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1. Introduction 

Monocytes are essential components of the innate immune system responsible for 

phagocytosis of pathogens, dead cells, and anti-tumor activities. These cells are involved in 

a remarkably diverse array of homeostatic processes ranging from host defense to tissue 

turnover and are emerging as key players in the pathophysiology of several diseases 

including atherosclerosis, arthritis, obesity, autoimmunity, and cancer. These mononuclear 

blood cells respond to “self” and “non-self” stimulatory signals by mediating immune 

responses, controlling inflammatory cytokines, and accumulating at sites of “danger”. Thus, 

monocytes play a critical role in the protection against invaders. In the case of invader 

“tumors”, monocyte accumulation has been shown to promote neoangiogenesis and tumor 

progression. This paradoxical role of monocytes in normal and tumor development may 

result in the polarized expression of either pro- or anti-tumor functions. Recognition of 

diverse monocyte subsets helps explain the plethora of functions attributed to monocytes in 

acute and chronic inflammatory diseases. Microenvironmental signals, to which monocytes 

are exposed, play a key role in the setting of their phenotype selectively tuning their 

functions. In the tumor microenvironment, recruitment of selected monocyte subsets and 

the inhibition of the apoptotic program promote increase numbers of macrophages in the 

tumor. A complex network of differentiation factors and inflammatory stimuli determine 

monocyte life span by blocking the apoptotic pathway and activating a myriad of survival 

pathways. The present chapter will discuss molecular changes that dictate the fate and 

behavior of monocyte subsets contributing to tumor biology. In addition, we will discuss the 

antagonistic and synergistic interplay of transcriptional and posttranscriptional regulatory 

networks that contribute to the specification of monocytic cell fate and their contribution in 

tumor progression. The recognition of these molecular networks will furnish strategies to 

decrease monocytic cell recruitment, survival at the tumor sites, and facilitate monocytic 

“re-education” programs reestablishing their normal anti-tumor function helping to define 

novel therapeutic strategy against cancer and other inflammatory diseases.  
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2. Monocyte subsets: Molecular and functional heterogeneity 

Heterogeneous populations of monocytes originate from common myeloid precursor cells 

and are responsible for controlling inflammation, tissue repair, stimulating angiogenesis, 

tumor progression, and growth. These populations are dynamic, capable to adapt their 

identity, fate, and immunological function in response to environmental cues. Monocytes 

help to neutralize self or non-self danger signals through innate mechanisms. In this 

defensive reaction, the blood and lymphatic vascular system are essential partners. In 

addition, recruitment of monocytic cells leads to new blood vessel formation or 

angiogenesis, a central feature of tumor growth. Monocytes act as defenders, secreting 

cytokines and in turn modulate other cells of the innate and adaptive immune system trying 

to combat the tumor. Interestingly, cues from the tumor microenvironment promote 

changes in monocytic cells fate and immune function leading to changes in myelogenous 

populations that ensure tumor growth and metastasis, in a co-adaptation process yet not 

well understood.  

The tumor microenvironment is a complex milieu composed of cellular and noncellular 

(matrix) components. Myeloid cells, among others monocytes/macrophages, constitute 

about 50% of the infiltrating cells (Pollard, 2004). The origins and identities of tumor 

infiltrating myeloid cells have been recently uncovered as technical advances helped 

identify these heterogeneous subsets.  

Circulating human and mouse monocytes are broadly classified on the basis of surface 

receptor markers and biological responses into three subtypes. Based on the recently 

approved nomenclature by the Nomenclature Committee of the International Union of 

Immunological Societies (Ziegler-Heitbrock et al., 2010) human monocyte subtypes are 

categorized into “classical” expressing high levels of CD14 and lacking CD16 expression 

(CD14++CD16- or CD16-) constituting 90% of the population and the remaining 10% 

expressing CD14 and CD16 or FcIII receptor (CD14+CD16+). The latest group is further 

subdivided based on the level of CD14 and CD16 expression into “intermediate” 

(CD14++CD16+ or CD16+) and “non-classical” (CD14+CD16++ or CD16++) (Parihar et al., 2010; 

Ziegler-Heitbrock et al., 2010) (Fig. 1). The mouse circulating monocyte counterparts are 

classified into three types based on the expression of the surface glycoprotein Ly6C and the 

transmembrane sialoglycoprotein CD43. These are “classical: Ly6C++CD43+, “intermediate”: 

Ly6C++CD43++ and “non-classical”: Ly6C+CD43++ monocytes (Ziegler-Heitbrock et al., 2010). 

