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1. Introduction  

Approximately 90% of cancer-related death is caused by metastasis. The increased motility 

and invasiveness of metastatic tumor cells is reminiscent of events that occur at the 

epithelial-mesenchymal transition (EMT), which is a characteristic that occurs during 

embryonic development, tissue remodeling, wound healing and metastasis. Interestingly, 

EMT is a dynamic process and mainly occurs at the edges of wounds during healing and at 

the invasive fronts of metastatic tumors, which suggest that EMT is influenced by stimuli 

that emanate from the inflammatory microenvironment. The tumor microenvironment 

consists of many kinds of cells including infiltrated inflammatory cells, such as neutrophils, 

lymphocytes, macrophages and myeloid derived suppressor cells (MDSC). These infiltrated 

immune cells secrete cytokines, chemokines and growth factors, such as TNF-ǂ, TGF-ǃ, IL-6, 

fibroblast growth factor (FGF) and epidermal growth factor (EGF). These growth factors 

contribute significantly to the invasive and metastatic traits of cancer cells by inducing EMT. 

Here, we discuss new insights into the molecular pathways and key regulators that link 

inflammatory tumor microenvironment to EMT and metastasis. 

2. Cancer and immunity: Immunity’s roles in tumor suppression and 
promotion 

One of the most challenging questions in immunology is to understand how the immune 

system affects cancer development and progression. In recent years, after a long eclipse, 

different lines of work have lead to a renaissance of the inflammation-cancer connection 

(Balkwill and Mantovani 2001; Coussens and Werb 2002; Mantovani, Allavena et al. 2008). It 

is now believed that the immune system plays a dual role in cancer: on one hand , it can 

function as an extrinsic tumor suppressor (Dighe, Richards et al. 1994; Kaplan, Shankaran et 

al. 1998; Smyth, Thia et al. 2000; Girardi, Oppenheim et al. 2001; Shankaran, Ikeda et al. 2001; 

Street, Trapani et al. 2002) by destroying cancer cells or inhibiting their outgrowth; on the 

other hand, the immune system can also promote tumor progression by establishing 

conditions within the tumor microenvironment that facilitate tumor outgrowth (Schreiber, 

Old et al.). Inflammatory responses play decisive roles at different stages of tumor 
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development, including initiation, promotion, malignant conversion, invasion, and 

metastasis (de Visser, Eichten et al. 2006; Grivennikov, Greten et al. 2010). 

3. EMT and metastasis 

Epithelial-mesenchymal transition (EMT) is a phenotypic conversion during embryonic 
development when tissue remodeling and cell migration shape the future organism, such as 
in embryonic development and wound healing. During EMT, epithelial cells lose the 
adherent junctions that keep them in contact with their neighbors. They gain a mesenchymal 
cell phenotype that enables them to break through the basal membrane and migrate over a 
long distance, a result of profound changes in their cytoskeleton architecture and gene 
expression profile (Kalluri and Neilson 2003). This concept was pioneered by the seminal 
study from Elizabeth Hay using chick primitive streak formation as a model in 1967 (Hay 
1995). Hay realized that an epithelial phenotypic conversion was of crucial importance 
during gastrulation and cell migration in the early vertebrate embryo. She proposed that 
differentiated epithelial cells could undergo a dramatic "transformation" into mesenchymal 
cells (Greenburg and Hay 1988; Hay 1995). However, this "transformation" is reversible: 
mesenchymal cells can revert back to epithelial cells through a reverse process called 
mesenchymal-epithelial transition (MET). As a result, the term “transition” is now used. 

EMT does not only occur during embryonic development or as a physiological response to 

injury. It is also an important element in cancer progression and other pathologies that 

involve organ degeneration, such as fibrosis. At the cellular level, pathological EMTs are 

very similar to physiological EMTs in that they are governed by similar signaling pathways, 

regulators, and effective molecules. 

From a clinical perspective, metastasis is the most critical aspect of tumorigenesis: we have 
already addressed that more than 90% of cancer mortality is caused by metastasis. Aberrant 
control of epithelial proliferation and angiogenesis underlie the initiation and growth of 
primary carcinomas (Hanahan and Weinberg 2011). However, additional steps must be 
completed before a metastatic tumor is successfully established. The spread of malignant 
cells consists of a series of steps, all of which are thought to be important for metastatic 
outgrowth in different organs. Basically, these steps include local invasion toward and entry 
into blood vasculature (intravasation), survival within the circulation system, arrest in 
distant capillary beds or “homing” to distal organs, exit from blood vasculature 
(extravasation), and eventual outgrowth and re-establishment of malignant growths in 
secondary locations (Woodhouse, Chuaqui et al. 1997; Chambers, Naumov et al. 2001; Fidler 
2003; Hanahan and Weinberg 2011). 

3.1 Classification of EMT into three different subtypes 

Based on recent intensive study in this field, EMT can be divided into three subtypes, which 
have different biological functional consequences (Kalluri 2009; Kalluri and Weinberg 2009; 
Zeisberg and Neilson 2009). Type 1 EMT occurs during implantation, embryo formation, 
gastrulation, and neural crest migration, which describes the transition of epithelial cells to 
generate diverse mesenchymal cell types. These primary mesenchymal cells can revert back 
to form secondary epithelia in mesodermal and endodermal organs through MET. Type 2 
EMT occurs during wound healing, tissue regeneration and organ fibrosis, which is usually 
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associated with injury and chronic inflammation. Type 2 EMT ceases once inflammation is 
attenuated, but if inflammation persists, this type of EMT will eventually lead to tissue 
fibrosis and organ destruction. Unlike Type 1 EMT, these mesenchymal cells have no 
potential to undergo MET and turn back to epithelial cells. Type 3 EMT occurs during tumor 
progression, which describes how neoplastic cells at the invasive front of primary tumors 
undergo a transition to acquire increased motility and invasive ability, enabling them to 
invade and metastasize through the blood stream or lymph node system, eventually 
generating life-threatening metastatic lesions at distant organs. 

Because studies of EMT often involve various model systems ranging from different 
epithelial cell types to assorted stimulations, it is important to use validated biomarkers to 
examine the phenotypic conversion during all three classes of EMT. Common biomarkers 
include cell-surface and extracellular molecules, cytoskeletal proteins and specific 
transcription factors. For example, down-regulation of E-cadherin is a hallmark of EMT, and 
loss of E-cadherin expression facilitates the induction of EMT (Huber, Kraut et al. 2005). E-
cadherin is a cell-cell adhesion molecule that participates in homotypic, calcium-dependent 
interactions to form epithelial adherent junctions (Cowin, Rowlands et al. 2005; Junghans, 
Haas et al. 2005). In addition, E-cadherin repressors, such as Snail, Slug, Twist and ZEB1/2, 
are commonly used as EMT markers. Snail is the first described E-cadherin repressor and is 
also the common downstream target of various signaling pathways that lead to EMT. 
Vimentin, an intermediate filament mainly expressed in fibroblasts, endothelial cells and 
hematopoietic cells, is also commonly used as an indicator for Type 3 EMT, since expression 
of vimentin in tumor cells correlates with their invasiveness and metastatic potential. 
Furthermore, differential expression of integrin is also used as a biomarker of EMT, since 
integrins modulate the interaction of cells with extracellular matrix (ECM). For example, 
increased expression of ǂ5 integrin is commonly found in Type 2 and Type 3 EMT (Qian, 
Zhang et al. 2005; Davidson, Marsden et al. 2006; White, Blanchette et al. 2007). 

3.2 Type1 EMT in the formation of mesoderm and neural crest 

EMT is crucially important to tissue morphogenetic events during embryonic development, 
such as the mesoderm formation, neural crest formation, heart valve development, and 
secondary palate formation. Without EMT, development cannot proceed through the 
blastula stage. Mesoderm formation and neural crest development represent the major EMT 
programs that occur during early embryonic development; the resulting mesenchymal and 
neural crest cells act as progenitors and further differentiate into various cell types via MET. 
For example, gastrulation EMT produces the mesoderm, giving rise to muscle, bone and 
connective tissues, whereas neural crest delamination EMT gives rise to glial and neuronal 
cells, adrenal glandular tissues, pigment-containing cells of the epidermis and skeletal and 
connective tissues. The heart valve development and secondary palate formation occur in 
relatively well-differentiated epithelial cells that are destined to become defined 
mesenchymal cells types.  

The formation of mesoderm from the primitive ectoderm during gastrulation is the classic 
example of EMT. Gastrulation, observed in all metazoans, is accompanied by drastic 
morphogenic changes from a single epithelial layer (the epiblast) into three embryonic germ 
layers, the ectoderm, mesoderm, and endoderm, to form a complex three-dimensional 
multilayered embryo (Shook and Keller 2003). In chicken and mouse embryo, Wnt and TGF-
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ǃ signaling provide the initial induction signals for EMT, while the FGF signal is necessary 
to maintain the EMT regulatory network during mesoderm formation. All these signaling 
events activate the expression of Snail, which represses the expression of E-cadherin and 
other tight junction components (such as claudins, occludins, and Crumbs) and promotes 
cell migration. In Snail knock-out mice the cells that form are unable to migrate, although 
mesoderm specification is not affected.  

Neural crest formation is another example of Type 1 EMT in embryogenesis where 
premigratory neural crest cells form at the border of the neural plate and non-neural 
ectoderm as a result of signals emanating from these two tissues. Interestingly, similar 
signaling pathways operating during EMT at gastrulation are used in the neural crest 
formation. Indeed, a combination of Wnt, FGF, and TGF-ǃ (mainly BMP) induce the 
expression of Snail, Sox and forkhead box D3 transcription factors (Villanueva, Glavic et al. 
2002). In addition, experimental evidence shows that Notch signalling pathway plays an 
important role in neural crest formation through induction of Slug in frog and chick embryo 
(Nieto 2002). The combination of these transcription factors generates the full spectrum of 
phenotypic changes associated with EMT and primes the precursor cells to become 
migratory neural crest cells. These neural crest cells are equipped with the ability to migrate 
over extraordinarily long distances in the embryo, prior to their reaggregation via MET for 
further differentiation. 

