匝餐挽卑戴辿退怠 + 範治仕使参 磁仕使参 飯 釆擦仕使捌仕使挽 (55) 

The driving torques (酵怠 酵態 酵戴) of the 3-DOF RRR FPPM are obtained from equation 54 as 

 酵 = −岫蛍脹岻貸怠繋 (56) 

where 酵 = [酵怠 酵態 酵戴]脹. 
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3. Case study 

In this section to demonstrate the active joints torques, a butterfly shape Cartesian trajectory 
with constant orientation 岫ϕ = ぬど誰岻 is used as a desired end-effector’s trajectory. The time 
dependent Cartesian trajectory is  

 P凧田 = P凧轍袋a鱈cos岫ω達πt岻				ど ≤ t ≤ の	seconds (57) 

 P蛸田 = P蛸轍袋a鱈sin岫ω坦πt岻				ど ≤ t ≤ の	seconds (58) 

A safe Cartesian trajectory is planned such that the manipulator operates a trajectory 
without any singularity in 5 seconds. The parameters of the trajectory given by 57 and 58 are 
as follows:  P凧田轍 = P蛸田轍 = なの, a鱈 = ど.の, ω達 = ど.ね	and	ω坦 = ど.8. The Cartesian trajectory based 

on the data given above is given by on Figure 4a (position), 4b (velocity) and 4c 
(acceleration). On Figure 4, the symbols VPBX, VPBY, APBX and APBY illustrate the 
velocity and acceleration of the moving platform along the X and Y-axes. The first inverse 
kinematics solution is used for kinematics and dynamics operations. The moving platform is 
an equilateral triangle with side length of 10. The position of end-effector in terms of {xyz} 
coordinate systems is P(xm, ym)=(5, 2.8868) that is the center of the equilateral triangle 
moving platform. The kinematics and dynamics parameters for 3-DOF RRR FPPM are 
illustrated in Table 1. Figure 5 illustrates the driving torques (酵怠 酵態 酵戴) of the 3-DOF RRR 
FPPM based on the given data in Table 1.  
 
 
 
 

 

Link lengths Base coordinates Masses Inertias 

健怠 10 o淡迭 0 m怠 10 I怠 10 健態 10 o湛迭 0 m態 10 I態 10 健戴 10 o淡鉄 20 m戴 10 I戴 10 健替 10 o湛鉄 0 m替 10 I替 10 健泰 10 o淡典 10 m泰 10 I泰 10 健滞 10 o湛典 32 m滞, m鱈丹 10 I滞, I鱈丹 10 

 
 
 
 

Table 1. The kinematics and dynamics parameters for 3-DOF RRR FPPM 
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Fig. 4. a) Position, b) velocity and c) acceleration of the moving platform 
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Fig. 5. The driving torques (酵怠 酵態 酵戴) of the 3-DOF RRR FPPM 

4. Conclusion 

In this chapter, the inverse dynamics problem of 3-DOF RRR FPPM is derived using virtual 

work principle.  Firstly, the inverse kinematics model and Jacobian matrix of 3-DOF RRR 

FPPM are determined using DH method. Secondly, the partial linear velocity and partial 

angular velocity matrices are computed. Pivotal points are selected in order to determine the 

partial linear velocity matrices. Thirdly, the inertial force and moment of each moving part 

are obtained. Consequently, the inverse dynamic equations of 3-DOF RRR FPPM in explicit 

form are derived. A butterfly shape Cartesian trajectory is used as a desired end-effector’s 

trajectory to demonstrate the active joints torques. 
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