Ly6C is part of the epitope of granulocyte differentiation antigen-1 (Gr-1), also recognized 

by Gr-1 antibodies (Hanninen et al., 1997). Hence, Ly6C++ (Ly6Chigh) monocytes are Gr-1+ 

and Ly6C+ (Ly6Clow) are Gr-1- (Geissmann et al., 2010). Classical mouse monocytes (Ly6Chigh 

CD43+) express CCR2+ and CD62L+ and low levels of the chemokine receptor CX3CR1low, 

whereas non-classical (LY6ClowCD43++) are CX3CR1high but CCR2−CD62L− (Auffray et al., 

2009). Recently, closer association has been shown between the human classical, 

intermediate, and mouse Ly6Chigh, irrespective of CD16 expression while the Ly6Clow 

correspond to non-classical CD14lowCD16++ monocytes (Cros et al., 2010) (Fig. 1). 

Several types of myeloid cells are important components of the tumor stroma contributing 

to diverse tumor-promoting activities including Tumor-Infiltrating Monocytes (TIM) and 

Tumor-Associated Macrophages (TAM) (Hanahan & Weinberg, 2011) (Fig. 1). Circulating  

www.intechopen.com



 
Monocyte Subsets and Their Role in Tumor Progression 

 

45 

 

Fig. 1. Role of monocytes and macrophages in tumor progression. Heterogeneous monocyte 
populations arising from a common precursor have been described. Different monocyte 
subsets contribute to the infiltration of myelogenous cells such as TIM, TEM, and TAM into 
the tumor, which in paracrine and autocrine manner contribute to angiogenesis, tumor 
progression, and growth. Plastic behavior of TAMs from M1 to M2 as well as other 
infiltrated monocytes is characterized by distinct cytokine and chemokine profiles 
promoting an anti-tumoral or immunosuppressive environment respectively co-adapting to 
the tumor microenvironment.  

monocytes expressing Tie-2 [angiopoietin-2 (Ang-2)] named TEM, comprised within 

CD14+CD16++ human monocytes and mice Ly6C+ (Ly6Clow) are recruited to the tumor where 

they have been shown to be essential for angiogenesis (Venneri et al., 2007). In a mammary 

adenocarcinoma tumor model the majority of tumor infiltrating monocytes differentiating 

into TAM were Ly6C++ (Movahedi et al., 2010). The tumor environment not only attracts 

myeloid cells but also modulates their fate resulting in a shift in hematopoiesis leading to an 

increase in myeloid cell accumulation in bone marrow, blood, spleen, and at the tumor site 

(Almand et al., 2001; Bronte et al., 2000; Mantovani et al., 2008). 

Monocyte recruitment to the tumor site is greatly influenced by several factors. Among 

others, the prototype CC chemokine MCP-1 (monocyte chemoattractant protein-1; also 

known as CCL2) secreted by malignant cells increases monocyte infiltration (Gu et al., 1999). 

Significantly higher levels of MCP-1 have been reported in patients with primary ovarian 

cancer and melanoma (Negus et al., 1995) and MCP-1 down-regulation decreased monocyte 
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migration in ovarian cancer (Negus et al., 1998). Other chemokines and growth factors such 

as placental growth factor (PGF), TGF-ǃ, PGE-2, CCL3 (MIP-1ǂ), CCL4 (MIP-1ǃ), RANTES 

(also known as CCL-5), and M-CSF, are found at high levels in tumors and contribute to the 

recruitment, survival, and differentiation of monocytes into the tumor (Fig. 1). High M-CSF 

expression is related with TAMs accumulation in breast carcinomas (Tang et al., 1992). 

Vascular endothelial growth factor (VEGF) is also involved in monocyte recruitment into 

tumors (Dineen et al., 2008; Murdoch et al., 2008). Elevated levels of RANTES were reported 

in ovarian cancer  and breast cancer contributed to cancer progression and monocytes 

recruitment (Azenshtein et al., 2002; Negus et al., 1997). 

Thus, secreted factors by tumor-infiltrating monocytes and tumor cells help modulate tumor 
growth and monocyte infiltration and fate determination contributing to tumor growth and 
progression.  

3. Monocytic transcriptomes 

In recent years the improvement in cell isolation techniques has allowed great advances in 
the understanding of transcriptomes in circulating monocytes helping identify unique 
signatures for different monocyte subsets and share remarkably transcriptional similarity 
(Ancuta et al., 2009; Mobley et al., 2007; Zhao et al., 2009). Genome wide studies on 
monocytes transcriptomes suggest that both CD16- and CD16+ monocytes share a common 
precursor (Ancuta et al., 2009). Despite the high similarity on expression profiles, differences 
relate to genes corresponding to cell-cell adhesion, trafficking, inflammation and immune 
responses, cell cycle, signal trasnduction and proliferation. Strict statistical analysis 
indicated as few as ~ 60 differentially expressed genes between monocyte subsets (Ancuta et 
al., 2009). 