3.3 Type 2 EMT in tissue and organ fibrosis 

3.3.1 Implications of EMT in fibrosis 

Re-epithelization, tissue regeneration and organ fibrosis constitute Type 2 EMT. Organ 
fibrosis is mediated by inflammatory cells and fibroblasts, which deposit collagens, elastin, 
tenacin and other matrix molecules. Fibrosis-associated Type 2 EMT specifically occurs in 
kidney, liver, lung and intestine (Zeisberg, Tarnavski et al. 2007). A series of typical 
experiments has shown that EMT is an important process during tissue injury that leads to 
organ fibrosis. In terms of EMT proteomes, fibroblast-specific protein 1 (FSP1, also known 
S100A4 and MTS-1), ǂ-SMA (smooth muscle actin) and collagen I are reliable markers to 
characterize the mesenchymal products generated by EMTs in the development of fibrosis 
in various organs. TGF-ǃ1, as the major pro-fibrotic cytokine, induces many of the central 
processes involved in fibrosis, including differentiation of fibroblast to myfibroblasat, ECM 
deposition and EMT. TGF-ǃ not only contributes to pulmonary and hepatic fibrosis, but also 
plays a key role in cardiac fibrosis (Gressner, Weiskirchen et al. 2002; Willis and Borok 2007; 
Zeisberg, Tarnavski et al. 2007). TGF-ǃ induces EMT via both a Smad2/3-dependent 
pathway and a MAPK-dependent pathway. The relevance of TGF-ǃ-induced EMT for 
progression of organ fibrosis was recently further elucidated using BMP-7 as an intracellular 
competitor of TGF-ǃ signaling in mouse models of kidney, liver, billiard tract, lung and 
intestinal fibrosis (Zeisberg, Bottiglio et al. 2003; Zeisberg, Hanai et al. 2003). The function of 
TGF-ǃ in fibrosis is highlighted by the finding that Smad3-/- mice are resistant to the 
induction of several fibrotic diseases (Flanders 2004). TGF-ǃ levels are also over-produced 
and are associated with functional impairment in patients with fibrotic pulmonary diseases 
such as idiopathic pulmonary fibrosis (Salez, Gosset et al. 1998). Clinical studies have also 
demonstrated the correlation between fibrosis and EMT (Rastaldi, Ferrario et al. 2002). 
Using immunohistochemistry and in situ hybridization, an EMT was demonstrated with the 
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expression of several markers of tubular phenotype transition, such as cytokeratin, 
vimentin, ǂ-SMA and zona occludens (ZO-1) in 133 kidney biopsies (Rastaldi, Ferrario et al. 
2002). Similarly, an expression pattern of EMT was found in areas of fibrosis in the colon in 
patients with Crohn’s disease (Bataille, Rohrmeier et al. 2008).  

3.3.2 Re-epithelialization of wounded skin 

Re-epithelialization recapitulates several aspects of EMT. Re-epithelialization requires 
epithelial cells at the edge of wounded tissue to loosen their cell–-cell and cell–-ECM 
contacts and assume a migratory phenotype, reminiscent of EMT. Slug has a crucial role in 
wound-healing, which is expressed in keratinocytes at the boundary of wounds. 
Importantly, epithelial cell outgrowth from skin explants was markedly reduced in Slug 
knockout mice, whereas overexpression of Slug in cultured human keratinocytes result in 
increased cell spreading and desmosomal disruption (Savagner, Kusewitt et al. 2005). 
Arnoux et al further found that EGF can activate Erk5, which specifically enhances Slug 
promoter activity and controls wound healing in keratinocyte-derived HacaT cells in vitro 
(Arnoux, Nassour et al. 2008). However, it should be noted that not all features of EMT are 
seen. First, the migrating keratinocytes remain part of a cohesive cell sheet since they retain 
some intercellular junction. Second, the epithelial cells do not actually become mesenchymal 
(i.e., interstitial) cells. They retain epithelial characteristics. Once wound closure is complete, 
the involved epithelial cells revert to their tissue-specific, differentiated state. 

3.4 Type 3 EMT in cancer metastasis 

Cancer metastasis is believed to consist of four distinct steps: invasion, intravasation, 

extravasation and metastatic colonization (Chambers, Groom et al. 2002; Pantel and 

Brakenhoff 2004). During invasion, tumor cells lose cell-cell adhesion, gain mobility and 

leave the site of the primary tumor to invade adjacent tissues. In intravasation, tumor cells 

penetrate through the endothelial barrier and enter systemic circulation through blood and 

lymphatic vessels. In extravasation, cells that survive anchorage-independent growth 

conditions in the bloodstream attach to vessels at distant sites and leave the bloodstream. 

Finally, in metastatic colonization, tumor cells form macrometastases in the new host 

environment (Chambers, Groom et al. 2002; Pantel and Brakenhoff 2004). All of these steps, 

from initial breakdown of tissue structure through increased invasiveness, and ultimately 

distribution and colonization throughout the body, are characteristics of the developmental 

process at EMT/MET. The similarity of genetic controls and biochemical mechanisms 

underlying the acquisition of the invasive phenotype, and the subsequent systemic spread 

of the cancer cells, highlights that tumor cells usurp this developmental pathway for their 

metastatic dissemination. We will further discuss this type of EMT, with more detail on how 

it is regulated by different signaling pathways and molecular in various tumor 

microenvironments.   

3.5 Molecular regulation of EMT 

The hallmark of EMT is the loss of E-cadherin expression, an important caretaker of the 

epithelial phenotype. Loss of E-cadherin expression is often correlated with the tumor grade 

and stage, because it results in disruption of the cell-cell adhesion and an increase in nuclear 
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ǃ-catenin (Cowin, Rowlands et al. 2005; Junghans, Haas et al. 2005). Several transcription 

factors have been implicated in the regulation of EMT, including zinc finger proteins of the 

Snail/Slug family, the basic helix-loop-helix factor Twist, E12/E47, Goosecoid, ǅEF1/ZEB1 

and SIP1 (Nieto 2002; Yang, Mani et al. 2004; Hartwell, Muir et al. 2006). These factors act as 

a molecular switch of EMT program by repressing a subset of common genes that encode 

cadherins, claudins, integrins, mucins, plakophilin, occludin and ZO1 to induce EMT. For 

example, Snail expression is associated with E-cadherin repression in metastasis; it also 

correlates with tumor recurrence and poor prognosis in various cancers (Elloul, Elstrand et 

al. 2005; Moody, Perez et al. 2005; Bruyere, Namdarian et al. 2009). In addition, extensive 

crosstalk among these transcription factors forms a signaling network that is responsible for 

establishing and maintaining mesenchymal cell phenotypes. Furthermore, some of these 

transcription factors, including Snail, play an important part in overcoming oncogene-

induced senescence (Ansieau, Bastid et al. 2008), inhibiting tumor immunosuppression 

(Kudo-Saito, Shirako et al. 2009) and generating tumorigenic cancer stem cells (Mani, Guo et 

al. 2008). These transcription factors communicate and respond to extracellular signals such 

as growth factors, cytokines and hypoxia from their microenvironment to induce EMT.  

Many signaling pathways trigger EMT in both embryonic development and in normal and 

transformed cell lines. The signaling pathways include those triggered by different members 

of the TGF-ǃ superfamily, Wnts, Notch, EGF, FGF and many others (Fig.1). 

 

Fig. 1. Overview of the Molecular regulation of EMT. 

TGF-ǃ is a primary inducer of EMT. It not only contributes to EMT during embryonic 
development, but also induces EMT during tumor progression in vivo (Zavadil and Bottinger 
2005). Overexpression of Smad2 and Smad3 result in increased EMT in a mammary epithelial 
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model (Valcourt, Kowanetz et al. 2005). Knockout of Smad3 blocks TGF-ǃ-induced EMT in 
primary tubular epithelial cells; the reduction of Smad2 and Smad3 function is associated with 
the decreased metastatic potential of breast cancer cell lines in a xenograft model (Zavadil, 
Cermak et al. 2004). It is interesting that SMAD3 and SMAD4 interact and form a complex 
with Snail, targeting the promoters of CAR (a tight-junction protein) and E-cadherin during 
TGF-ǃ-inducing EMT in breast epithelial cells (Vincent, Neve et al. 2009). Bos et al identified 
that TGF-ǃ primed cancer cells for lung metastasis through angiopoietin-like 4 via Smad 
signaling pathway (Bos, Zhang et al. 2009). In contrast, inhibition of TGF-ǃ or TGF-ǃ receptor 
reduces the invasive and metastatic activities of cancer cells. TGF-ǃ can also downregulate 
various epithelial molecules, including E-cadherin, ZO-1 and several specific keratins; it also 
upregulates certain mesenchymal proteins such as fibronectin, fibroblast specific protein 1, ǂ-
smooth muscle actin and vimentin. In addition, TGF-ǃ cooperates with numerous kinases such 
as RAS, MAPK, and p38MAP, to promote EMT (Zavadil and Bottinger 2005; Buijs, Henriquez 
et al. 2007). More specifically, p38 MAPK and RhoA mediate an autocrine TGF-ǃ-induced 
EMT in NMuMG mouse mammary epithelial cells (Bhowmick, Ghiassi et al. 2001). ECM 
molecules, such as integrin ǃ1 and Fibulin-5, augment TGF-ǃ-induced EMT in a MAPK-
dependent mechanism (Bhowmick, Ghiassi et al. 2001; Lee, Albig et al. 2008). Constitutive 
activation of Raf enhances the function of TGF-ǃ in inducing EMT via MAPK in MDCK cells 
(Janda, Lehmann et al. 2002). TGF-ǃ also induces EMT through changes in the expression of 
certain cell polarity molecules. For example, TGF-ǃ can induce phosphorylation of Par6, which 
in turn stimulates binding of Par6 to E3 ligase Smurf1. The Par6-Smurf1 complex then 
mediates the localized ubiquitination of RhoA to disrupt tight junctions during EMT 
(Ozdamar, Bose et al. 2005). TGF-ǃ can also downregulate Par3 expression to destroy cell 
polarity (Wang, Nie et al. 2008). It is interesting to note that Abl can inhibit TGF-ǃ-mediated 
EMT in normal and metastatic mammary epithelial cells (MECs) (Allington, Galliher-Beckley 
et al. 2009). Furthermore, TGF-ǃ can cooperate with other oncogenic pathways, such as Notch, 
Wnt/ǃ-catenin and NF-κB, to maintain the mesenchymal phenotype of invasive/metastatic 
tumor cells (Nawshad, Lagamba et al. 2005; Zavadil and Bottinger 2005; Neth, Ries et al. 2007). 

