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1. Introduction

Parallel manipulators are mechanisms where all the links are connected to the ground and
the moving platform at the same time. They possess high rigidity, load capacity, precision,
structural stiffness, velocity and acceleration since the end-effector is linked to the movable
plate in several points (Kang et al., 2001; Kang & Mills, 2001; Merlet, J. P. 2000; Tsai, L., 1999;
Uchiyama, M., 1994). Parallel manipulators can be classified into two fundamental
categories, namely spatial and planar manipulators. The first category composes of the
spatial parallel manipulators that can translate and rotate in the three dimensional space.
Gough-Stewart platform, one of the most popular spatial manipulator, is extensively
preferred in flight simulators. The planar parallel manipulators which composes of second
category, translate along the x and y-axes, and rotate around the z-axis, only. Although
planar parallel manipulators are increasingly being used in industry for micro-or nano-
positioning applications, (Hubbard et al., 2001), the kinematics, especially dynamics analysis
of planar parallel manipulators is more difficult than their serial counterparts. Therefore
selection of an efficient kinematic modeling convention is very important for simplifying the
complexity of the dynamics problems in planar parallel manipulators. In this chapter, the
inverse dynamics problem of three-Degrees Of Freedom (DOF) RRR Fully Planar Parallel
Manipulator (FPPM) is derived using DH method (Denavit & Hartenberg, 1955) which is
based on 4x4 homogenous transformation matrices. The easy physical interpretation of the
rigid body structures of the robotic manipulators is the main benefit of DH method. The
inverse dynamics of 3-DOF RRR FPPM is derived using the virtual work principle (Zhang,
& Song, 1993; Wu et al., 2010; Wu et al., 2011). In the first step, the inverse kinematics model
and Jacobian matrix of 3-DOF RRR FPPM are derived by using DH method. To obtain the
inverse dynamics, the partial linear velocity and partial angular velocity matrices are
computed in the second step. A pivotal point is selected in order to determine the partial
linear velocity matrices. The inertial force and moment of each moving part are obtained in
the next step. As a last step, the inverse dynamic equation of 3-DOF RRR FPPM in explicit
form is derived. To demonstrate the active joints torques, a butterfly shape Cartesian
trajectory is used as a desired end-effector’s trajectory.

2. Inverse kinematics and dynamics model of the 3-DOF RRR FPPM

In this section, geometric description, inverse kinematics, Jacobian matrix & Jacobian
inversion and inverse dynamics model of the 3-DOF RRR FPPM in explicit form are
obtained by applying DH method.
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4 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

2.1 Geometric descriptions of 3-DOF RRR FPPM

The 3-DOF RRR FPPM shown in Figure 1 has a moving platform linked to the ground by
three independent kinematics chains including one active joint each. The symbols 6; and o
illustrate the active and passive revolute joints, respectively where i=1, 2 and 3. The link
lengths and the orientation of the moving platform are denoted by I and ¢, respectively, j=1,
2, -+ ,6. The points By, By, B3 and M1, M2, M3 define the geometry of the base and the moving
(Figure 2) platform, respectively. The {XYZ} and {xyz} coordinate systems are attached to the
base and the moving platform of the manipulator, respectively. O and M; are the origins of
the base and moving platforms, respectively. P(Xs, Yg) and ¢ illustrate the position of the
end-effector in terms of the base coordinate system {XYZ} and orientation of the moving
platform, respectively.

Fig. 1. The 3-DOF RRR FPPM

The lines MP, M,P and M3P are regarded as nj, n; and ns, respectively. The yi, y2 and y3
illustrate the angles BPM,, M,PB, and BPMj, respectively. Since two lines AB and MM,
are parallel, the angles PM;M, and PM,M, are equal to the angles APM; and M,PB,
respectively. P(xm, ym) denotes the position of end-effector in terms of {xyz} coordinate
systems.
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Inverse Dynamics of RRR Fully Planar Parallel Manipulator Using DH Method 5