Classical monocytes (CD14+CD16-) have higher expression of genes involved in adhesion 
such as CCR2, CD62L and CD11b. In addition, the genes related to inflammation, 
angiogenesis and wound healing are also highly expressed in classical monocytes, revealing 
its implication in tissue repair (Wong et al., 2011). These classical monocytes also  express 
higher level of CD14 and the cytokine IL-8 (Mobley et al., 2007). In these monocytes  all 
phagocytosis enhancing proteins were highly expressed including levels of CD93, the 
receptor for complement component C1q1 (C1q1R), a component of a larger receptor 
complex for C1q complement factor and mannose-binding lectin (MBL2) (Ancuta et al., 
2009). Furthermore, classical monocytes also showed high level expression of 
proinflammatory molecules such as S100A12, S100A9, S1008, and were among the top 50 
most highly expressed genes (Wong et al., 2011). 

CD16+ subsets possess a more differentiated profile with increased expression of 
macrophage and dendritic cell-like genes, probably indicating a more advanced stage of 
differentiation of these cells (Ancuta et al., 2009). These cells express high levels of genes 
involved in antigen processing, antimicrobial activity and host defense. High expression 
of genes encoding defensins, lysosomal proteases including cathepsins and elastase have 
been found (Mobley et al., 2007). Intermediate monocytes (CD14++ CD16+) showed 
enrichment for genes under major histocompatibility complex (MHC) class II processing 
and presenting, these genes mainly includes CD47, HLA-DO and CD40. MARCO 
(macrophage receptor with collagenous structure) is also one of the highly expressed gene 
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in the intermediate subset of monocytes (Wong et al., 2011). CD16+ monocytes express 

higher levels of TNF- and chemokine receptor CX3CR1, CX3CR2 and colony-stimulating 
factor 1 receptor (CSF1R), the receptor for macrophage colony-stimulating factor (M-CSF) 
than classical CD16- monocytes (Ancuta et al., 2009; Wong et al., 2011; Zhao et al., 2009). 
Proteomic analysis also showed small differences with only 235 proteins differentially 
expressed between the monocyte subsets (Martinez, 2009). In addition to CD16, higher 
expression of the hematopoietic cell kinase (HCK) and the tyrosine protein kinase (LYN) 
were observed (Zhao et al., 2009). Interestingly the nonclassical monocytes (CD16++) 
showed the gene enrichment in the category of cytoskeleton rearrangement and 
phagocytosis. Genes related to phagocytosis such as LYN, HCK, ITAM of FCRs, C1QA, 
C1QB and also SLAN were found highly expressed in nonclassical monocytes (Wong et 
al., 2011). In pathological conditions, monocyte functions are finely tuned by the 
microenvironment. In this regard, hypoxic conditions found in tumors affect gene 
expression. Transcriptome analysis of hypoxic primary human monocytes revealed 
modulation of a significant cluster of genes with immunological relevance (Bosco et al., 
2006). These included scavenger receptors: CD163, also found highly upregulated in 
CD16- subsets as well as MARCO , stabilin-1 (STAB1), macrophage scavenger receptor-1 
(MSR1) (Mobley et al., 2007). Toll like receptor-7 (TLR7), immunoregulatory, 
costimulatory, and adhesion molecules: CD32, CD64, CD69, CD89, leukocyte membrane 
Ag (CMRF-35H), integrin ǃ-5 (ITGB5), chemokines/cytokines receptors (CCL23, CCL15, 
CCL8, CCR1, CCR2, RDC1, IL-23A, IL-6ST) were also highly expressed under hypoxia 
(Bosco et al., 2006). Hypoxia also controlled gene expression of chemokine receptors 
including CXCL1, CXCL8, CCL3, CXCR4 (Murdoch et al., 2004). 

Transcriptome studies are unraveling the complexities of the monocyte populations and 
provide evidence of the specialized function of specific subsets. High expression of IL-8 and 
adhesion molecules in CD16- subsets seem to support the role as inflammatory, capable to 
leave the circulation and infiltrate. In addition, high expression of M-CSF in CD16+ support 
their role in driving differentiation of CD16-, a more immature pool that could replenish 
macropahges at inflammatory sites. Studies in gene expression profiles in human monocyte 
subpopulations as part of tumor biology remain scarce and future studies in this area will 
thereby help to understand their specific roles as well as define future approaches to re-
educate monocytes in the tumor microenvironment.  