The Wnt/ǃ-catenin pathway has a particularly tight link with EMT (Li, Hively et al. 2000). 

On one hand, ǃ-catenin is an essential component of adherent junctions, where it provides 

the link between E-cadherin and ǂ-catenin and modulates cell-cell adhesion and cell 

migration. On the other hand, ǃ-catenin also functions as a transcription cofactor with T cell 

factor (TCF). Nuclear translocation of ǃ-catenin can activate expression of Slug, thus 

inducing EMT. Expression of ǃ-catenin in oocyte induces a premature EMT in the epiblast, 

concomitant with Snail transcription. Interestingly, Snail is a highly unstable protein and is 

dually regulated by protein stability and cellular location. We showed that GSK-3ǃ binds 

and phosphorylates Snail at two consensus motifs to dually regulate the function of this 

protein: phosphorylation at the first motif regulates its ubiquitination mediated by ǃ-Trcp, 

and phosphorylation at the second motif controls its subcellular localization (Zhou, Deng et 

al. 2004). Thus, Wnt can suppress the activity of GSK-3ǃ, and it stabilizes the protein level of 

Snail and ǃ-catenin to induce EMT and cancer metastasis (Yook, Li et al. 2005; Yook, Li et al. 

2006). Meanwhile, Snail can functionally interact with ǃ-catenin to increase Wnt-dependent 

target gene expression, promoting EMT (Stemmer, de Craene et al. 2008). Increasing 

evidence indicates that Wnt signaling is strongly associated with human basal-like breast 

cancer. Inhibiting Wnt signaling through LRP6 reduces the capacity of cancer cells to self-

renew and colonize in vivo. It also results in the re-expression of breast epithelial markers 
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and repression of EMT transcription factors Slug and Twist (DiMeo, Anderson et al. 2009). 

How the synergistic activation of Snail and ǃ-catenin by the Wnt signaling pathway, 

enhancing EMT and metastasis, remains to be further defined. 

Notch is an evolutionarily conserved signaling pathway that regulates cell fate specification, 
self-renewal and differentiation in embryonic and postnatal tissues. Four Notch (Notch 1−4) 
and five ligands (Jagged1, 2 and Deltalike1, 3, 4) have been identified. Notch signaling is 
normally activated followed by ligand-receptor binding between two neighboring cells. 
Notch undergoes intramembrane cleavage by Ǆ-secretase, and its intracellular domain 
(NICD) is released and translocates to the nucleus to activate gene transcription by 
associating with Mastermind-like 1 (MAM) and histone acetyltransferase p300/CBP. 
Alteration of Notch signaling has been associated with various types of cancer in which 
Notch can act as an oncogene or as a tumor suppressor, depending on the cellular context. 
The first observation that Notch pathway is required for EMT was derived from cardiac 
valve and cushion formation at heart development (Timmerman, Grego-Bessa et al. 2004). 
This implies that Notch, acting through a similar mechanism, induces EMT during tumor 
progression and converts polarized epithelial cells into motile and invasive ones (Grego-
Bessa, Diez et al. 2004). Indeed, overexpression of Jagged1 and Notch1 induces the 
expression of Slug and correlates with poor prognosis in various human cancers (Leong, 
Niessen et al. 2007). Slug is essential for Notch-mediated EMT by repressing E-cadherin 
expression, which results in ǃ-catenin activation and resistance to anoikis. Inhibition of 
Notch signaling in xenografted, Slug-positive/E-cadherin-negative breast tumors promotes 
apoptosis and inhibits tumor growth and metastasis (Leong, Niessen et al. 2007). In 
addition, Notch signaling deploys two distinct mechanisms that act in synergy to control the 
expression of Snail (Sahlgren, Gustafsson et al. 2008). First, Notch directly upregulates Snail 
expression by recruiting the Notch intracellular domain to the Snail promoter. Second, 
Notch potentiates hypoxia-inducible factor 1ǂ (HIF-1ǂ) recruitment to the lysyl oxidase 
(LOX) promoter and elevates the hypoxia-induced upregulation of LOX, which stabilizes 
the Snail protein. Thus, Notch signaling is required to convert the hypoxic stimulus into 
EMT, and it increases the invasiveness of tumor cells. In addition, the Notch signaling 
pathway is involved in the acquisition of EMT phenotype of gemcitabine-resistant (GR) cells 
in pancreatic cancer (Wang, Li et al. 2009). Down-regulation of Notch signaling is associated 
with decreased invasive behavior of GR cells. Moreover, Notch signaling leads to the 
increased expression of vimentin, ZEB1, Slug, Snail, and NF-κB, and it results in EMT. Thus, 
inhibition of Notch signaling by novel therapeutic strategies can be clinically important in 
overcoming drug resistance and EMT phenotype of tumor cells. 

The Hedgehog (Hh) signaling pathway was first identified in a large screen for Drosophila 
genes required for patterning of the early embryo (Hooper and Scott 2005; Jacob and Lum 
2007). The Hh ligands, Sonic-, Desert-, and Indian Hh in vertebrates and Hh in Drosophila, 
are secreted proteins that undergo several posttranslational modifications to gain full 
activity. Key effectors of Hh signaling include zinc-finger proteins of the Gli1-3 transcription 
factors. Hh signaling can initiate cell growth, cell division, lineage specification and axon 
guidance and can also function as a survival factor. Activation of Hh signaling also leads to 
EMT. In mouse epidermal cells or in rat kidney epithelial cells immortalized with 
adenovirus E1A, Gli1 rapidly induces transcription of Snail and promotes EMT (Li, Deng et 
al. 2006; Li, Deng et al. 2007). Targeted expression of Gli1 in the epithelial cells of mammary 
gland of mice induces the expression of Snail, resulting in the disruption of the mammary 
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epithelial network and alveologenesis during pregnancy (Fiaschi, Rozell et al. 2007). In 
addition, Hedgehog signals induce JAG2 up-regulation for Notch-CSL-mediated Snail 
expression; on the other hand, Hedgehog induces TGF-ǃ1 secretion to induce ZEB1 and 
ZEB2 expression through TGF-ǃ and NF-κB pathways. Conversely, blocking Hedgehog 
signaling by inhibitor cyclopamine suppresses pancreatic cancer invasion and metastasis by 
inhibiting EMT (Feldmann, Dhara et al. 2007). The crosstalk between the Hh and EMT also 
presents in human esophageal squamous cell carcinoma (ESCC) (Isohata, Aoyagi et al. 
2009). Hh and EMT signaling genes are co-expressed on the undifferentiated esophageal 
epithelial cells and in most ESCCs. These findings suggest that mesenchymal gene 
expression is maintained or strengthened through Hh signaling in cancer cells. 

3.6 Microenvironmental regulation of EMT/metastasis 

Metastasis is a multi-step process that requires cancer cells to escape from the primary 

tumor, survive in circulation, seed at distant sites and grow. Each of these processes 

involves rate-limiting steps influenced by non-malignant cells of the tumor 

microenvironment (Joyce and Pollard 2009), composed of multiple cell types, such as stroma 

fibroblasts, epithelial cells, and a variety of bone marrow-derived cells (BMDCs) including 

macrophages, myeloid-derived suppressor cells (MDSCs), and so on. In this surrounding 

environment, a variety of stromal cells are recruited to tumors, not only enhance growth of 

the primary tumor, but also to facilitate its metastatic dissemination to distant organs (Tse 

and Kalluri 2007; Lunt, Chaudary et al. 2009). 

Recent work has indicated that EMT is a dynamic process controlled by signals that cells 
receive from their microenvironment. By adopting a mesenchymal phenotype through EMT, 
individual carcinoma cells can infiltrate adjacent tissues, cross endothelial barriers, and 
enter the circulation through blood and lymphatic vessels. Once the tumor cells reach their 
secondary tissues or organs, they no longer encounter the signals they experienced in the 
primary tumor, and they can revert to an epithelial state via a mesenchymal-epithelial 
transition (MET). Consistent with this notion, EMT commonly occurs at the invasive front 
(tumor-stromal boundary) of many invasive carcinomas (Christofori 2006; Franci, Takkunen 
et al. 2006). These observations indicate that EMT is triggered by cellular signals from 
microenvironment. These immune and inflammatory cells secrete cytokines, chemokines, 
and growth factors, which play essential roles for supporting tumor progression and 
metastasis. Because it is analogous with the role of inflammation in mediating wound 
healing, we hypothesize that the migratory and invasive ability of tumor cells at the invasive 
front is initiated and propelled by an inflammatory microenvironment through the 
induction of EMT. 

4. The role of inflammatory cells and cytokines in EMT/metastasis 

4.1 Tumor-Associated Macrophages (TAMs) 

Consistent with our hypothesis, a high content of inflammatory cells, particularly tumor-

associated macrophages, is commonly found at the invasive fronts of advanced carcinoma 

(Condeelis and Pollard 2006). Macrophages are key cells in chronic inflammation. M1 

macrophages are involved in Type 1 reactions and are classically activated by microbial 

products, killing microorganisms and producing reactive oxygen and nitrogen 
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intermediates. In contrast, M2 cells (tumor associated macrophage; TAM) are important 

components of infiltrated leukocytes in most malignant tumors. They are involved in Type 2 

reactions, tune inflammation and adaptive immunity, promote cell proliferation by 

producing growth factors and enhance angiogenesis, tissue remodeling, and repair. 