Fig. 2. The moving platform

2.2 Inverse kinematics

The inverse kinematic equations of 3-DOF RRR FPPM are derived using the DH (Denavit
& Hartenberg, 1955) method which is based on 4x4 homogenous transformation matrices.
The easy physical interpretation of the rigid body structures of the robotic manipulators is
the main benefit of DH method which uses a set of parameters (o;_q,ai—1,0; and d;) to
describe the spatial transformation between two consecutive links. To find the inverse
kinematics problem, the following equation can be written using the geometric identities
on Figure 1.

where i=1, 2 and 3. If the equation 1 is adapted to the manipulator in Figure 1, the o M, L T! and
lT2 transformation matrices can be determined as
1 0 0 o04][cosB; —sinB; 0 O0][cosa; —sinag 0 Iy_;][1 0 0 Iy
Oip1 — 0 1 0 oy sme cose 0 0 smocl coso¢l 0 0 0 1.0 O
M; 0 0 1 0 1 0 1 o0 f]jo 01 0
0 0 0 1 0 1 0 110 0 0 1
cos(0; + ;) —sin(0; + ;) 0 oy +1icos(0; + ;) + 151 cosb;
_ |sin(6; + o)  cos(B;+ ;) O oy + lysin(0; + a;) + 15i_45inb; @)
0 0 1 0
0 0 0 1
1 0 0 Pxq[cos(y;j+d) —sin(y;+¢) 0 0][1 0 0 nj
Oip2 — 0 1 0 Pyf|sin(yi+¢) cos(yi+¢) 0 O0fjf0 1 0 O
M 001 0 0 0 1 0/f0 0 1 0O
0 0 0 1 0 0 0 1110 0 0 1
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6 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

cos(yi +¢) —sin(y;+¢) 0 Pg, + njcosyjcosd — n;siny;sing

sin(y; +¢) cos(y;+¢) 0 Py, +njcosyjsind + n;sinyjcosd 3)
0 0 1 0
0 0 0 1

where (Px,,Py,) corresponds the position of the end-effector in terms of the base {XYZ}
coordinate systems, y; = m + 0; and y, = —0,. Since the position vectors of R(,)[:Tl and I\(/)[iTZ
matrices are equal, the following equation can be obtained easily.

lyicos(6; + ;)] _ [ Pxg + bx;cosd — by, sindp—oy, — l5;—;cos; 4
l,isin(0; + o;)] Py, + bysind + by, cosd — oy, — 15;_1sinb; (4)

where by, = njcosy; and by, = n;siny;. Summing the squares of the both sides in equation 4,
we obtain, after simplification,

13-4y — 2Py 0y, — 2Py 0y + bZ + b2 + 0% + 03 + P, + P
+2l5i_1by, [sin(p — ;) — cos(d — 6;)] + 2cosd)(PXBin + Py by, — by 0y — inOYi)

+25inc|)(PYBin — Py, by, —by0y + byioxi) + 2l5i_4 cos 6;(oy, — Px,,)

Vi
+2l,;_4 sin (0, — Py, ) —15,=0 (5)
To compute the inverse kinematics, the equation 5 can be rewritten as follows
A;sin®; + B;cosB; = C; (6)
where
A = 2121_1(03,i — by,sing — by, cos¢p — PYB)
B; = 212i—1(0><i + by, sing — by, cosdp — PXB)
Ci = —[13i_1 — 2Py 0y, — 2Py 0y, + b3 +bZ + 0 + 03 + PF + P{, —15;
+2cosc|)(PXBin + Py by — by 0y — inOYi) + 2sin cl)(PYBin — Py by, —by0y + inOXi)]

The inverse kinematics solution for equation 6 is

0; = Atan2(A;, B;) ¥ Atan2 ( /Af + BZ — CZ, Ci> (7a)

Once the active joint variables are determined, the passive joint variables can be computed
by using equation 4 as follows.

a; = Atan2(D;, E;) F Atan2 < /Dlz + E? — GZ, Gi> (7b)

D; = —sin®;, E; = cosb;

where
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Inverse Dynamics of RRR Fully Planar Parallel Manipulator Using DH Method 7

and

G; = (PXB + by, cos$ — by sinp—o,, — 121—1C059i)/lzi

Since the equation 7 produce two possible solutions for each kinematic chain according to
the selection of plus ‘+" or mines ‘~" signs, there are eight possible inverse kinematics
solutions for 3-DOF RRR FPPM.