4. Role of monocyte subsets in tumor progression  

4.1 Monocyte deactivation  

It has been widely accepted that cancer progression is an inherently proinflammatory 
process that involves the activation of the innate and adaptive immune system. During 
tumorigenesis, monocytes are destined to give anti-tumor response of the host and act both 
as cells presenting tumor-associated antigens to tumor-infiltrating lymphocytes and as 
cytotoxic effector cells (Mytar et al., 2003). However, cancer cells have developed 
mechanisms that inhibit immune surveillance (Pardoll, 2003), characterized by the impaired 

ability of monocytes to produce IFN-, TNF-ǂ, IL-12, while enhance IL-10 secretion. IL-10 is 
immunosuppressive, tumor promoting, and inhibits the production of IL-2, IFNǄ, IL-12, 
TNF-ǂ, resulting in a reduced Th1 response (Sica et al., 2006). Different studies have 
reported increased IL-10 serum levels in patients with melanoma and other solid tumors 
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(Fortis et al., 1996; Sato et al., 1996). IL-12 plays central role in activating anti-tumor 

immunity by stimulating the production of IFN- and TNF-ǂ necessary for cytotoxic effects. 
In many cancers, for instance in colorectal cancer reduced production of IL-12 was 
accompanied by increased production of IL-10 (O'Hara et al., 1998). Deactivation of 
monocytes can be reversed with Bovis bacillus Calmette-Guerin (BCG), the prototype 
immunomodulator, which inhibits IL-10 production, thus reversing monocyte deactivation 
(Baran et al., 2004).  

Deactivation of TIM is also mediated by other mechanisms. Hyaluronan (HA), an important 

tumor microenvironment matrix structure, produced by tumor cells, is now emerging as a 

key factor in monocyte deactivation and tumor progression (Mytar et al., 2003; Toole, 2004). 

Ligation of CD44 by HA is a proinflammatory event that regulates monocyte adhesion and 

cytokine production and was found to stimulate the expression of IRAK (IL-1 receptor-

associated kinase)-M. High levels of IRAK-M were reported in patients of chronic myeloid 

leukemia and metastasis (del Fresno et al., 2005). Co-culture experiments of CD14+ 

monocytes with a variety of tumor cells show that tumor cells express high level of 

prostaglandin (PG) that also contributes to the downregulation of TNF-ǂ, IL-12, IRAK-1 

interrupting the inflammatory response against cancer progression. These findings strongly 

suggest that the functional activity of monocytes is adversely modified by the local tumor 

microenvironment. Notably, the deactivation mechanisms of monocyte in cancer may not 

just be limited to tumor microenvironment but also players in other inflammatory diseases 

such as atherosclerosis, arthritis, and obesity.  

4.2 Angiogenesis  

Once the tumor cells escape recognition and destruction by infiltrating monocyte, these 

infiltrating cells participate in tumor growth by promoting angiogenesis (Lin et al., 2001), 

an essential process in the tumor progression and growth. High numbers of human 

vascular leukocytes found in human ovarian cancer have been suggested to form 

neovessels in mouse xenotransplantations (Conejo-Garcia et al., 2005). Gr-1+ monocytes 

promote angiogenesis via paracrine mechanisms (Yang et al., 2004). Vascular leukocytes, a 

subset of CD11C+ MHC-II+ dendritic-cell precursors expressing endothelial vascular 

markers VE-cadherin, CD34, and CD146 also contribute to tumor angiogenesis (Conejo-

Garcia et al., 2005; Yang et al., 2004). Circulating TEM derived from non-classical 

monocytes contributes to tumor angiogenesis, migrating towards Ang-2, released at high 

levels by activated endothelial cells and angiogenic vessels at tumor sites (Venneri et al., 

2007). Ang-2 also inhibits TNF-ǂ release (Lewis et al., 2007; Murdoch et al., 2007), 

normally responsible for promoting apoptosis of both tumor and endothelial cells 

(Petrache et al., 2001). Hence, Ang-2-mediated down-regulation of TNF-ǂ may increase 

metastasis and angiogenesis contributing to tumor growth. The molecular basis of factors 

that render proangiogenic activity in TEM are still not well understood. But elimination of 

TEMs in mouse glioma models was shown to reduce tumor growth and vascularity (De 

Palma et al., 2005), supporting the role of TEM in tumor blood vessels formation. In 

human tumor models, CD14+ TIM monocytes can develop endothelial phenotype 

(Schmeisser et al., 2001) and actively participate in neovascularization during tumor 

growth (Urbich et al., 2003).  
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Recent studies indicated that CCL2 synthesized by metastatic tumor cells and by the target-
site tissue stroma is critical for the recruitment of CCR2-expressing monocyte subsets. 
Activation of the CCL2-CCR2 signaling axis promotes extravasation and recruitment of 
inflammatory monocyte subsets into metastatic tumor sites and helps promote 
differentiation of these monoyctes into non-proliferating TAMs (Qian et al., 2011). 
Transcriptome studies in both resident and inflammatory monocytes show higher 
expression of VegfA, a potent angiogenic factor in inflammatory monocytes CD14+CD16- 
subsets, recruited in large numbers to metastatic areas (Qian et al., 2011). Future 
comprehensive trsancriptome analysis in purified monocyte populations under 
pathophysiological conditions should be helpful to gain a further understanding of the 
functional roles of different monocyte populations in tumor progression. 

