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1. Introduction 

Making the erythrocyte its home for 48 hours has important consequences for the human 
malaria parasite Plasmodium falciparum. Indeed, erythrocytes are terminally differentiated 
cells that lack a nucleus as well as intracellular organelles, are thus unable to endocytose or 
exocytose macromolecules, and have lost several membrane transport activities upon 
differentiation. Consequently, the parasite has to deeply remodel its host cell, from the very 
beginning to ensure its entry into the red blood cell, throughout its growth and 
multiplication to fulfil its needs for extracellular nutrients, and to the very end of its intra-
erythrocytic development with the parasite-induced opening and curling of the red cell 
membrane leading to the dispersion of newly formed merozoites into the blood flow. The 
most spectacular, and first reported, modifications of the red blood cell membrane induced 
by P. falciparum are electron dense protrusions named knobs and consisting of parasite 
proteins exported to the red cell membrane and sub-membrane skeleton where they 
eventually interact with host cell proteins. Knobs are directly related to the severity of 
falciparum malaria because they mediate adherence of infected erythrocytes to the 
microvasculature endothelium. More recent studies have revealed that the parasite might 
export several hundreds of proteins, as well as membrane compartments, to the red cell and 
divert enzymatic and structural host proteins to make the erythrocyte a suitable 
environment for its growth. In the last decade, remodelling of its host cell by Plasmodium 
falciparum has become an important and growing field of research. In this review, we will 
describe the current stage of knowledge concerning red blood cell remodelling by 
Plasmodium falciparum and the role of these parasite-induced modifications for its growth 
and survival.  

2. Early modifications of the red blood cell  

Apicomplexan parasites share a conserved mode of invasion by actively entering their host 
cell with the formation of a specialised junction with the host cell membrane and the 
establishment of the parasite inside a self-induced parasitophorous vacuole (Aikawa et al., 
1978). Initial attachment of the parasite to the host cell surface results from low-affinity 
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reversible interactions (Dvorak et al., 1975) and induces the sequential discharge of two 
types of apical secretory organelles: 1/ the micronemes, small secretory organelles 
underlying the parasite’s apical pole and providing a variety of adhesive proteins and 2/ 
the pear-shaped rhoptries providing rhoptry neck proteins that, in collaboration with 
microneme proteins establish a junction between the invading parasite and its host cell 
membrane named the “moving junction” (Aikawa et al., 1978). For malaria parasites, initial 
attachment triggers waves of deformation of the red cell membrane (Figure 1) (Gilson & 
Crabb, 2009), that cover the merozoite and might facilitate the formation of the junction 
between the merozoite’s apical pole and the host cell membrane. Noteworthy, to form this 
junction, the parasite exports to the host cell membrane its own receptor, Ron2, for the 
parasite surface ligand AMA1 (Besteiro et al., 2009). Additional rhoptry neck proteins, Ron4, 
Ron5 and Ron8, are secreted to the cytosolic face of the host cell plasma membrane and 
participate in the junction formation that provides the parasite an anchoring to the host cell 
membrane supporting forward motion of the parasite with the apical pole leading the way 
(Besteiro et al., 2011). This active penetration promotes invagination of the host cell plasma 
membrane with the moving junction acting as a sieve excluding host cell integral membrane 
proteins from the nascent parasitophorous vacuole membrane (PVM) while some glycosyl-
phosphatidylinositol (GPI)-anchored and lipid raft-associated proteins enter the vacuole 
(Aikawa et al., 1981; Atkinson et al., 1988; Dluzewski et al., 1989; Dluzewski et al., 1988). 
Noteworthy, the malarial parasite seems to exploit glyco-sphingolipids and cholesterol 
enriched microdomains of the erythrocyte membrane known as lipid rafts for invasion: this 
is supported by the evidence that the merozoite infection is halted following disruption of 
raft-cholesterol using the cholesterol depleting agent, methyl-β-cyclodextrin (MBCD) 
(Samuel et al., 2001). In addition, P. falciparum entry is blocked by lidocaine hydrochloride, a 
local anaesthetic agent reversibly disrupting the lipid rafts without altering the cholesterol 
content of the erythrocyte membrane (Koshino & Takakuwa, 2009). A proposed mechanism 
for this is that the disruption of rafts alters an erythrocyte raft hetero-trimeric guanine 
nucleotide-binding protein-mediated signal transduction pathway that induces the 
phosphorylation of sub-membrane skeletal proteins (Kamata et al., 2008). These 
phosphorylations can modify the mechanical properties of the erythrocyte membrane 
[reviewed in (Zuccala & Baum, 2011)] and favour membrane invagination. The major and 
raft-associated erythrocyte membrane protein Band 3 appears to be phosphorylated on 
tyrosine residues upon invasion (Pantaleo et al., 2010). This phosphorylation should result in 
the clustering of Band 3 and thus be important for parasite entry by de-connecting Band 3 
from the erythrocyte sub-membrane skeleton (Ferru et al., 2011). In addition, G-protein 
coupled signalling through the β2-adrenergic receptor, has also been shown to regulate the 
parasite invasion efficiency (Harrison et al., 2003) and growth (Murphy et al., 2006a). All 
these studies strongly imply that erythrocyte rafts are functionally exploited for parasite 
invasion and also serve as a platform for signalling events to take place. 