2.3 Jacobian matrix and Jacobian inversion
Differentiating the equation 5 with respect to the time, one can obtain the Jacobian matrices.

Bq = Ax
d1 0 0 él dq bl Cq li)XB
l 0 dz 0 ] 62 = |:az b2 Czl pYB (8)
0 0 dj 0, az bz cj3 b

where
a; = —Z(PXB — Oy, + by, cosdp — 15;_1cos0; — byisinc]))
b; = —Z(PYB — 0y, + by,cosdp — 15;_1sind; + bxisincl))

¢i = —2[lzi-1by, cos(dp — 6;) + Ly;_1 by, sin(p — 6;) + cos ¢ (Py by, — Py by, — by, 0y, + by.0,.)
+sin ¢(inOXi+in Oy, — Pxgbx, — Pyy in)]

d; = 2[12i_1 cos Gi(oyi - PYB) + 15;_4 sin Gi(PXB - oxi) — Iyi_1by, cos(¢p — 6;)

_121—1bxi sin(¢p — ei)]

The A and B terms in equation 8 denote two separate Jacobian matrices. Thus the overall
Jacobian matrix can be obtained as

a b o

dp dp dy

—p-1p |32 b2 <

J=B7A= d, d, d, ©)
A
d; d; ds

The manipulator Jacobian is used for mapping the velocities from the joint space to the

Cartesian space

0 =Jx

$]Tand 6 =[6, 6, 6;]" are the vectors of velocity in the Cartesian

where ¥ = [PXB PYB

and joint spaces, respectively.

(10)

To compute the inverse dynamics of the manipulator, the acceleration of the end-effector is
used as the input signal. Therefore, the relationship between the joint and Cartesian
accelerations can be extracted by differentiation of equation 10 with respect to the time.
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8 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

0 =% +x (11)
where ¥ = [f’XB f’YB dS]Tand 6= [, 6, 63]T are the vectors of acceleration in the
Cartesian and joint spaces, respectively. In equation 11, the other quantities are assumed to

be known from the velocity inversion and the only matrix that has not been defined yet is
the time derivative of the Jacobian matrix. Differentiation of equation 9 yields to

Ky Ly Ry
J=[Kz L R (12)
Kz Lz R
K, Li and R; in equation 12 can be written as follows.
Kj = élidid;;idi (13)
bidi—b;d;
Li = a2 (14)
R; = S90S (15)

where

a; = —2(Px, — dby,sind + 6;1,;_;sinb; — pby, cosd)

b; = —2(Py, — by, sind — 6;15;_;cos6; + Pby, cosd)
¢ = —2[—Lyi_1by, (b — 6;) sin(dp — 6;) + (p — 6;)1,1_1by, cos(d — 6;)
—sin d)(PYBin — Py, by, —by0y + inOXi) + coscl)(PYBin — pXBin)
+¢ cos ¢(by, 05, +by, 05 — Px by, — Py by ) —sind(Px by, + Py by, )]
di = 2[—lyi—1 8isin 0;(0y, — Py, ) — lzi—g cOs 0;Py, + l5i_; 8;c080;(Px, — 0, ) + iy sin 6;Px,
+li_1by, (b — 6;)sin(dp — 8;)—li_1by, (b — 6;)cos(dp — 6,)]

2.4 Inverse dynamics model

The virtual work principle is used to obtain the inverse dynamics model of 3-DOF RRR
FPPM. Firstly, the partial linear velocity and partial angular velocity matrices are computed
by using homogenous transformation matrices derived in Section 2.2. To find the partial
linear velocity matrix, Bai.1, Coi1 and M3 points are selected as pivotal points of links Iy, Iy
and moving platform, respectively in the second step. The inertial force and moment of each
moving part are determined in the next step. As a last step, the inverse dynamic equations
of 3-DOF RRR FPPM in explicit form are derived.