Macrophage directly influences the behavior and function of tumor cells and has been 

regarded as an “obligate partner for tumor-cell migration, invasion and metastasis” 

(Condeelis and Pollard 2006). Clinical studies indicate a correlation between TAM density 

and poor prognosis (Pollard 2004). For example, in PyMT-induced mammary tumors, 

macrophages are present in the areas of basement membrane breakdown during the 

development of “early-stage” metastatic lesions and systemic depletion of macrophages 

results in reduced formation of lung metastasis (Lin, Nguyen et al. 2001). TAMs produce a 

wide variety of growth factors (such as FGF, HGF, EGF, PDGF and TGF-ǃ and cytokines 

[such as TNFǂ, interleukin-6, interleukin-1, and interferons]) to stimulate the growth, 

motility, and invasiveness of tumor cells. TAMs also produce many proteases, ranging from 

uPA to a variety of matrix metalloproteinases, to degrade the basement membrane in order 

to create a channel for tumor cell invasion. In our recent study, we found that the 

EMT/invasiveness of tumor cells was dramatically enhanced when they were co-cultured 

with macrophages or macrophage-conditioned medium (Wu, Deng et al. 2009). We showed 

that this effect, mainly mediated by the secretion of TNFǂ from macrophages as 

neutralization of TNFǂ by TNFǂ antibody, greatly suppressed macrophage-mediated tumor 

cell invasion and metastasis(Wu, Deng et al. 2009). Consistent with our finding, Hagemann 

et al found that co-culturing macrophages with tumor cells enhanced their invasive ability 

in a manner dependent on TNFǂ and matrix metalloproteinases (MMP)(Hagemann, Wilson 

et al. 2005). Interestingly, expression of Snail in the non-metastatic breast cancer cell lines 

MCF7 and T47D, which contain little endogenous Snail, greatly increased the invasiveness 

of these cells by inflammation, indicating that Snail, through the induction of EMT, is critical 

for mediating inflammation-induced invasion/metastasis of breast cancer cells. Knockdown 

Snail expression significantly inhibited cell migration and invasion induced by 

inflammatory cytokines; it also suppressed inflammation-mediated breast cancer metastasis 

in animal model. Thus, macrophages, the major inflammatory component of the stroma in 

malignancies, facilitate angiogenesis, extracellular matrix breakdown, invasion, and 

metastasis through multiple mechanisms. 

4.2 T-reg cells  

Regulatory T cells (Treg), which include many populations that differ in phenotype, 

cytokine secretion profile and suppressive mechanism (Maloy and Powrie 2001; Shevach 

2002; Wood and Sakaguchi 2003), were reported to interact with tumor cells, promoting 

rather than inhibiting cancer development and progression. High Treg levels have been 

found in peripheral blood, lymph nodes, and tumor specimens from patients with different 

types of cancer (Wang 2008). Treg have been characterized by the constitutive expression of 

Forkhead box P3 (FoxP3), glucocorticoid-induecd THFR family-related receptor (GITR), 

cytotoxic T lymphocyte associated antigen 4 (CTLA-4), and high levels of the alpha chain of 

the IL-2 receptor (CD25). It was found that Treg numbers were significantly higher in 

patients with metastatic cancer compared to healthy donors (Audia, Nicolas et al. 2007; 

Watanabe, Oda et al. 2010). 
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The level of FoxP3, an indicator of Treg activity, might also be an indicator of breast 
tumorigenesis (Gupta, Joshi et al. 2007). It has been demonstrated that high numbers of 
FoxP3-positive Tregs were present in high-grade tumors, increasing the risk of 
relapse/metastasis (Bates, Fox et al. 2006). Interestingly, the FoxP3 transcription factor, 
recently found to be expressed in tumor cells, can regulate a large number of genes. Besides, 
FoxP3 binds to the gene region upstream of the transcriptional start site of CCR7 and 
CXCR4 (Zheng and Rudensky 2007), two chemokine receptors recently reported to play an 
important role in cancer invasion and metastasis (Kodama, Hasengaowa et al. 2007; Pitkin, 
Luangdilok et al. 2007). Thus, FoxP3 expressed in breast cancer cells might influence 
metastasis by modulating the expression of these chemokine receptors or other genes, which 
encode cell surface or secrete molecules that regulate the response of tumor cells to the 
microenvironment (Merlo, Casalini et al. 2009). 

Recently, it has been demonstrated that pulmonary metastasis of breast cancer requires 
recruitment and expansion of Treg that promote escape from host protective immune cells. 
Arya Biragyn’s group reported that the primary role of tBregs (tumor-evoked Bregs) in lung 
metastases of breast cancer in the mouse 4T1 model is to induce TGF-ǃ–dependent 
conversion of FoxP3+ Tregs from resting CD4+ T cells. In the absence of tBregs, 4T1 tumors 
cannot metastasize into the lungs efficiently due to poor Treg conversion, which suggest 
that tBregs must be controlled to interrupt the initiation of a key cancer-induced- 
immunosuppressive event that is critical to support cancer metastasis.(Olkhanud, 
Damdinsuren et al. 2011) 

Tregs were selectively recruited within lymphoid infiltrates and activated by mature 
dendritic cells likely through the recognition of tumor-associated antigen presentation, 
which result in the prevention of effector T cell activation, immune escape, and ultimately, 
tumor progression (Gobert, Treilleux et al. 2009). Treg depletion may become a successful 
anticancer strategy, and Treg manipulation in terms of frequency and functional activity 
should be added to the therapeutic regimen to enhance tumor immunity in humans (Wolf, 
Wolf et al. 2003). 

4.3 Myeloid-Drived Suppressor Cells (MDSC) and others 

Myeloid-derived suppressor cells (MDSC) are present in many cancer patients and mice 
with transplanted or spontaneous tumors (Young and Lathers 1999; Almand, Clark et al. 
2001). MDSC, characterized as CD11b+ Gr-1+ in mice, can be recruited and activated by 
multiple factors, such as VEGF, IL-1ǃ and IL-6, many of which are associated with chronic 
inflammation (Gabrilovich and Nagaraj 2009). Recent studies indicated that these cells also 
have a crucial role in tumor progression. MDSCs can directly incorporate into tumor 
endothelium. They secret many pro-angiogenic factors as well. In addition, they play an 
essential role in cancer invasion and metastasis through inducing the production of matrix 
metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. 
Recruitment of MDSCs further produces pro-inflammatory factors, resulting in the 
amplification of the pro-inflammatory response. MDSCs not only suppress the adaptive 
immune responses but also regulate innate immune responses by modulating the cytokine 
production of macrophages (Sinha, Clements et al. 2007), thus directly facilitating 
metastasis. Recent studies have shown a close correlation between the level of MDSCs and 
cancer stage, metastatic tumor burden, and responsiveness to chemotherapy (Diaz-Montero, 
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Salem et al. 2009). MDSCs from mammary carcinoma can promote tumor invasion and 
metastasis (Bunt, Yang et al. 2007). In Tgfbr2-decificent mice, MDSCs are concentrated at the 
invasive tumor front and facilitate tumor cell invasion and metastasis through chemokine 
receptors CXCR2 and CXCR4 (Yang, Huang et al. 2008). It has been recently found that 
MDSCs accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, 
and decreased NK cell activity is responsible for the observed increase in metastasis during 
murine gestation, providing a candidate mechanism for the enhanced metastatic tumor 
growth observed in gestant mice.(Mauti, Le Bitoux et al. 2011) 

In addition to macrophages and MDSC, fibroblasts/myofibroblasts comprise another major 
component of tumor stroma. These cancer-associated fibroblasts (CAF) share a lot of 
characteristics with activated fibroblasts in wound healing and promote tumor progression. 
Recent studies have demonstrated that CAF are important in tumor cell migration and 
metastasis. CAF isolated from metastatic breast cancer produce elevated levels of IL-6 and 
enhance cancer cell invasiveness (Studebaker, Storci et al. 2008). Similarly, De Wever et al 
found that the invasive growth of breast and colon cancer cells could be stimulated using 
myofibroblasts isolated from surgical colon cancer specimens (De Wever, Westbroek et al. 
2004). In addition, CAF in pancreatic ductal adenocarcinoma are responsible for a poorly 
vascularized architecture that imposes a barrier for drug delivery and spurs metastasis 
(Olive, Jacobetz et al. 2009). Furthermore, fibroblasts promote tumor cell proliferation and 
metastasis through the production of several growth factors, cytokines, chemokines, and 
matrix metalloproteinases (MMPs). MMPs derived from tumor cells and stromal 
components are regarded as major players in assisting the metastasis of tumor cells. For 
example, transgenic expression of MMP3 stimulates expression of Snail through the 
increased cellular reactive oxygen species, inducing down-regulation of E-cadherin and 
increased tumor progression (Radisky, Levy et al. 2005). Besides, Reisfeld’s group 
demonstrated recently that CAF are key modulators of immune polarization in the tumor 
microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of CAF in 
vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the 
immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by 
increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated 
macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor 
angiogenesis and lymphangiogenesis. (Liao, Luo et al. 2009) 

Neutrophils are also noted as important cells in the tumor inflammatory microenvironment. 
CXCR2 can induce the expression of matrix metalloproteinase 9 (MMP9) and vascular 
endothelial growth factor (VEGF) to recruit neutrophils (Albini, Mirisola et al. 2008). This 
subsequently leads to endothelial cell invasion and blood vessel formation.  On the other 
hand, there are reports demonstrated that neutrophils accumulate in the lung prior to the 
arrival of metastatic cells in mouse models of breast cancer. Those tumor entrained 
neutrophils (TENs) inhibit metastatic seeding in the lungs by generating H2O2. TENs are 
present in the peripheral blood of breast cancer patients prior to surgical resection but not in 
healthy individuals. Thus, whereas tumor-secreted factors contribute to tumor progression 
at the primary site, they concomitantly induce a neutrophil-mediated inhibitory process at 
the metastatic site. These neutrophils acquire a cytotoxic phenotype and provide anti-
metastatic protection by eliminating disseminated tumor cells. Although the neutrophils are 
eventually outcompeted by continued influx of metastatic cells, infusion of exogenous 
neutrophils effectively blocks metastasis and therefore represents a potential therapeutic 
strategy for management of micro-metastatic disease.(Granot, Henke et al. 2011) 
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Taken together, all of these infiltrated inflammatory cells secret different cytokines, 

chemokines, and other factors to influence the tumor cell migration and invasion and 

contribute to inflammation-mediated metastasis. 