5. Regulation of monocyte subsets  

5.1 Regulation of survival and cell death of monocytes in tumors 

A complex network of survival and apoptotic pathways determines monocyte fate. Several 

kinases, transcription factors and anti- and pro-apoptotic proteins play key roles in 

determining monocyte survival and cell death. All circulating monocyte subsets have very 

short life span of just few days (Fahy et al., 1999; Zeigler et al., 2003). Inflammatory and 

differentiation stimuli are known to halt apoptosis and inducing prolonged monocyte 

survival. Among others M-CSF, TNF-, and IL-1 promote survival by deactivating the 

apoptotic program lead by caspases (Fahy et al., 1999; Goyal et al., 2002; Kelley et al., 1999). 

The tumor microenvironment characterized by alterations in cytokine, chemokine, and 

growth factor expression contributes to mediate prolonged monocyte survival (Zou, 2005). 

In fact, increase levels of TGF-ǃ, IL-10, and VEGF alter TIM and TEM from anti-tumoral to 

immunosuppressor and proangiogenic in part by switching their cytokine and growth 

factors expressions (Whiteside, 2008) (Fig. 1).  

Among the signaling molecules involved in activation and survival, the phosphatidylinositol 
3-kinase (PI3K)-AKT axis has a central role in regulating a multitude of essential myelogenous 
events, such as differentiation, phagocytosis, oxidative burst, and TLR-mediated responses 
(Franke et al., 1997; Parihar et al., 2010). PI3K activation was also shown to direct infiltration 
(Funamoto et al., 2002; Wang et al., 2002). M-CSF-induced activation of AKT through 
caspase-9 phosphorylation inhibits apoptosis (Kelley et al., 1999), promoting prolonged 
survival and sustaining the differentiation program (Gonzalez-Mejia & Doseff, 2009). In 
addition, PI3K activates protein kinase C (PKC) in monocytes (Herrera-Velit et al., 1997) 
leading to the induction of the activated mitogen-activated protein kinase (MAPK) pathway 
(Rao, 2001), including the extracellular signal-regulated kinase (ERK), the c-JNK and p38 
which are hubs to multiple networks of survival (Parihar et al., 2010). Pro-inflammatory 
mediators induce the PI3K/AKT and MAPK/ERK pathways that in turn are responsible in 
determining the balance of inflammatory versus anti-inflammatory cytokines.  

In the hypoxic regions of a tumor, activation of PI3K/AKT leads to HIF (hypoxia inducing 

factor)-1 activity which in turn regulates tumor growth, angiogenesis, metastasis, and 

monocytes/macrophages recruitment (Semenza, 2003). While the role of HIF-1 in different 

monocyte subsets and macrophages is not fully understood, increased HIF-1 expression in 

TAMs was found to contribute to tumor angiogenesis and invasiveness (Werno et al., 2010).  
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The transcription factor nuclear factor-κB (NF-κB), plays a critical role in tumor biology 
(Karin & Greten, 2005). While in other cell types NF-κB has various tumor-promoting 
functions, in monocytes the activation of NF-κB results in the release of cytokines, such as 
TNF-ǂ and IL-6 which not only trigger prosurvival signals in tumor cells but also support 
growth and progression, and importantly sustain a dysregulated immune function 
(Hagemann et al., 2009; Pikarsky et al., 2004). Activation of NF-κB leads to increase expression 
of angiogenic factors such as VEGF, CXCL1 and CXCL8  and anti-apoptotic molecules 
including the inhibitor of apoptotic proteins (IAPs), and bcl-2 (Richmond, 2002). The relevance 
of the NF-κB signaling pathway is illustrated in a mouse model of colitis associated cancer, 
where deletion of IKK-ǃ reduced the production of tumor promoting paracrine factors and 
subsequently decreased carcinoma growth (Greten et al., 2004). In hepatocellular carcinomas 
the NF-κB activating kinase IKK-ǃ suppresses early chemically-induced liver tumorigenesis by 
inhibiting hepatocyte death and compensatory proliferation. This anti-tumorigenic activity of 
hepatocyte IKK-ǃ was suggested to be due to the induction of NF-κB-dependent pro-survival 
and anti-oxidant genes (He et al., 2010). Deletion of IKK-ǃ in myeloid cells resulted in a 
significant decrease in tumor size and diminished the expression of proinflammatory 
cytokines that may serve as tumor growth factors (Yoshimura, 2006). 