2.4.1 The partial linear velocity and partial angular velocity matrices
Considering the manipulator Jacobian matrix in equation 10, the joint velocities for the link

L1 can be expressed in terms of Cartesian velocities as follows.
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Inverse Dynamics of RRR Fully Planar Parallel Manipulator Using DH Method 9

b b
2 aj i Ci 2 :
0; = [d_1 & d_l] Py |, 1= 1,2 and 3. (16)
¢
The partial angular velocity matrix of the link I can be derived from the equation 16 as
wrnq =37 3 3 i=12and3, (17)

Since the linear velocity on point B; is zero, the partial linear velocity matrix of the point B; is
given by

Vgiq = [8 8 8] i=1,2and3. (18)

To find the partial angular velocity matrix of the link Iy, the equation 19 can be written
easily using the equality of the position vectors of D(,)[;Tl and 181;'1‘2 matrices.

[ox + 15;cos(0; + ;) + 15;_1cosH; ] [PXB + by cosdp — byisin(b] (19)

+ 1,;sin(0; + ;) + 1,;_1sind; Py, + by,sind + by, cosd

The equation 19 can be rearranged as in equation 20 since the link Io; moves with §; = 6; + ¢
angular velocity.

Oy, +12i€088; +15i-1c0s8;] [Pk, + by,cosp — by, sind -
yi T 12isind; + lpi_1sin®; [~ | Py, + by sind + by cosd (20)
Taking the time derivative of equation 20 yields the following equation.
—lziSiSiDSi - 121_1éisinei _ lE)XB - (i)inSil’l(I) - (i)binOSd) (21)
1,;8;c088; + 15;_,60;cos6; PYB + c])bxicoscl) - d)byisinq)
Equation 21 can also be stated as follows.
[ —sing; ] | —1,;_,5iné; 1 0 —bysing — by, cosdp ”
cos§; 210 + l,;_;cos8; 0 1 bycosp— by sing (22)
If § in equation 16 is substituted in equation 22, the following equation will be obtained.
. Py,
[ siné; ]l _ —by,sing — by, cos¢ [ 1,;_1sin8; ] b; ﬁ] P 2
cos§; | 2T T 0 1 bycosd — by,sind 1,;_,cos6; di d; B (23)
¢

If the both sides of equation 23 premultiplied by [—sind; cos6;], angular velocity of link Iy
is obtained as.

P,
8_[_sin8i cosSi] 10 —inSin(I)—binOS(b [ ]21 1Sln9][al _i &] PXB y
i~ Lo L; 0 1 bycosdp — by sing 1,;_4cosH; d; S{B (24)
¢
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10 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

Finally the angular velocity matrix of l; is derived from the equation 24 as follows.

ins; 1|1 0 —bysind — by cos S
Wy = [_ sing; cosSl] <[ x; Sing yit (I)] [1121 1sm6] b &]) (25)

L Lo 0 1 Dbycosdp — by sing 2i—1€0S0; di d;

The angular acceleration of the link l,; is found by taking the time derivative of equation 21.

[—IZi(SisinSi + 82c0s8;) — 15;_1(6;sind; + 6Zcosh;)
121(81C0581 ~ SizsinSi) + 121_1(éicosei + éizsinei)

A [PXB — ($by,sind + p?by cosd) — (Pby, cosd — d)zbyisincl))] o
B inB + (élibxicosq) - (i)szisincb) - (dﬁbyisinq) + (i)zbyicoscl)) (26)
Equation 26 can be expressed as
sind; S
[ cosd; ]121 i~ 11 (27)

where
siy = Py, — ($by,sind + dp2by cosd) — ($by,cosd — by, sing) + 157 cos8;
+15;_1(0;sin8; + 6Zcos0;)
siz = Py, + ($by,cosd — db?by sind) — (Pby,sin + dp2by, cosd) + 1,;52sins;

—13i_1(Bjcos0; — BZsind;)

If the both sides of equation 27 premultiplied by [—sind; cos§;], angular acceleration of link
I»; is obtained as.