The biogenesis of the PVM is dynamic and has not been completely resolved. 
Immuoelectron microscopy studies have provided evidences that apical organelles of the 
merozoite contain and release into the erythrocyte lipidic lamellar materials which could 
participate in the PVM expansion (Bannister & Mitchell, 1989; Bannister et al., 1986; 
Mikkelsen et al., 1988). Additionally, as described in (Dluzewski et al., 1995) the PVM does 
not contain lipids solely from the host cell membrane as the surface area of newly infected 
erythrocytes had not evidently decreased in size, suggesting the contribution of lipids from 
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the parasite itself. On the other hand, exchange of lipids between the parasite and 
erythrocyte membrane have also been reported (Hsiao et al., 1991) and studies using 
fluorescent lipophilic probes revealed that the PVM does contain lipids from the host cell 
membrane (Haldar et al., 1989; Ward et al., 1993). All these data illustrate that the biogenesis 
of the PVM appears to have relative contributions from both parasite- and host cell 
erythrocyte-derived lipids. In addition, a lipid raft based biogenesis of the PVM has been 
proposed (Hiller et al., 2003). 

Although there is no formal proof for a role of rhoptry bulb proteins in the formation of the 
parasitophorous vacuole, their association to the parasitophorous vacuole membrane 
suggests that they participate in early stages of its biogenesis. However, direct evidences 
have been obtained in T. gondii, showing that rhoptry proteins, particularly protein kinases 
and phosphatase, secreted to the parasitophorous vacuole membrane or host cell nucleus 
serve as effectors, and constitute major virulence factors that counteract the immune 
response of the host (Behnke et al., 2011; El Hajj et al., 2007; Gilbert et al., 2007; Saeij et al., 
2006). The Band 3 phosphorylation on tyrosine residues mentioned above might be induced 
by a, yet unidentified, secreted parasite protein kinase or by the activation of an erythrocyte 
tyrosine-kinase. 

 
Fig. 1. Erythrocyte membrane deformations generated by a P. falciparum merozoite. The 
merozoite glides on the surface of a red blood cell membrane prior to entrance (Time lapse 
of 0.5 s between each frame). The membrane is deformed by the strength of adhesion. The 
adhesion site is transferred from the back of the merozoite (frame 1, white arrows) to its 
apical pole (frame 8, white arrows). High speed live imaging with the participation of 
Magali Roques and Manouk Abkarian. 