Caspases, the cysteine proteases central to programmed cell death, including “activators” 
(caspases-1, 2, 8, 9, and 10) and ‘executioners’ (caspases-3, 6, and 7) play fundamental roles 
in myelogenous cells through the activation of the extrinsic and intrinsic apoptotic cascade 
(Riedl & Shi, 2004). Fas receptor-induced apoptosis has a key role in monocyte biology as 
both homozygous FasR deficient (lpr/lpr) and heterozygous FasR and Fas ligand deficient 
(lpr/gld)  mice have increased numbers of inflammatory and resident monocytes resulting in 
splenomegaly, lymphadenopathy, and accumulation of tissue macrophages (Ashkenazi & 
Dixit, 1998; Brown et al., 2004). Cytokines, CCL2 and IL-6 abundant in the tumor 
microenvironment have been shown to inhibit caspase-8 and promote enhanced autophagic 
activity to protect the monocytes recruited to the tumor and, at the same time, induce their 
differentiation toward M2-type macrophages (Roca et al., 2009). Futhermore, M-CSF induces 
caspase-9 inhibition leading to reduce apoptosis (Kelley et al., 1999). Several other inhibitors 
of the apoptotic pathways including members of the Bcl-2 family have been characterized 
(Youle & Strasser, 2008) and XIAP also play a crucial role in cell survival and tumor 
development. XIAP directly inhibits activator caspase-9 and also executioner caspases in 
cancer cells and increase expression of XIAP has been reported in monocyte differentiation 
(Sasaki et al., 2000). However, the role of XIAP in different monocyte subsets has not been 
studied. Our studies identified the small heat shock protein (Hsp27) as a direct inhibitor of 
caspase-3 in monocytes. Notably a significant increase in Hsp27 expression was found to be 
required during monocyte-macrophage differentiation (Voss et al., 2007). Hsp27 is highly 
expressed in several tumors and high levels of Hsp27 in plasma have been associated with 
risk of lung cancer  (Wang et al., 2010). Hsp27 was found to have functions in IL-1-induced 
cell signaling and pro-inflammatory gene expression suggesting its ability to modulate 
immunity (Alford et al., 2007). Whether the expression of apoptosis inhibitors such as Hsp27 
is altered in TIM and TAMs have yet to be studied. These findings suggest that anti-
apoptotic factors in plasma can switch monocyte life span contributing to their 
accumulation into tumors. It is possible to hypothesize that monocyte re-education 
programs could target molecular networks involved in shifting survival and cell death 
programs as well as immunoparalysis in monocytes. 
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5.2 Epigenetics and microRNAs regulation in monocytes and macrophages during 
tumor progression  

During hematopoiesis gradual changes in gene expression orchestrate lineage-specification. 

The myelomonocytic lineage originates from a ganulocyte-erythrocyte-megakaryocyte-

macrophage colony-forming unit (GEMM-CFU) that promotes formation of the GM-CFU or 

ganulocyte-macrophage colony-forming unit. GM-CFU under the control of G-MCSF, M-

CSF and IL-3 regulate the differentiation of this progenitor to a monocyte precursor (M-

CFU) that becomes a promonocyte in the bone marrow. Differentiation of precursor cells is 

controlled by transcription factors that regulate differentation and survival. A combination 

of transcription factors including GATA-2, GATA-1, SCL, and members of the homeobox 

proteins (HOXB) control monocyte survival. Repression of GATA-1, SCL, and c-Myc 

expression allows monocytic differentiation (Valledor et al., 1998). Earliest stages of myeloid 

lineage specification involve the activity of Runt-related transcription factor 1 (RUNX1). One 

of the main targets of RUNX1 is PU.1, a member of the ETS (E-twenty six) family 

transcription factor (Olson et al., 1995). PU.1 is key in differentiation by controlling the 

expression of M-CSF and GM-CSF receptors. In addition, PU.1 regulates expression of FC 
receptors involved in phagocytosis. Thus, PU.1 has a critical role in monocytic 

differentiation by regulating expression of molecules essential for differentiation and 

function of monocytic lineages. Intermediate stages of differentiation are regulated among 

others by transcription factor CCAAT enhancer-binding protein (C/EBP) members, c-Myc 

and HOXB7, the latest induced by GM-CSF (Friedman, 2002; Yeamans et al., 2007). In 

addition, c-Jun dimmers (AP-1)  and STAT members contribute to the induction of 

monocytic genes (Friedman, 2002). STAT3 is one of the important transcription factors that 

play an essential role in cell survival, proliferation, and differentiation. Classical monocytes, 

express high levels of AP-1-axis regulated genes, and it has been suggested that this gene 

repertoire may be responsible for the plastic behavior of this monocyte subset to recognize 

self and non-self stimuli (Wong et al., 2011). In non-classical subsets transcription factors 

controlling apoptosis, differentiation, and proliferation were highly expressed, among them 

E2F1, ETS1, and FOXO1, well known to regulate proliferation. Intermediate monocyte 

subsets showed reciprocal increases in transcription factors found in both classical and non-

classical subsets (Wong et al., 2011). 