2 _ [_sind; cos§; Sij1

0 = [ Lo Lo ] [Siz] (28)
where i=1,2 and 3. To find the partial linear velocity matrix of the point C;, the position
vector of g;Tl is obtained in the first step.

1 0 0 o0x][cosB; —sinB; 0 O][1 0 0O Ily_4
Oip1 — 0 1 0 Oy}\ lsme cose 0 0‘ lO 1 0 0
G 0 0 1 0 1 0f|]0 0 1 0
0 0 0 1 0 11lo o 0o 1
cosB; —sinb; 0 o4 + l3i_1c0sH;
_ |sin®; cosb; 0 oy +1_;sinb; (29)
0 0 1 0
0 0 0 1

The position vector of giTl is obtained from the fourth column of the equation 29 as

O _ [ox + 1,;_1cos6;
Ci "P(xy) 0y, + lpi_15in6;

www.intechopen.com
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Taking the time derivative of equation 30 produces the linear velocity of the point Ci.

d ol —15i_15sin6;

Ve = dt TP(XY) l,i_1 cosB;

(31)

If § in equation 16 is substituted in equation 31, the linear velocity of the point C; will be
expressed in terms of Cartesian velocities.

b ]
~ [—121_1sin91 [ﬁ b; &] pXB
Ve = lpi_qcos0; | ldi di dil| VB
| |
. . . -pXB-
_ Ly [—aismei —b;sin®; —c;sin6; P 3
~ d; | ajcosB;  bjcos®;  cjcosB; || YB (32)
| |
Finally the partial linear velocity matrix of I is derived from the equation 32 as
_ Ly [—a;SinB;  —b;sin®; —cisinei]
Y2i = 7y [aicosei b;cos;  cjcosb; (33)
The angular velocity of the moving platform is given by
P,
amp =10 0 1]|By, (34)
¢
The partial angular velocity matrix of the moving platform is
Wpp = [0 0 1] (35)

The linear velocity (I, ) of the moving platform is equal to right hand side of the equation
22. Since point M3 is selected as pivotal point of the moving platform, the by, is equal to by_.

1 0 —by,sing — by, cosd
- [ i Y (36)

“lo 1 by, cos¢ — by, sind

The partial linear velocity matrix of the moving platform is derived from the equation 36 as

(10 —by,sind — by_cosd 37
Vmp = o 1 by, cosdp — by,_sing (37)

2.4.2 The inertia forces and moments of the mobile parts of the manipulator
The Newton-Euler formulation is applied for deriving the inertia forces and moments of

links and mobile platform about their mass centers. The myi.;, my and mpy, denote the
masses of links .1 , li and moving platform, respectively where i=1,2 and 3. The czi1 c2; and
Cmp are the mass centers of the links lx.1, I and moving platform, respectively. Figure 3
denotes dynamics model of 3-DOF RRR FPPM.
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12 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

Fig. 3. The dynamics model of 3-DOF RRR FPPM

To find the inertia force of the mass my;.1, one should determine the acceleration of the link
l»i1 about its mass center first. The position vector of the link 151 has already been obtained
in equation 30. To find the position vector of the center of the link I»;.1, the length 12;1 is used
instead of 1.1 in equation 30 as follows

Ojrre1 _ [oxi + r21_1c0591]

= . 38
Ci "Peaiy Oy, + I'3i_1Sin6; (38)

The second derivative of the equation 30 with respect to the time yields the acceleration of
the link ;.1 about its mass center.

a4 [oxi + Ipi_1€086; —6;sin8; — 6?cos6; (39)
a. . = — — . = i— . .
C2i-1 T dt\dt| oy, + Iryi_sSind; 271 8,cos6; — 62sind;
The inertia force of the mass my;.1 can be found as
Fpi 4= _mZi—l(aczi_l - g)
8;sind; + 6?cosb;
= Moy;_1>;_ . . 40
-ttt [—eicosei + 6Zsin6; 0

where g is the acceleration of the gravity and g =[0 0]7 since the manipulator operates in
the horizontal plane. The moment of the link I».1 about pivotal point B; is

T
—_ _ 18 d 0im1
My 4 =— [91121—1 + my;_q (d_ei c;Tpczi_l) aBi]

= é1121—1 (41)
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Inverse Dynamics of RRR Fully Planar Parallel Manipulator Using DH Method 13

where I;_4, ngI}CZi_l and ag,, denote the moment of inertia of the link l»i.1, the position vector
of the center of the link Ii.; and the acceleration of the point B;, respectively. It is noted that
ag, = 0.