Host proteins also participate in the development of the parasitophorous vacuole since 
the selective vacuolar uptake of several DRM-associated erythrocyte membrane proteins 
has been reported, including both transmembrane and GPI-anchored proteins (Lauer et 

al., 2000; Murphy et al., 2004; Bietz et al., 2009). However, not all proteins derived from the 
erythrocyte DRMs are recruited to the PVM, suggesting that the recruitment does not 
depend only on their DRMs association. The moving junction is likely playing a central 
role in this selection process that might participate in changing the physical properties of 
the erythrocyte for efficient parasite entry (Mordue et al., 1999; Murphy et al., 2004). 
Interestingly, dematin, an erythrocyte sub-membrane skeleton binding protein, was also 
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recently found to be internalized by the parasite (Lalle et al., 2011). The biological 
functions of these internalized proteins remain enigmatic and further studies are 
necessary to determine whether internalization of these proteins is essential for the 
parasite survival and in maintaining the stability of the vacuolar environment. However, 
both Band 3 tyrosine-phosphorylation and dematin internalisation participate in a 
parasite-induced fragility of the red cell membrane likely required for efficient merozoite 
entry (Ferru et al., 2011; Khanna et al., 2002) while the Ring-infected Erythrocyte Surface 
Antigen (RESA) released by the merozoite into the red blood cell upon invasion stabilizes 
spectrin tetramers and confers the infected erythrocyte enhanced resistance to mechanical 
and thermal degradation (Pei et al., 2007). Noteworthy, the binding of RESA to spectrin 
tetramers also confers the newly infected erythrocyte resistance to further invasion (Pei et 
al., 2007).  

Moreover, using Plasmodium knowlesi parasites, Torii and collaborators have observed the 
release of the dense granule contents into the lumen of the parasitophorous vacuole and the 
concomitant invagination of the PVM adjacent to the released contents (Torii et al., 1989). 
These results suggested that the dense granules, another type of apical secretory organelles 
of the merozoite, play a role in forming finger-like channels extending into the surrounding 
erythrocyte cytoplasm. Numerous studies using primarily Toxoplasma gondii parasites but 
also Plasmodium falciparum showed that the released dense granule contents transform the 
parasitophorous vacuole into a metabolically active compartment [reviewed in (Mercier et 

al., 2005)].  

3. Living within the parasitophorous vacuole  

The intracellular parasite living in the vacuole acquires nutrients by uptake from the host 
cell cytosol and extracellular milieu, hence the PVM has dual roles: (i) protect the parasite 
from extracellular harmful substances and (ii) facilitate nutrients access to parasite needs 
(Lingelbach & Joiner, 1998). Upon parasite growth and parasitophorous vacuole 
enlargement, extensions from the PVM form membranous whorls and loops and tubular 
elements projecting to the host cell periphery without fusing with the red blood cell 
membrane. These PVM extensions form an interconnected network of tubular and vesicular 
membranes known as the tubovesicular network (TVN) (Atkinson & Aikawa, 1990; 
Elmendorf & Haldar, 1994; Grellier et al., 1991). Inhibition of the parasite sphingomyelin 
synthase activity, localised to the TVN (Elmendorf & Haldar, 1994), by dl-threo-1-phenyl-2-
palmitoylamino-3-morpholino-1-propanol (PPMP) arrested the assembly of the 
interconnected TVN network and resulted in the blockage of the delivery of extracellular 
nutrients to the parasite (Lauer et al., 1997), indicating the importance of TVN in nutrients 
import for the intracellular parasite. In addition, using a comparative transcriptomic 
analysis of PPMP-treated P. falciparum infected erythrocytes, Tamez and colleagues have 
identified erythrocyte vesicle protein 1 (EVP1), a parasite protein implicated in the 
maintenance of the TVN for nutrients import (Tamez et al., 2008). Furthermore, van Ooij et 

al. have shown that the exported protein PfC435 localises at vesicles proposed to connect the 
PVM and TVN and to be involved in the TVN formation (van Ooij et al., 2008). There are 
most probably more proteins involved in the formation of this network, which call for 
further investigations.  
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3.1 Nutrient uptake and induction of new permeability pathways 