4.4 Cytokines 

TNF-ǂ, a key inflammatory cytokine, plays a central role in tumor progression. Constitutive 
expression of TNF-ǂ from the tumor microenvironment is a characteristic of many 
malignant tumors and its presence is often associated with poor prognosis. Several lines of 
evidence point to the tumor-promoting effects of TNF-ǂ in inflammation-driven 
tumorigenesis. First, overexpression of TNF-ǂ confers migratory and invasive properties of 
many tumor cell lines (Rosen, Goldberg et al. 1991). Second, TNF-ǂ and TNF-ǂ receptor 1 
(TNFR1) knock-out mice are resistant to chemical-induced-carcinogenesis in skin and liver 
metastasis in an experimental colon cancer model (Knight, Yeoh et al. 2000; Arnott, Scott et 
al. 2004). Third, various tumor-promoting effects of TNF-ǂ are further confirmed in 
enhancing tumor cell motility, activating oncogenic pathways, and triggering EMT. TNF-ǂ 
can also promote breast cancer cell migration through up-regulating LOX (Liang, Zhang et 
al. 2007). Endogenous TNFǂ contributes to the growth and invasiveness of primary 
pancreatic ductal adenocarcinoma, and anti-TNFǂ inhibit metastasis of these tumors 
(Egberts, Cloosters et al. 2008). Using RNA interference technology, Kulbe et al 
demonstrated that tumor growth and dissemination were significantly inhibited when 
TNFǂ production was blocked (Kulbe, Thompson et al. 2007). In addition, TNF-ǂ can up-
regulate SELECTIN and VCAM1 on endothelial cells that promote tumor cell adhesion and 
migration (Mannel, Orosz et al. 1994; Stoelcker, Hafner et al. 1995). Furthermore, TNF-ǂ 
enhances the invasive property of cancer cells by inducing EMT through Snail or 
ZEB1/ZEB2 (Chua, Bhat-Nakshatri et al. 2007; Chuang, Sun et al. 2008). In our recent study, 
we found that inflammatory cytokine TNF-ǂ is the major signal to induce Snail stabilization 
and EMT induction (Wu, Deng et al. 2009). We showed that TNF-ǂ greatly enhanced the 
migration and invasion of tumor cells by inducing EMT program through NF-κB-mediated 
Snail stabilization. Knockdown of Snail expression not only inhibits TNF-ǂ-induced cancer 
cell migration and invasion in vitro but also suppresses LPS-mediated metastasis in vivo. 
Furthermore, knockdown of Snail expression not only blocks metastasis that is intrinsic to 
the metastatic breast cancer cells but also greatly suppresses inflammation-accelerated 
metastasis. Collectively, our study indicates that Snail stabilization and EMT induction 
mediated by the inflammatory cytokine TNF-ǂ are critical for metastasis. Our study 
provides a plausible molecular mechanism for tumor cell dissemination and invasion at the 
tumor invasive front.  

In fact, under hypoxic and inflammatory conditions, the tumor microenvironment generates 

and sustains a tumor-promoting cytokine network for facilitating tumor growth and 

metastasis. For example, the production of TGF-ǃ from myeloid cells, mesenchymal cells, 

and cancer cells is significantly enhanced in a hypoxic or inflammatory state. TGF-ǃ is a 

multifunctional growth factor with a complicated dual role in tumorigenesis(Leivonen and 

Kahari 2007). At the early stages of tumor formation, TGF-ǃ acts as a tumor suppressor by 

inhibiting proliferation and inducing apoptosis of tumor cells. At the later stages of 

tumorigenesis, TGF-ǃ functions as a tumor promoter by increasing tumor growth, survival, 

motility, and invasion. TGF-ǃ has also been shown to induce EMT in normal mammary 
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epithelial cells and breast cancer cell lines (Miettinen, Ebner et al. 1994) (Forrester, Chytil et 

al. 2005). As we mentioned in part-2.5 (Molecular regulation of EMT), TGF-ǃ plays an 

important role in the process of EMT. 

IL-6 is another important inflammatory cytokine linking inflammation and cancer. IL-6 

transmits its signal through a common signaling receptor, gp130, expressed in many cell 

types. IL-6 binds to the sIL-6R receptor (gp80, present either on the cell surface or in 

solution), which then induces dimerization of gp130 chains, resulting in activation of the 

associated Janus kinases (JAKs). JAKs phosphorylate gp130, leading to the recruitment and 

activation of the STAT3 and STAT1 transcription factors, as well as other molecules (SHP2, 

Ras-MAPK, and PI3K) (Mumm and Oft 2008). The role of IL-6 in accelerating tumorigenesis 

is becoming clear as exogenous administration of IL-6 to mice during tumor initiation 

results in an increase in tumor burden and multiplicity (Grivennikov, Karin et al. 2009). IL-6 

also enhances tumor proliferation in tumor-initiating intestinal epithelial cells (IECs) 

through NF-κB-IL-6-STAT3 cascade (Bollrath, Phesse et al. 2009; Bromberg and Wang 2009; 

Grivennikov, Karin et al. 2009). IL-6 can also act as an inducer of EMT in breast cancer cells. 

Ectopic expression of IL-6 in breast adenocarcinoma cells exhibits an EMT phenotype 

characterized by suppressing E-cadherin expression and inducting vimentin, N-cadherin, 

Snail and Twist (Sullivan, Sasser et al. 2009). In addition, IL-6 also synergizes with EGF in 

inducing EMT through the activation JNK2/STAT3 in ovarian carcinomas (Colomiere, 

Ward et al. 2009). 

The interleukin-1 (IL-1) also promotes inflammatory processes and augments metastasis. 

There are two forms of IL-1 protein, IL-1ǂ and IL-1ǃ, and one antagonistic protein IL-1 

receptor antagonist (IL-1ra). IL-1ǃ is active solely in its secreted form, whereas IL-1ǂ is 

active mainly as an intracellular precursor. IL-1 is abundant at tumor sites, where it affects 

the process of carcinogenesis, tumor growth and invasiveness, and the patterns of tumor-

host interactions (Apte, Krelin et al. 2006). Genetic ablation of IL-1ǃ in mice results in the 

absence of metastatic tumors in vivo (Voronov, Shouval et al. 2003). Liver metastasis can be 

almost completely inhibited in mice with deletion of the interleukin-1ǃ converting enzyme, 

which is required for the processing of IL-1ǃ (Vidal-Vanaclocha, Fantuzzi et al. 2000). IL-1ǃ 

also directly induces uPA expression and NF-κB activation, which results in the migration of 

A549 cells (Cheng, Hsieh et al. 2009). 

Together with chemotaxis, chemokines, a family of inducible chemo-attractant cytokines 

that regulate the chemotaxis of tumor cells and other cell types, are thought to be involved 

in every crucial step of tumor cell dissemination (Roussos, Condeelis et al. 2011). 

Chemotaxis of carcinoma cells and tumor-associated inflammatory and stromal cells is 

mediated by chemokines, chemokine receptors, growth factors and growth factor receptors. 

Chemotaxis helps to shape the tumor microenvironment. Directional migration to a 

chemokine source is evident both in vitro and in vivo for most cells of the tumor 

microenvironment. The most common chemokine receptor detected in cancer cells is 

CXCR4; another common one is CCR7 (Muller, Homey et al. 2001; Lazennec and Richmond 

2010). In standard chemotaxis assays in vitro, CXCR4-positive cancer cells can migrate in a 

directional manner toward CXCL12, whereas CCR7-expressing cancer cells can migrate 

towards CCL21 (Kodama, Hasengaowa et al. 2007; Pitkin, Luangdilok et al. 2007). Recently, 

it has been reported that the recruitment of inflammatory monocytes, which express CCR2, 
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is dependent on CCL2 synthesized by both the tumor and the stroma, facilitating breast-

tumor metastasis; the same is true for the subsequent recruitment of metastasis-associated 

macrophages and their interaction with metastasizing tumor cells (Qian, Li et al. 2011). 

5. Summary 

Every year about 500,000 people in the United States die as a result of cancer, among which 

90% exhibit systemic disease with metastasis. That’s why it is so important to understand 

the mechanism behind EMT and metastasis. Based on thousands of studies in this field in 

recent years, significant progress has been made regarding our understanding of EMT and 

metastasis, which point out that EMT is the most critical mechanism implicated in tumor 

metastasis and recurrence. It is now quite clearly that solid tumors are not simply clones of 

cancer cells. A variety of stromal cells in the surrounding environment are recruited to 

tumors, which including mesenchymal supporting cells (e.g. fibroblasts), cells of the 

vascular system, and cells from immune system, such as TAMs, Treg, MDSC, Neutrophils 

and so on. The dynamic interaction which exists between cancer cells and the inflammatory 

microenvironment not only enhances growth of the primary cancer but also facilitates its 

metastatic dissemination to distant organs. There are many evidences show that the 

induction of EMT is dependent on the signals that cells received from their 

microenvironment, and the crosstalk between inflammation and metastasis has an un-

replaceable role in each step for the successful establishment of a metastatic tumor (Fig. 2). 

 

Fig. 2. Tumor Inflammatory Microenvironment in EMT and Metastasis. 

Understanding how inflammatory microenvironment is maintained and how it contributes 
to the tumor progression and metastasis will be crucial for understanding tumor biology as 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 126 

well as the development of new effective cancer prevention and therapy. Hopefully, with 
recent research illuminating the involvement of infiltrated inflammatory cells and many 
kinds of cytokines in tumor progression and EMT/Metastasis, a more comprehensive view 
of how cancer cells spreads to different organs in a specific manner will emerge in the near 
future. However, we have to realize that several challenges still need to be addressed about 
how to translate these basic findings into clinical practice and find novel treatment strategies 
targeting the inflammatory microenvironment which could efficiently kill both primary and 
metastatic tumor cells. 

6. Acknowledgement 

We apologize to those whose work is important but that we are unable to cite here due to 
the limitation of space. We thank Dr. Nathan L. Vanderford for critical reading and editing 
of this manuscript. Our study is supported by the grants from NIH (RO1CA125454), the 
Susan G Komen Foundation (KG081310), and the Mary Kay Ash Foundation (to B.P. Zhou). 

7. References 

Albini, A., V. Mirisola, et al. (2008). "Metastasis signatures: genes regulating tumor-
microenvironment interactions predict metastatic behavior." Cancer Metastasis Rev 
27(1): 75-83. 

Allington, T. M., A. J. Galliher-Beckley, et al. (2009). "Activated Abl kinase inhibits 
oncogenic transforming growth factor-{beta} signaling and tumorigenesis in 
mammary tumors." FASEB J. 

Almand, B., J. I. Clark, et al. (2001). "Increased production of immature myeloid cells in 
cancer patients: a mechanism of immunosuppression in cancer." J Immunol 166(1): 
678-689. 