Epigenetic changes regulated by histone-modifying enzymes such as histone 
acetyltransferases (HATs), histone deacetylases (HDAC), and methylases provide additional 
regulatory mechanisms for monocytic gene expression. Abnormal activity of these enzymes 
leads to changes in gene expression affecting differentiation and apoptosis and causing 

neoplasia and other diseases (Haberland et al., 2009). Acetylation of NF-B induces 
modifications in a temporal manner leading to recruitment of other co-activator and re-
modeling complexes and the induction of inflammatory gene expression (Ito et al., 2000; Lee et 
al., 2006). In monocytes, histone acetylation of the TNF-ǂ promoter has been shown to be 
developmentally regulated and is required for TNF-ǂ expression during acute inflammation 
(Lee et al., 2003). Changes in acetylation of the Decoy Receptor 3 (DcR3) promoter, a member 
of the TNF receptor superfamily, has been reported in tumors affecting expression of MHC 
class II (MHC-II)-dependent antigen presentation (Chang et al., 2008). Recent studies found 
distinct DNA methylation profiles in CD34+ hematopoietic progenitor cells and differentiated 
myeloid cells with pronounced DNA hypomethylation in monocytes (Bocker et al., 2011). 
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Interestingly, age-related methylation changes in CD34+ cells were found. Older progenitor 
cells showed a bimodal pattern with hypomethylation of differentiation associated genes 
and de novo methylation events resembling epigenetic mutations, thus providing an 
important insight into the methylation dynamics during differentiation and suggest that 
epigenetic changes contribute to hematopoietic progenitor cell aging (Bocker et al., 2011). 
Induction of inflammatory genes IL-6, IL-8 and IL-12 were found to depend on HAT/HDAC 
activity (Lu et al., 2005; Schmeck et al., 2008). Treatment of monocytic leukemia cell lines and 
patient samples with demethylating and HDAC inhibitors induced reversion to gene profiles 
found in normal subjects, highlighting the role of chromatin remodeling in monocyte behavior 
(Serrano et al., 2008). Treatment of macrophages with broad-spectrum HDACs inhibitors 
showed anti- and pro-inflammatory effects, HDACs suppressed LPS-induced expression of 
the pro-inflammatory MCP-3, and IL-12 but amplified the expression of the pro-atherogenic 
factors Cox-2 (Halili et al., 2010). Dietary compounds with HDAC inhibitory activities, 
including garcinol, curcumin, and anacardic acid, modulate epigenetic status and are being 
investigated as potential anti-cancer agents (Bolden et al., 2006; Inoue et al., 2004). It will be of 
interest to evaluate how these therapies influence monocytes epigenomes. Future studies to 
evaluate the epigenetic dynamics of monocyte subsets will be of great value to further 
understand their unique functional contributions.  

MicroRNAs (miRNAs) are small non-coding RNAs emerging as new post-trancriptional 

regulators and have been found to contribute in several monocyte functions. The overall 

relevance of miRNA in hematopoiesis has been discussed in detail elsewhere (Baltimore et al., 

2008). Based on the epidemiological studies inflammation contributes to 25% of all cancers by 

increasing cancer risk and cancer development (Mantovani et al., 2008). Several miRNAs were 

found to be elevated in inflammation and cancer. In particular, miRNA-155, miRNA-125b, and 

miRNA-21 have emerged as important miRNAs regulating immune responses. MiRNA-155 is 

elevated in leukemia and lymphoma and transgenic mice overexpressing miRNA-155 in B 

cells, develop B-cell leukemia and sustained expression of miRNA-155 in hematopoietic stem 

cells causes myeloproliferative disorders (O'Connell et al., 2008). MiRNA-155 targets among 

others suppressors of cytokine signaling (SOCS1) and SH2-domain-containing inositol-5-

phosphatase 1 (SHIP-1), both negative regulators of TLR signaling in monocyte/macrophage 

inflammatory response. Recent studies showed that tumor environment causes a sustained 

reduction of miRNA-155 in monocytes/macrophages, which in turn activates the C/EBPǃ (He 

et al., 2009). C/EBPǃ, a member of C/EBP family of leucine zipper transcription factors, plays 

pivotal roles in coordinating the expression of a wide variety of genes that control immune 

responses including COX-2 (Li et al., 2007). C/EBPǃ-deficient mice exhibit defects in 

macrophage activation and differentiation (He et al., 2009). Monocytes exposed to tumor 

microenvironment showed C/EBPǃ expression inversely correlated with miR-155 expression 

and it was found that miRNA-155 could suppress the C/EBPǃ. Furthermore, over-expression 

of miRNA-155 significantly attenuated the cytokine production in tumor-activated monocytes 

(He et al., 2009). Expression of miRNA-146 affects downstream TLR signaling molecules such 

IRAK1 and 2 or TNF receptor-associated factor (TRAF) 6, all involved in the activation of the 

NF-B axis (O'Connell et al., 2010). MiRNA-21 and miRNA-125b are also elevated in 

inflammatory conditions and cancer (Esquela-Kerscher & Slack, 2006).  