The acceleration of the link I»; about its mass center is obtained first to find the inertia force
of the mass my;. The position vector of the link Iy has already been given in the left side of
the equation 20 in terms of §; and 6; angles. To find the position vector of the center of the

link 1 (I\C/ETI%CZi)’ the length ry; is used instead of l,;in left side of the equation 20.

Opet [oxi + r,cos6; + 121_1c059i] @)

Mi“Pezi ™ [ oy + 1p;sind; + l5i_1ind;

The second derivative of the equation 42 with respect to the time produces the acceleration
of the link Ip; about its mass center.

d <d [OXi + 1r,;cos8; + 121_1cosei]>

ac, =—|= . .
i del\dt]| oy, + 1p;Sind; + lyj_1SinG;

_ [r2(8ising; + 87coss;) — 15i_1 (6;sin6; + éizcosei)]
| rpi(8icos8; — 87sind;) + 11 (B;c0s0; — HZsinG;)

The inertia force of the mass my; can be found as
Fy; = —my(a.,, — g)

Cm, [—rZi(SisinSi + 82c0s8;) — ly;_1 (8;sind; + éizcosei)] )

r5;(8;c0s8; — 62sin;) + l5;_1 (B;cos0; — 6Zsin8;)

where g =[0 0]T. The moment of the link 1»; about pivotal point C; is
g d Ojr1 )T
My; = — |6l + my; (d_Si MiTPczi) ac,

= —(8ily; + myirailyi_1[sind;(H;sind; + 6Zcosb;) cosd;(B;cosd; — HZsind;)]) (45)

where [,;, ﬁ:T&Czi and ac;, denote the moment of inertia of the link l,;, the position vector of
the center of the link Ip; in terms of the base coordinate system {XYZ} and the acceleration of

the point C;, respectively. The terms % h(,)[:T}}cZi and ac, are computed as
d Opg _ d |0x +T2i€088; + lp_1cos6;| [—sinSi] (46)
ds; Mi "Pe2i T ds; | oy, + rp;sind; + ly_4sin®; | T [ cos§;

d [ d |0x * l2i-1c088; 0;sinb; + HZcosH;
aa T nlxw 1 -sin®: ] = —lpi—1 | a o 47)
£\ de]oy; + lIzi-1sInY; —0;cos0; + 0;sinb;

The acceleration of the moving platform about its mass center is obtained in order to find
the inertia force of the mass muyp. The position vector of the moving platform has already
been given in the right side of the equation 20.
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14 Serial and Parallel Robot Manipulators — Kinematics, Dynamics, Control and Optimization

) Py + b,.cosd — by.sin
01T2 _ [ XB Xj q) Yi q) (48)

Mi® [Py, + bysind + by, cosd

The second derivative of the equation 48 with respect to the time produces the acceleration
of the moving platform about its mass center (cmp).

d (d [PXB + by, cosdp — by, sind )

demp = ar\ac Py, + by,sind + by, cos¢

B [PXB - (f)(bx3sinc|) + by3cosc|>) — 2 (bX3 cosp — by3sin¢)]
. Py, + $(by,cosdp — by3sinc|)) — ¢?(by,sing + by3cosc|))

The inertia force of the mass mmp can be found as
Fmp = —Mpp (acmp - g)

B Py, — ¢(by,sind + by, cosdp) — §?(by,cosd — by, sind)
Coome [inB + $(by,cosd — by, sind) — $p?(by,sing + by, cosd)

where g =[0 0]T. The moment of the moving platform about pivotal point Mj is

(50)