Ansieau, S., J. Bastid, et al. (2008). "Induction of EMT by twist proteins as a collateral effect 
of tumor-promoting inactivation of premature senescence." Cancer Cell 14(1): 79-89. 

Apte, R. N., Y. Krelin, et al. (2006). "Effects of micro-environment- and malignant cell-
derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host 
interactions." Eur J Cancer 42(6): 751-759. 

Arnott, C. H., K. A. Scott, et al. (2004). "Expression of both TNF-alpha receptor subtypes is 
essential for optimal skin tumour development." Oncogene 23(10): 1902-1910. 

Arnoux, V., M. Nassour, et al. (2008). "Erk5 controls Slug expression and keratinocyte 
activation during wound healing." Mol Biol Cell 19(11): 4738-4749. 

Audia, S., A. Nicolas, et al. (2007). "Increase of CD4+ CD25+ regulatory T cells in the 
peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using 
cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ T lymphocytes." 
Clin Exp Immunol 150(3): 523-530. 

Balkwill, F. and A. Mantovani (2001). "Inflammation and cancer: back to Virchow?" Lancet 
357(9255): 539-545. 

Bataille, F., C. Rohrmeier, et al. (2008). "Evidence for a role of epithelial mesenchymal 
transition during pathogenesis of fistulae in Crohn's disease." Inflamm Bowel Dis 
14(11): 1514-1527. 

www.intechopen.com



 
Tumor Inflammatory Microenvironment in EMT and Metastasis 127 

Bates, G. J., S. B. Fox, et al. (2006). "Quantification of regulatory T cells enables the 
identification of high-risk breast cancer patients and those at risk of late relapse." J 
Clin Oncol 24(34): 5373-5380. 

Bhowmick, N. A., M. Ghiassi, et al. (2001). "Transforming growth factor-beta1 mediates 
epithelial to mesenchymal transdifferentiation through a RhoA-dependent 
mechanism." Mol Biol Cell 12(1): 27-36. 

Bollrath, J., T. J. Phesse, et al. (2009). "gp130-mediated Stat3 activation in enterocytes 
regulates cell survival and cell-cycle progression during colitis-associated 
tumorigenesis." Cancer Cell 15(2): 91-102. 

Bos, P. D., X. H. Zhang, et al. (2009). "Genes that mediate breast cancer metastasis to the 
brain." Nature 459(7249): 1005-1009. 

Bromberg, J. and T. C. Wang (2009). "Inflammation and cancer: IL-6 and STAT3 complete 
the link." Cancer Cell 15(2): 79-80. 

Bruyere, F., B. Namdarian, et al. (2009). "Snail expression is an independent predictor of 
tumor recurrence in superficial bladder cancers." Urol Oncol. 

Buijs, J. T., N. V. Henriquez, et al. (2007). "TGF-beta and BMP7 interactions in tumour 
progression and bone metastasis." Clin Exp Metastasis 24(8): 609-617. 

Bunt, S. K., L. Yang, et al. (2007). "Reduced inflammation in the tumor microenvironment 
delays the accumulation of myeloid-derived suppressor cells and limits tumor 
progression." Cancer Res 67(20): 10019-10026. 

Chambers, A. F., A. C. Groom, et al. (2002). "Dissemination and growth of cancer cells in 
metastatic sites." Nat Rev Cancer 2(8): 563-572.  

Chambers, A. F., G. N. Naumov, et al. (2001). "Critical steps in hematogenous metastasis: an 
overview." Surg Oncol Clin N Am 10(2): 243-255, vii. 

Cheng, C. Y., H. L. Hsieh, et al. (2009). "IL-1 beta induces urokinase-plasminogen activator 
expression and cell migration through PKC alpha, JNK1/2, and NF-kappaB in 
A549 cells." J Cell Physiol 219(1): 183-193. 

Christofori, G. (2006). "New signals from the invasive front." Nature 441(7092): 444-450. 
Chua, H. L., P. Bhat-Nakshatri, et al. (2007). "NF-kappaB represses E-cadherin expression 

and enhances epithelial to mesenchymal transition of mammary epithelial cells: 
potential involvement of ZEB-1 and ZEB-2." Oncogene 26(5): 711-724. 

Chuang, M. J., K. H. Sun, et al. (2008). "Tumor-derived tumor necrosis factor-alpha promotes 
progression and epithelial-mesenchymal transition in renal cell carcinoma cells." 
Cancer Sci 99(5): 905-913. 

Colomiere, M., A. C. Ward, et al. (2009). "Cross talk of signals between EGFR and IL-6R 
through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian 
carcinomas." Br J Cancer 100(1): 134-144. 

Condeelis, J. and J. W. Pollard (2006). "Macrophages: obligate partners for tumor cell 
migration, invasion, and metastasis." Cell 124(2): 263-266. 

Coussens, L. M. and Z. Werb (2002). "Inflammation and cancer." Nature 420(6917): 860-867.  
Cowin, P., T. M. Rowlands, et al. (2005). "Cadherins and catenins in breast cancer." Curr 

Opin Cell Biol 17(5): 499-508. 
Davidson, L. A., M. Marsden, et al. (2006). "Integrin alpha5beta1 and fibronectin regulate 

polarized cell protrusions required for Xenopus convergence and extension." Curr 
Biol 16(9): 833-844. 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 128 

de Visser, K. E., A. Eichten, et al. (2006). "Paradoxical roles of the immune system during 
cancer development." Nat Rev Cancer 6(1): 24-37. 

De Wever, O., W. Westbroek, et al. (2004). "Critical role of N-cadherin in myofibroblast 
invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-beta 
or wounding." J Cell Sci 117(Pt 20): 4691-4703. 

Diaz-Montero, C. M., M. L. Salem, et al. (2009). "Increased circulating myeloid-derived 
suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and 
doxorubicin-cyclophosphamide chemotherapy." Cancer Immunol Immunother 58(1): 
49-59. 

Dighe, A. S., E. Richards, et al. (1994). "Enhanced in vivo growth and resistance to rejection 
of tumor cells expressing dominant negative IFN gamma receptors." Immunity 1(6): 
447-456. 

DiMeo, T. A., K. Anderson, et al. (2009). "A novel lung metastasis signature links Wnt 
signaling with cancer cell self-renewal and epithelial-mesenchymal transition in 
basal-like breast cancer." Cancer Res 69(13): 5364-5373. 

Egberts, J. H., V. Cloosters, et al. (2008). "Anti-tumor necrosis factor therapy inhibits 
pancreatic tumor growth and metastasis." Cancer Res 68(5): 1443-1450. 

Elloul, S., M. B. Elstrand, et al. (2005). "Snail, Slug, and Smad-interacting protein 1 as novel 
parameters of disease aggressiveness in metastatic ovarian and breast carcinoma." 
Cancer 103(8): 1631-1643. 

Feldmann, G., S. Dhara, et al. (2007). "Blockade of hedgehog signaling inhibits pancreatic 
cancer invasion and metastases: a new paradigm for combination therapy in solid 
cancers." Cancer Res 67(5): 2187-2196. 

Fiaschi, M., B. Rozell, et al. (2007). "Targeted expression of GLI1 in the mammary gland 
disrupts pregnancy-induced maturation and causes lactation failure." J Biol Chem 
282(49): 36090-36101. 

Fidler, I. J. (2003). "The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis 
revisited." Nat Rev Cancer 3(6): 453-458. 

Flanders, K. C. (2004). "Smad3 as a mediator of the fibrotic response." Int J Exp Pathol 85(2): 
47-64. 

Forrester, E., A. Chytil, et al. (2005). "Effect of conditional knockout of the type II TGF-beta 
receptor gene in mammary epithelia on mammary gland development and 
polyomavirus middle T antigen induced tumor formation and metastasis." Cancer 
Res 65(6): 2296-2302. 

Franci, C., M. Takkunen, et al. (2006). "Expression of Snail protein in tumor-stroma 
interface." Oncogene 25(37): 5134-5144. 

Gabrilovich, D. I. and S. Nagaraj (2009). "Myeloid-derived suppressor cells as regulators of 
the immune system." Nat Rev Immunol 9(3): 162-174. 

Girardi, M., D. E. Oppenheim, et al. (2001). "Regulation of cutaneous malignancy by 
gammadelta T cells." Science 294(5542): 605-609. 

Gobert, M., I. Treilleux, et al. (2009). "Regulatory T cells recruited through CCL22/CCR4 are 
selectively activated in lymphoid infiltrates surrounding primary breast tumors 
and lead to an adverse clinical outcome." Cancer Res 69(5): 2000-2009. 

Granot, Z., E. Henke, et al. (2011). "Tumor entrained neutrophils inhibit seeding in the 
premetastatic lung." Cancer Cell 20(3): 300-314. 

www.intechopen.com



 
Tumor Inflammatory Microenvironment in EMT and Metastasis 129 

Greenburg, G. and E. D. Hay (1988). "Cytoskeleton and thyroglobulin expression change 
during transformation of thyroid epithelium to mesenchyme-like cells." 
Development 102(3): 605-622. 

Grego-Bessa, J., J. Diez, et al. (2004). "Notch and epithelial-mesenchyme transition in 
development and tumor progression: another turn of the screw." Cell Cycle 3(6): 
718-721. 

Gressner, A. M., R. Weiskirchen, et al. (2002). "Roles of TGF-beta in hepatic fibrosis." Front 
Biosci 7: d793-807. 

Grivennikov, S., E. Karin, et al. (2009). "IL-6 and Stat3 are required for survival of intestinal 
epithelial cells and development of colitis-associated cancer." Cancer Cell 15(2): 103-
113. 

Grivennikov, S. I., F. R. Greten, et al. (2010). "Immunity, inflammation, and cancer." Cell 
140(6): 883-899. 

Gupta, S., K. Joshi, et al. (2007). "Intratumoral FOXP3 expression in infiltrating breast 
carcinoma: Its association with clinicopathologic parameters and angiogenesis." 
Acta Oncol 46(6): 792-797. 

Hagemann, T., J. Wilson, et al. (2005). "Macrophages induce invasiveness of epithelial cancer 
cells via NF-kappa B and JNK." J Immunol 175(2): 1197-1205. 