The trophozoite growth is accompanied by extensive digestion of the red blood cell 
cytoplasm. However, it is not sufficient to provide the parasite all the nutrients it needs to 
sustain its growth: for example, haemoglobin does not contain isoleucine, and several other 
amino acids such as glutamate, methionine, cysteine and proline are under represented; in 
addition, the red blood cell has lost many membrane transporter activities upon 
differentiation from reticulocytes, thus limiting the parasite’s access to extracellular 
nutrients. Consequently, the intra-erythrocytic growth of the parasite depends on its ability 
to efficiently uptake a range of essential nutrients from the extracellular milieu through the 
host cell membrane to the TVN (Lauer et al., 1997). This is achieved by both the use of 
constitutively active host cell transporters and by the creation of new permeability pathways 
(NPPs) in the host cell membrane [reviewed in (Kirk, 2001)].  

The permeability to a wide range of physiologically relevant solutes is newly detected in the 
infected erythrocyte membrane at the trophozoite stage of the parasite (Ginsburg et al., 1985; 
Homewood & Neame, 1974; Staines et al., 2001). They might originate both from parasite-
encoded transporters that are delivered to the host cell membrane, and from the modulation 
of endogenous transporters of the erythrocyte by parasite-encoded proteins. Indeed, the 
NPPs depend on parasite proteins either as components of the NPPs or as modulators of 
endogenous erythrocytic transporters as first demonstrated by their re-appearance in intact 
infected erythrocytes following inactivation by chymotrypsin treatment and further 
suspension in a chymotrypsin-free medium (Baumeister et al., 2006). NPPs re-appearance 
depends on the parasite viability and ability for protein secretion. Nguitragool and 
collaborators have recently determined that the parasite Clag3 proteins, exported to the red 
blood cell membrane, contribute to a novel ion channel with unusual selectivity and 
conductance properties (Nguitragool et al., 2011). Moreover, several parasite protein-kinases 
are exported to the erythrocyte cytosol (Nunes et al., 2007) that might modulate the activity 
and specificity of pre-existing inactive membrane transporters. A specific and high affinity 
interaction of serum albumin with the surface of infected erythrocytes has also been shown 
to stimulate anion conductance in the host erythrocyte membrane, thus clearly illustrating 
the participation of both parasite and host factors in the activation of NPPs (Duranton et al., 
2008). 

3.2 Protrusions at the cell surface mediate sequestration of P. falciparum-infected 
erythrocytes 

The parasite-induced changes at the red blood cell membrane described above, would end 
up in a very efficient splenic removal of infected erythrocytes from the blood circulation if 
the parasite had not been able to confer adhesive properties to its host cell. Indeed, 
cytoadherence of P. falciparum-infected erythrocytes to the microvasculature endothelium 
has been observed which results in their sequestration at the mature trophozoite and 
schizont stages of the parasite. This cytoadherence is mediated by the parasite adhesin, 
PfEMP1, exposed at electron-dense protrusions of the erythrocyte surface, referred to as 
knobs (Baruch et al., 1995; Fairhurst & Wellems, 2006; Fremount & Miller, 1975). The key 
player in knobs formation is the knob-associated histidine-rich protein (KAHRP or HRP-1) 
as absence of this protein results in knobless infected erythrocytes (Crabb et al., 1997; 
Kilejian, 1979). In addition, the C-terminal region of this protein has been shown to be 
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essential for the formation of functional knobs (Rug et al., 2006). The knobs-mediated 
cytoadherence of P. falciparum-infected erythrocytes and its implication in the pathogenesis 
of severe malaria [reviewed in (Rowe et al., 2009) have been the subject of numerous studies 
and reviews and will only be shortly described here with special focus on the molecular 
organization of knobs.  