— i d Oip2 T
Mmp - [(I)Imp + mpy, (E M3TP(x,y)) acmp]

= —(dSImp + mpy,;, ['PXB (—bX3sind) —by, cosq)) + f’YB (bx3cosc|) — by3sinq))]) (51)

where Imp, N([);Tlf(xry) and I denote the moment of inertia of the moving platform, the
position vector of the moving platform in terms of {XYZ} coordinate system and the

acceleration of the point cmp, respectively. The terms d O‘Tlf(xly) and ac~are computed as

do Ms
d oz _ d [Py TDy,cOsb = by sind| by, sin¢ = by, cos (52)
do M3 "PCY) ™ dg [Py + by sing + by cosd| ~ | by, cosdp — by, sind
Px
Aemp = [f)YB] 9)
B

The inverse dynamics of the 3-DOF RRR FPPM based on the virtual work principle is given
by

JTT+F =0 (54)

where

Fy;_ Fy; Fip
F=3%L, <[v£i—1 ®3;1] [Mzzli_ll]) + X% ([Ugi @3] [Mzzli]) + [vmp @y [Mmp (55)
The driving torques (T1 T2  T3) of the 3-DOF RRR FPPM are obtained from equation 54 as

r=—(7)"'F (56)

wherer = [T1 T2 7T3]T.
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Inverse Dynamics of RRR Fully Planar Parallel Manipulator Using DH Method 15

3. Case study

In this section to demonstrate the active joints torques, a butterfly shape Cartesian trajectory
with constant orientation (¢ = 30°) is used as a desired end-effector’s trajectory. The time
dependent Cartesian trajectory is

Py, = Px,+amcos(wmt) 0 <t < 5seconds (57)

Py, = Py, ;amsin(wgmt) 0 <t <5 seconds (58)

A safe Cartesian trajectory is planned such that the manipulator operates a trajectory
without any singularity in 5 seconds. The parameters of the trajectory given by 57 and 58 are
as follows: Py =Py, =15, a, =05, o.=0.4and ws = 0.8. The Cartesian trajectory based
on the data given above is given by on Figure 4a (position), 4b (velocity) and 4c
(acceleration). On Figure 4, the symbols VPBX, VPBY, APBX and APBY illustrate the
velocity and acceleration of the moving platform along the X and Y-axes. The first inverse
kinematics solution is used for kinematics and dynamics operations. The moving platform is
an equilateral triangle with side length of 10. The position of end-effector in terms of {xyz}
coordinate systems is P(xm, ym)=(5, 2.8868) that is the center of the equilateral triangle
moving platform. The kinematics and dynamics parameters for 3-DOF RRR FPPM are
illustrated in Table 1. Figure 5 illustrates the driving torques (71 72 73) of the 3-DOF RRR
FPPM based on the given data in Table 1.

Link lengths Base coordinates Masses Inertias
ly 10 Oy, 0 m; 10 I 10
L, 10 Oy, 0 m, 10 I, 10
I3 10 Oy, 20 m; 10 I3 10
ly 10 Oy, 0 m, 10 I, 10
ls 10 Oy, 10 mg 10 I5 10
le 10 Oy, 32 Mg, Mpyp, 10 I, Imp 10

Table 1. The kinematics and dynamics parameters for 3-DOF RRR FPPM
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Fig. 5. The driving torques (71 T2 73) of the 3-DOF RRR FPPM

4. Conclusion

In this chapter, the inverse dynamics problem of 3-DOF RRR FPPM is derived using virtual
work principle. Firstly, the inverse kinematics model and Jacobian matrix of 3-DOF RRR
FPPM are determined using DH method. Secondly, the partial linear velocity and partial
angular velocity matrices are computed. Pivotal points are selected in order to determine the
partial linear velocity matrices. Thirdly, the inertial force and moment of each moving part
are obtained. Consequently, the inverse dynamic equations of 3-DOF RRR FPPM in explicit
form are derived. A butterfly shape Cartesian trajectory is used as a desired end-effector’s
trajectory to demonstrate the active joints torques.
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