Hanahan, D. and R. A. Weinberg (2011). "Hallmarks of cancer: the next generation." Cell 
144(5): 646-674. 

Hartwell, K. A., B. Muir, et al. (2006). "The Spemann organizer gene, Goosecoid, promotes 
tumor metastasis." Proc Natl Acad Sci U S A 103(50): 18969-18974. 

Hay, E. D. (1995). "An overview of epithelio-mesenchymal transformation." Acta Anat (Basel) 
154(1): 8-20. 

Hooper, J. E. and M. P. Scott (2005). "Communicating with Hedgehogs." Nat Rev Mol Cell 
Biol 6(4): 306-317. 

Huber, M. A., N. Kraut, et al. (2005). "Molecular requirements for epithelial-mesenchymal 
transition during tumor progression." Curr Opin Cell Biol 17(5): 548-558.  

Isohata, N., K. Aoyagi, et al. (2009). "Hedgehog and epithelial-mesenchymal transition 
signaling in normal and malignant epithelial cells of the esophagus." Int J Cancer 
125(5): 1212-1221. 

Jacob, L. and L. Lum (2007). "Deconstructing the hedgehog pathway in development and 
disease." Science 318(5847): 66-68. 

Janda, E., K. Lehmann, et al. (2002). "Ras and TGF[beta] cooperatively regulate epithelial cell 
plasticity and metastasis: dissection of Ras signaling pathways." J Cell Biol 156(2): 
299-313. 

Joyce, J. A. and J. W. Pollard (2009). "Microenvironmental regulation of metastasis." Nat Rev 
Cancer 9(4): 239-252. 

Junghans, D., I. G. Haas, et al. (2005). "Mammalian cadherins and protocadherins: about cell 
death, synapses and processing." Curr Opin Cell Biol 17(5): 446-452. 

Kalluri, R. (2009). "EMT: when epithelial cells decide to become mesenchymal-like cells." J 
Clin Invest 119(6): 1417-1419. 

Kalluri, R. and E. G. Neilson (2003). "Epithelial-mesenchymal transition and its implications 
for fibrosis." J Clin Invest 112(12): 1776-1784. 

Kalluri, R. and R. A. Weinberg (2009). "The basics of epithelial-mesenchymal transition." J 
Clin Invest 119(6): 1420-1428. 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 130 

Kaplan, D. H., V. Shankaran, et al. (1998). "Demonstration of an interferon gamma-
dependent tumor surveillance system in immunocompetent mice." Proc Natl Acad 
Sci U S A 95(13): 7556-7561. 

Knight, B., G. C. Yeoh, et al. (2000). "Impaired preneoplastic changes and liver tumor 
formation in tumor necrosis factor receptor type 1 knockout mice." J Exp Med 
192(12): 1809-1818. 

Kodama, J., Hasengaowa, et al. (2007). "Association of CXCR4 and CCR7 chemokine 
receptor expression and lymph node metastasis in human cervical cancer." Ann 
Oncol 18(1): 70-76.  

Kudo-Saito, C., H. Shirako, et al. (2009). "Cancer metastasis is accelerated through 
immunosuppression during Snail-induced EMT of cancer cells." Cancer Cell 15(3): 
195-206. 

Kulbe, H., R. Thompson, et al. (2007). "The inflammatory cytokine tumor necrosis factor-
alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer 
cells." Cancer Res 67(2): 585-592. 

Lazennec, G. and A. Richmond (2010). "Chemokines and chemokine receptors: new insights 
into cancer-related inflammation." Trends Mol Med 16(3): 133-144. 

Lee, Y. H., A. R. Albig, et al. (2008). "Fibulin-5 initiates epithelial-mesenchymal transition 
(EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a 
MMP-dependent mechanism." Carcinogenesis 29(12): 2243-2251. 

Leivonen, S. K. and V. M. Kahari (2007). "Transforming growth factor-beta signaling in 
cancer invasion and metastasis." Int J Cancer 121(10): 2119-2124.  

Leong, K. G., K. Niessen, et al. (2007). "Jagged1-mediated Notch activation induces 
epithelial-to-mesenchymal transition through Slug-induced repression of E-
cadherin." J Exp Med 204(12): 2935-2948. 

Li, X., W. Deng, et al. (2007). "Gli1 acts through Snail and E-cadherin to promote nuclear 
signaling by beta-catenin." Oncogene 26(31): 4489-4498. 

Li, X., W. Deng, et al. (2006). "Snail induction is an early response to Gli1 that determines the 
efficiency of epithelial transformation." Oncogene 25(4): 609-621.  

Li, Y., W. P. Hively, et al. (2000). "Use of MMTV-Wnt-1 transgenic mice for studying the 
genetic basis of breast cancer." Oncogene 19(8): 1002-1009. 

Liang, M., P. Zhang, et al. (2007). "Up-regulation of LOX-1 expression by TNF-alpha 
promotes trans-endothelial migration of MDA-MB-231 breast cancer cells." Cancer 
Lett 258(1): 31-37. 

Liao, D., Y. Luo, et al. (2009). "Cancer associated fibroblasts promote tumor growth and 
metastasis by modulating the tumor immune microenvironment in a 4T1 murine 
breast cancer model." PLoS One 4(11): e7965. 

Lin, E. Y., A. V. Nguyen, et al. (2001). "Colony-stimulating factor 1 promotes progression of 
mammary tumors to malignancy." J Exp Med 193(6): 727-740. 

Lunt, S. J., N. Chaudary, et al. (2009). "The tumor microenvironment and metastatic disease." 
Clin Exp Metastasis 26(1): 19-34. 

Maloy, K. J. and F. Powrie (2001). "Regulatory T cells in the control of immune pathology." 
Nat Immunol 2(9): 816-822.  

Mani, S. A., W. Guo, et al. (2008). "The epithelial-mesenchymal transition generates cells 
with properties of stem cells." Cell 133(4): 704-715. 

www.intechopen.com



 
Tumor Inflammatory Microenvironment in EMT and Metastasis 131 

Mannel, D. N., P. Orosz, et al. (1994). "Mechanisms involved in metastasis enhanced by 
inflammatory mediators." Circ Shock 44(1): 9-13. 

Mantovani, A., P. Allavena, et al. (2008). "Cancer-related inflammation." Nature 454(7203): 
436-444. 

Mauti, L. A., M. A. Le Bitoux, et al. (2011). "Myeloid-derived suppressor cells are implicated 
in regulating permissiveness for tumor metastasis during mouse gestation." J Clin 
Invest 121(7): 2794-2807. 

Merlo, A., P. Casalini, et al. (2009). "FOXP3 expression and overall survival in breast cancer." 
J Clin Oncol 27(11): 1746-1752. 

Miettinen, P. J., R. Ebner, et al. (1994). "TGF-beta induced transdifferentiation of mammary 
epithelial cells to mesenchymal cells: involvement of type I receptors." J Cell Biol 
127(6 Pt 2): 2021-2036. 

Moody, S. E., D. Perez, et al. (2005). "The transcriptional repressor Snail promotes mammary 
tumor recurrence." Cancer Cell 8(3): 197-209. 

Muller, A., B. Homey, et al. (2001). "Involvement of chemokine receptors in breast cancer 
metastasis." Nature 410(6824): 50-56. 

Mumm, J. B. and M. Oft (2008). "Cytokine-based transformation of immune surveillance into 
tumor-promoting inflammation." Oncogene 27(45): 5913-5919. 

Nawshad, A., D. Lagamba, et al. (2005). "Transforming growth factor-beta signaling during 
epithelial-mesenchymal transformation: implications for embryogenesis and tumor 
metastasis." Cells Tissues Organs 179(1-2): 11-23. 

Neth, P., C. Ries, et al. (2007). "The Wnt signal transduction pathway in stem cells and 
cancer cells: influence on cellular invasion." Stem Cell Rev 3(1): 18-29. 

Nieto, M. A. (2002). "The snail superfamily of zinc-finger transcription factors." Nat Rev Mol 
Cell Biol 3(3): 155-166. 

Olive, K. P., M. A. Jacobetz, et al. (2009). "Inhibition of Hedgehog signaling enhances 
delivery of chemotherapy in a mouse model of pancreatic cancer." Science 
324(5933): 1457-1461. 

Olkhanud, P. B., B. Damdinsuren, et al. (2011). "Tumor-evoked regulatory B cells promote 
breast cancer metastasis by converting resting CD4 T cells to T-regulatory cells." 
Cancer Res 71(10): 3505-3515. 

Ozdamar, B., R. Bose, et al. (2005). "Regulation of the polarity protein Par6 by TGFbeta 
receptors controls epithelial cell plasticity." Science 307(5715): 1603-1609.  

Pantel, K. and R. H. Brakenhoff (2004). "Dissecting the metastatic cascade." Nat Rev Cancer 
4(6): 448-456. 

Pitkin, L., S. Luangdilok, et al. (2007). "Expression of CC chemokine receptor 7 in tonsillar 
cancer predicts cervical nodal metastasis, systemic relapse and survival." Br J 
Cancer 97(5): 670-677. 

Pollard, J. W. (2004). "Tumour-educated macrophages promote tumour progression and 
metastasis." Nat Rev Cancer 4(1): 71-78. 

Qian, B. Z., J. Li, et al. (2011). "CCL2 recruits inflammatory monocytes to facilitate breast-
tumour metastasis." Nature 475(7355): 222-225. 

Qian, F., Z. C. Zhang, et al. (2005). "Interaction between integrin alpha(5) and fibronectin is 
required for metastasis of B16F10 melanoma cells." Biochem Biophys Res Commun 
333(4): 1269-1275. 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 132 

Radisky, D. C., D. D. Levy, et al. (2005). "Rac1b and reactive oxygen species mediate MMP-3-
induced EMT and genomic instability." Nature 436(7047): 123-127. 

Rastaldi, M. P., F. Ferrario, et al. (2002). "Epithelial-mesenchymal transition of tubular 
epithelial cells in human renal biopsies." Kidney Int 62(1): 137-146. 

Rosen, E. M., I. D. Goldberg, et al. (1991). "Tumor necrosis factor stimulates epithelial tumor 
cell motility." Cancer Res 51(19): 5315-5321. 

Roussos, E. T., J. S. Condeelis, et al. (2011). "Chemotaxis in cancer." Nat Rev Cancer 11(8): 573-
587. 