As the parasite matures from trophozoite to schizont, the knobs increase in density (from 10-
35 to 45-75 knobs/µm2) and eventually cover the entire red blood cell surface while their 
size varies inversely from 160-110 nm to 70-100 nm in diameter (Gruenberg et al., 1983). 
Their formation implies dynamic changes to the erythrocyte membrane and sub-membrane 
skeleton, which involve redistribution and organization of constituents from both parasite 
and host cell origin. The knob-associated histidine-rich protein (KAHRP) self-aggregates 
(Kilejian et al., 1991) and anchors the carboxy-terminal domain of PfEMP1 to the erythrocyte 
sub-membrane skeleton at the actin-protein 4.1-spectrin junction (Waller et al., 1999; Waller 
et al., 2002). In addition, extractability data strongly suggest that other red blood cell 
membrane-associated proteins are implicated because the insertion of PfEMP1 in the red 
blood cell membrane seems to rely more on protein-protein interactions than protein-lipid 
interactions (Papakrivos et al., 2005). Indeed, beside KAHRP, other parasite and erythrocyte 
proteins affect the amount and distribution of PfEMP1 at the red blood cell surface (Allred et 
al., 1986; Fairhurst & Wellems, 2006). Many studies have contributed to provide an 
integrated model of the knob structure [reviewed in (Maier et al., 2009)], implicating 
erythrocyte cytoskeletal components such as spectrin, ankyrin and actin and thus altering 
the physical properties of the erythrocyte by increasing its rigidity and adhesiveness (Pei et 
al., 2005). However, while the 5' repeat region of KAHRP is required for the knob protrusion 
(Rug et al., 2006), the precise interactions at the red blood cell membrane and sub-membrane 
skeleton causing protrusion of the red blood cell plasma membrane still need further 
investigations.  

Besides the TVN and knobs, many other parasite-induced changes in the red blood cell and 
different populations of vesicular-like membrane compartments have been observed in the 
infected erythrocyte which might be implicated in the trafficking of nutrients, lipids and 
parasite-encoded proteins within the host cell (Grellier et al., 1991; Hanssen et al., 2010; 
Külzer et al., 2010; Tamez et al., 2008).  

4. The Maurer’s clefts, a novel secretory compartment transposed in the host 
cell cytosol 

Within tens of seconds after merozoites entry and sealing of the parasitophorous vacuole, 
the erythrocyte membrane deforms from its biconcave disc shape to an echinocyte shape 
and returns to its normal state after several minutes (Gilson & Crabb, 2009) (Figure 2). This 
echinocytosis might be the result of the invagination of the red cell membrane and changes 
to the host cell cytoskeleton (Pantaleo et al., 2010) or induced by an efflux of potassium and 
chloride ions (Gilson & Crabb, 2009). In addition, these fluctuations of the red cell 
membrane might correlate with 1) the insertion of lipids in the external leaflet of the host 
cell membrane likely secreted with the rhoptry content upon invasion that would result in 
increasing the area of the red cell membrane external leaflet and explain the formation of 
spicules; 2) modifications of the erythrocyte membrane / sub-membrane skeleton 
interactions upon parasite entry. Two modifications of the erythrocyte Band 3 necessary for 
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efficient parasite entry have been observed: cleavage by the rhoptry protease Pfgp76 
resulting in increased uptake of phospholipids by the red cell membrane (Braun-Breton et 
al., 1992; Roggwiller et al., 1996) and hyper-phosphorylation resulting in the dissociation of 
Band 3 interactions with the cytoskeleton (Ferru et al., 2011; Pantaleo et al., 2010). Such a 
detachment is concordant with the spectacular echinocytic and transient shape 
transformation of the erythrocyte after invasion. At approximately the time of resumption of 
the erythrocyte to its normal shape, parasite-induced membranous compartments termed 
Maurer’s clefts are present and observed to be scattered within the host cell cytoplasm 
(Gruring et al., 2011) before predominantly residing in close vicinity of the erythrocyte 
periphery. 