Recent studies highlighted different miRNAs profile in circulating monocytes when 

compared with dendritic cells or macrophages (Tserel et al., 2011). However, it is presently 
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unknown whether miRNAs expression is altered in different monocytes subsets in normal 

conditions or in tumorigenesis.  

6. Molecular pathways involved in monocyte fate and re-education 
programming  

Reprogramming implies the conversion of a fully differentiated cell type into another cell 
type without pluripotent intermediate and generally achieved by overexpressing key 
transcription-factors (Zhou & Melton, 2008). Recent studies have reported that various cells 
including fibroblasts can be reprogrammed into blood-cell progenitors (Szabo et al., 2010), 
neurons (Vierbuchen et al., 2010), and cardiomyocytes (Ieda et al., 2010), demonstrating the 
ample applicability of this approach for therapeutic uses.  

Myelomonocytic cells re-education programs have been described. TAMs have been 

suggested to be programmed to specific subtypes such as M1 and M2 upon arrival to the 

tumor microenvironment. It has been shown that administration of GM-CSF in murine 

breast cancer models induces soluble VEGFR-1 resulting in the suppression of VEGF and 

angiogenesis (Eubank et al., 2009). Cytokine-dependent reprogramming using IL-12, which 

impacts innate and adaptive immune systems, has proven the most interesting (Trinchieri, 

1995). IL-12 in its soluble or lipid-encapsulated forms injected into tumor-bearing mice 

resulted in a strong cytotoxic anti-tumor response (Hill et al., 2002), suggesting its capability 

to restore normal immune functions. Inflammatory monocytes expressing high levels of the 

chemokine receptor CCR2 but not CD14-CD16+ were found in increased numbers in several 

chronic inflammatory conditions including atherosclerosis and asthma (Parihar et al., 2010). 

Recent studies showed that administration of lipid nanoparticles containing a CCR2-

silencing short interfering RNA in mice, prevents monocyte accumulation at inflammatory 

sites (Leuschner et al., 2011). Ectopic expression of PU.1 in lymphocytes and neural stem 

cells induced transdifferentiation to the myeloid lineage with functional chemotactic and 

immune functions characteristic of monocytes (Forsberg et al., 2010; Laiosa et al., 2006). 

Transcriptome analysis showed that PU. 1 expression affects chromatin remodeling leading 

to epigenetic changes that ensure macrophage specification (Ostuni & Natoli, 2011). These 

monocytes may serve as vehicles to modulate microenvironments with dysregulated 

immunity such as found in the tumor. Hence, alteration of epigenetic dynamics may also be 

a potential approach to alter monocyte re-programming. It is recognized that macrophages 

adapt in response to the microenvironment (referred to other Chapters in this book). Part of 

this adaptation is based on changes in their transcriptomes (Lawrence & Natoli, 2011). 

However, the molecular mechanisms determining macrophage genetic adaptations remain 

mostly unknown. In the case of monocyte subsets similar studies have not yet been 

conducted. Thus, dissecting the genomic determinants in normal and pathophysiological 

conditions of functional distinct monocyte subsets and TEMs will provide possibilities to re-

educate these cells towards an anti-tumor phenotype, re-establishing apoptotic programs or 

halting their extravasation activities.  

7. Conclusion  

Tumor progression is marked by dynamic changes of the tumor microenvironment from 

early neoplastic events to advanced tumor stages. Recruitment of circulating monocytes to 
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specific tumor sites contributes to progressive modulation of signaling molecules such as 

chemokines, cytokines, growth factors, and transcription factors. Specific contributions of 

different monocyte subsets to the tumor associated myelogenous populations of TEM, TIM, 

and TAMs are starting to emerge. Advances in understanding the molecular networks 

regulating myelomonocytic cells functions and fate provide opportunities to implement re-

education programs to rehabilitate normal anti-tumor monocyte behavior. These strategies 

should help limiting myelomonocytic cell survival, halting recruitment to tumor sites, and 

increasing cytotoxic functions providing novel approaches for cancer treatment. Advances 

in this area will not be limited to tumor biology but will also impact our understanding of 

other chronic inflammatory diseases.  
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