Sahlgren, C., M. V. Gustafsson, et al. (2008). "Notch signaling mediates hypoxia-induced 
tumor cell migration and invasion." Proc Natl Acad Sci U S A 105(17): 6392-6397. 

Salez, F., P. Gosset, et al. (1998). "Transforming growth factor-beta1 in sarcoidosis." Eur 
Respir J 12(4): 913-919. 

Savagner, P., D. F. Kusewitt, et al. (2005). "Developmental transcription factor slug is 
required for effective re-epithelialization by adult keratinocytes." J Cell Physiol 
202(3): 858-866. 

Schreiber, R. D., L. J. Old, et al. "Cancer immunoediting: integrating immunity's roles in 
cancer suppression and promotion." Science 331(6024): 1565-1570. 

Shankaran, V., H. Ikeda, et al. (2001). "IFNgamma and lymphocytes prevent primary 
tumour development and shape tumour immunogenicity." Nature 410(6832): 1107-
1111. 

Shevach, E. M. (2002). "CD4+ CD25+ suppressor T cells: more questions than answers." Nat 
Rev Immunol 2(6): 389-400. 

Shook, D. and R. Keller (2003). "Mechanisms, mechanics and function of epithelial-
mesenchymal transitions in early development." Mech Dev 120(11): 1351-1383. 

Sinha, P., V. K. Clements, et al. (2007). "Cross-talk between myeloid-derived suppressor cells 
and macrophages subverts tumor immunity toward a type 2 response." J Immunol 
179(2): 977-983. 

Smyth, M. J., K. Y. Thia, et al. (2000). "Perforin-mediated cytotoxicity is critical for 
surveillance of spontaneous lymphoma." J Exp Med 192(5): 755-760. 

Stemmer, V., B. de Craene, et al. (2008). "Snail promotes Wnt target gene expression and 
interacts with beta-catenin." Oncogene 27(37): 5075-5080. 

Stoelcker, B., M. Hafner, et al. (1995). "Role of adhesion molecules and platelets in TNF-
induced adhesion of tumor cells to endothelial cells: implications for experimental 
metastasis." J Inflamm 46(3): 155-167.  

Street, S. E., J. A. Trapani, et al. (2002). "Suppression of lymphoma and epithelial 
malignancies effected by interferon gamma." J Exp Med 196(1): 129-134. 

Studebaker, A. W., G. Storci, et al. (2008). "Fibroblasts isolated from common sites of breast 
cancer metastasis enhance cancer cell growth rates and invasiveness in an 
interleukin-6-dependent manner." Cancer Res 68(21): 9087-9095. 

Sullivan, N. J., A. K. Sasser, et al. (2009). "Interleukin-6 induces an epithelial-mesenchymal 
transition phenotype in human breast cancer cells." Oncogene. 

Timmerman, L. A., J. Grego-Bessa, et al. (2004). "Notch promotes epithelial-mesenchymal 
transition during cardiac development and oncogenic transformation." Genes Dev 
18(1): 99-115. 

www.intechopen.com



 
Tumor Inflammatory Microenvironment in EMT and Metastasis 133 

Tse, J. C. and R. Kalluri (2007). "Mechanisms of metastasis: epithelial-to-mesenchymal 
transition and contribution of tumor microenvironment." J Cell Biochem 101(4): 816-
829. 

Valcourt, U., M. Kowanetz, et al. (2005). "TGF-beta and the Smad signaling pathway support 
transcriptomic reprogramming during epithelial-mesenchymal cell transition." Mol 
Biol Cell 16(4): 1987-2002. 

Vidal-Vanaclocha, F., G. Fantuzzi, et al. (2000). "IL-18 regulates IL-1beta-dependent hepatic 
melanoma metastasis via vascular cell adhesion molecule-1." Proc Natl Acad Sci U S 
A 97(2): 734-739. 

Villanueva, S., A. Glavic, et al. (2002). "Posteriorization by FGF, Wnt, and retinoic acid is 
required for neural crest induction." Dev Biol 241(2): 289-301. 

Vincent, T., E. P. Neve, et al. (2009). "A SNAIL1-SMAD3/4 transcriptional repressor 
complex promotes TGF-beta mediated epithelial-mesenchymal transition." Nat Cell 
Biol. 

Voronov, E., D. S. Shouval, et al. (2003). "IL-1 is required for tumor invasiveness and 
angiogenesis." Proc Natl Acad Sci U S A 100(5): 2645-2650. 

Wang, R. F. (2008). "CD8+ regulatory T cells, their suppressive mechanisms, and regulation 
in cancer." Hum Immunol 69(11): 811-814. 

Wang, X., J. Nie, et al. (2008). "Downregulation of Par-3 expression and disruption of Par 
complex integrity by TGF-beta during the process of epithelial to mesenchymal 
transition in rat proximal epithelial cells." Biochim Biophys Acta 1782(1): 51-59. 

Wang, Z., Y. Li, et al. (2009). "Acquisition of epithelial-mesenchymal transition phenotype of 
gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch 
signaling pathway." Cancer Res 69(6): 2400-2407. 

Watanabe, M. A., J. M. Oda, et al. (2010). "Regulatory T cells and breast cancer: implications 
for immunopathogenesis." Cancer Metastasis Rev 29(4): 569-579. 

White, L. R., J. B. Blanchette, et al. (2007). "The characterization of alpha5-integrin expression 
on tubular epithelium during renal injury." Am J Physiol Renal Physiol 292(2): F567-
576. 

Willis, B. C. and Z. Borok (2007). "TGF-beta-induced EMT: mechanisms and implications for 
fibrotic lung disease." Am J Physiol Lung Cell Mol Physiol 293(3): L525-534. 

Wolf, A. M., D. Wolf, et al. (2003). "Increase of regulatory T cells in the peripheral blood of 
cancer patients." Clin Cancer Res 9(2): 606-612. 

Wood, K. J. and S. Sakaguchi (2003). "Regulatory T cells in transplantation tolerance." Nat 
Rev Immunol 3(3): 199-210. 

Woodhouse, E. C., R. F. Chuaqui, et al. (1997). "General mechanisms of metastasis." Cancer 
80(8 Suppl): 1529-1537. 

Wu, Y., J. Deng, et al. (2009). "Stabilization of snail by NF-kappaB is required for 
inflammation-induced cell migration and invasion." Cancer Cell 15(5): 416-428. 

Yang, J., S. A. Mani, et al. (2004). "Twist, a master regulator of morphogenesis, plays an 
essential role in tumor metastasis." Cell 117(7): 927-939. 

Yang, L., J. Huang, et al. (2008). "Abrogation of TGF beta signaling in mammary carcinomas 
recruits Gr-1+CD11b+ myeloid cells that promote metastasis." Cancer Cell 13(1): 23-
35. 

Yook, J. I., X. Y. Li, et al. (2005). "Wnt-dependent regulation of the E-cadherin repressor 
snail." J Biol Chem 280(12): 11740-11748. 

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 134 

Yook, J. I., X. Y. Li, et al. (2006). "A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in 
breast cancer cells." Nat Cell Biol 8(12): 1398-1406. 

Young, M. R. and D. M. Lathers (1999). "Myeloid progenitor cells mediate immune 
suppression in patients with head and neck cancers." Int J Immunopharmacol 21(4): 
241-252. 

Zavadil, J. and E. P. Bottinger (2005). "TGF-beta and epithelial-to-mesenchymal transitions." 
Oncogene 24(37): 5764-5774. 

Zavadil, J., L. Cermak, et al. (2004). "Integration of TGF-beta/Smad and Jagged1/Notch 
signalling in epithelial-to-mesenchymal transition." EMBO J 23(5): 1155-1165. 

Zeisberg, E. M., O. Tarnavski, et al. (2007). "Endothelial-to-mesenchymal transition 
contributes to cardiac fibrosis." Nat Med 13(8): 952-961. 

Zeisberg, M., C. Bottiglio, et al. (2003). "Bone morphogenic protein-7 inhibits progression of 
chronic renal fibrosis associated with two genetic mouse models." Am J Physiol 
Renal Physiol 285(6): F1060-1067. 

Zeisberg, M., J. Hanai, et al. (2003). "BMP-7 counteracts TGF-beta1-induced epithelial-to-
mesenchymal transition and reverses chronic renal injury." Nat Med 9(7): 964-968.  

Zeisberg, M. and E. G. Neilson (2009). "Biomarkers for epithelial-mesenchymal transitions." J 
Clin Invest 119(6): 1429-1437. 

Zheng, Y. and A. Y. Rudensky (2007). "Foxp3 in control of the regulatory T cell lineage." Nat 
Immunol 8(5): 457-462. 

Zhou, B. P., J. Deng, et al. (2004). "Dual regulation of Snail by GSK-3beta-mediated 
phosphorylation in control of epithelial-mesenchymal transition." Nat Cell Biol 
6(10): 931-940. 

www.intechopen.com



Tumor Microenvironment and Myelomonocytic Cells

Edited by Dr. Subhra Biswas

ISBN 978-953-51-0439-1

Hard cover, 298 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Tumor microenvironment represents an extremely dynamic niche shaped by the interplay of different cell types

(e.g. tumor cells, stromal cells), their soluble products (e.g.cytokines, chemokines and growth factors) and

varied physico-chemical conditions (e.g low oxygen concentration or hypoxia). Recent studies have identified

myelomonocytic cells as key players in regulating the tumor microenvironment and hence, tumor progression

in a variety of cancers. In view of these findings, the present book attemps to provide a comprehensive

account of the diversity of tumor microenvironment across different cancers and how myelomonocytic cells

have taken the center-stage in regulating this niche to direct cancer progression. A better understanding of the

myelomonocytic cells and the mechanisms by which they regulate cancer progression will open new vistas in

cancer therapeutics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tingting Yuan, Yadi Wu and Peter Zhou (2012). Tumor Inflammatory Microenvironment in EMT and

Metastasis, Tumor Microenvironment and Myelomonocytic Cells, Dr. Subhra Biswas (Ed.), ISBN: 978-953-51-

0439-1, InTech, Available from: http://www.intechopen.com/books/tumor-microenvironment-and-

myelomonocytic-cells/tumor-inflammatory-microenvironment-in-emt-and-metastasis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