 
Fig. 2. Red blood cell deformations following the entry of a P. falciparum merozoite. Change 
of the erythrocyte shape started about 2 min following entry of a P. falciparum merozoite, 
with the formation of membrane spicules and generating an echinocyte morphology. The 
time scale post-invasion is indicated on each snap-shot. High speed live imaging with the 
participation of Magali Roques and Manouk Abkarian 

In 1902, the German physician Georg Maurer has described a peculiar dotted staining 
pattern in the cytoplasm of P. falciparum-infected erythrocytes stained with Giemsa. Georg 
Maurer has provided a complete and in-depth description of these structures that were then 
named Maurer’s clefts in his honour (Lanzer et al., 2006). The significance of the discovery of 
Maurer’s clefts remained unrecognized for almost a century till presently it has become one 
of the focuses of intense malaria research concerning their morphology, biogenesis and 
functional roles. 

4.1 Morphology of Maurer’s clefts  

Trager and co-worker were among the first researchers to resolve the dotted pattern as long, 
narrow, slender single membrane surrounded clefts (Trager et al., 1966). Ultra-structural 
studies showed that Maurer’s clefts have a distinct morphology as stacks of flattened 
lamellae of long slender membrane of about 0.2-0.5 µm in length with translucent lumen 
and electron dense coat of variable thickness (60-100 nm) located predominantly at the 
erythrocyte membrane periphery as the parasite matures (Etzion & Perkins, 1989; Wickert & 
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Krohne, 2007). 3D reconstructions have added another level of complexity to the 
organization and structure of Maurer’s clefts. The simplest form of Maurer’s clefts is a 
single, disc-shaped cistern localized beneath the erythrocyte membrane with height and 
width of at least 500 nm. Maurer’s clefts with more complex morphology are formed by 
small stacks of parallel cisternae with height of 650-800 nm and width of 300 nm (Wickert et 
al., 2004; Wickert & Krohne, 2007). In addition, electron tomography, a technique collecting a 
series of images titled at different angles and tomography reconstruction of the aligned 
electron micrographs to generate a 3D model, has been recently applied to obtain a spatial 
image of Maurer’s clefts (Hanssen et al., 2010; Hanssen et al., 2008b; Henrich et al., 2009; 
Tilley & Hanssen, 2008). Hanssen and colleagues have revealed the 3D complexity of 
Maurer’s clefts with convoluted flotillas of flattened disc-shape structures with translucent 
lumen and a more electron dense coat; some regions are decorated with surface nodules 
each of ~25 nm in diameter (Hanssen et al., 2008b; Tilley & Hanssen, 2008). Differences were 
also observed in the complexity of the clefts between different P. falciparum strains. In D10 
strain, more than 60% of Maurer’s clefts have more than two cisternae, while in 3D7, only 
10% show such complex organization (Frischknecht & Lanzer, 2008; Hanssen et al., 2008b), 
suggesting that additional studies with a range of field and laboratory strains are needed to 
have a complete overview of the Maurer’s clefts morphology (Hanssen et al., 2008b).  

4.2 Biogenesis of the Maurer’s clefts 

The biogenesis of Maurer’s clefts still remains an open area of research. Wickert and 
colleagues proposed that Maurer’s clefts form a continuous network from the PVM/ TVN 
with Maurer’s clefts arising at one or more sites from the PVM/ TVN membrane and 
extending across the host cell cytoplasm to the inner leaflet of the erythrocyte plasma 
membrane (Wickert et al., 2004; Wickert et al., 2003). Consistently, using a fluorescent lipid 
and 3D reconstructions of sequential confocal images, Haldar and colleagues observed a 
continuous, membranous tubular network and vesicular structures within the cytoplasm of 
infected erythrocytes with dots, presumably Maurer’s clefts, connected by fine threads 
originating from the PVM (Haldar et al., 2001). Additionally, electron tomography studies 
showed stalk–like structures connecting one end of Maurer’s clefts body to the PVM 
(Hanssen et al., 2008b). These findings are consistent with the Maurer’s clefts originating 
from the PVM. 

However, FRAP-fluorescence recovery after photobleaching using a fluorescent lipid probe 
and GFP chimeras of Maurer’s clefts proteins such as MAHRP1 and REX1 (Ring Exported 
Protein 1) (Hanssen et al., 2008a; Spielmann et al., 2006b; Spycher et al., 2006) showed that 
although nascent Maurer’s clefts seem to bud from the PVM, they further diffuse in the  
host cell cytoplasm as distinct, independent entities. Moreover, proteomic and 
immunofluorescence studies have revealed different sets of proteins residing in the 
parasitophorous vacuole and Maurer’s clefts (Nyalwidhe & Lingelbach, 2006; Vincensini et 
al., 2005). 

4.3 Connectivity of the Maurer’s clefts with the host cell membrane 

A recent study by Gruring et al shows that Maurer’s clefts are highly mobile structures in 
the ring stage parasites and with transition to trophozoite stage, the position of clefts 
become fixed and with smaller rearrangement in the later stage as clefts predominantly 
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move to host cell periphery before merozoite formation and egress (Gruring et al., 2011). 
Consistently, using limited osmotic lysis of infected erythrocytes, Blisnick and colleagues 
showed that Maurer’s clefts are attached to the erythrocyte membrane and sub-membrane 
skeleton (Blisnick et al., 2000). The binding of Maurer’s clefts to the erythrocyte membrane in 
the late stage parasite partly depends on the interaction of a Maurer’s clefts resident protein, 
PfSBP1 (P. falciparum skeleton binding protein1) (Blisnick et al., 2000) with an erythrocyte 
host peripheral membrane protein, LANCL1 (lantibiotic synthetase component C-like 
protein) through its carboxy-terminal domain (Blisnick et al., 2005). This interaction is 
dependent on the phosphorylation status of PfSBP1 which is regulated by a Maurer’s cleft 
protein phosphatase, PfPP1, in the late stage parasite (Blisnick et al., 2006). However, 
Maurer’s clefts are attached to the erythrocyte membrane throughout the intra-erythrocytic 
development of the parasite (Blisnick et al., 2005). Hence, it is believed that there must be 
other forms of interaction between Maurer’s clefts and the erythrocyte membrane probably 
involving binding of Maurer’s clefts proteins to erythrocyte skeleton proteins such as actin 
(Etzion & Perkins, 1989) or ankyrin (Atkinson et al., 1988).  

Indeed, electron tomography studies revealed that some Maurer’s clefts are tethered to the 
erythrocyte membrane with stalk-like profiles (Hanssen et al., 2008b). High resolution at the 
tethered region reveals a membrane bilayer tube of a diameter of ~30 nm, with a striated 
appearance and a more electron dense luminal compartment as compared to the Maurer’s 
clefts lumen (Tilley & Hanssen, 2008). The contact between the tether-like structure and the 
erythrocyte membrane appears to involve an interaction with the cytoplasmic face of the 
erythrocyte membrane. In addition, a parasite membrane-associated histidine-rich protein 2 
(MAHRP2) has also been identified residing specifically at these stalk extensions (Pachlatko 
et al., 2010). Importantly, all attempts to date to genetically knock out mahrp2 have failed, 
indicating its importance, and that of Maurer’s clefts, for the parasite survival. Very new 
and important data have been recently published, showing that the flattened morphology of 
Maurer’s clefts is likely due to the force generated by actin filaments that polymerize from 
the Maurer’s clefts to domains of the red blood cell sub-membrane skeleton underneath the 
knobs (Cyrklaff et al., 2011). Vesicle-like structures of ~25 nm in diameter were also 
observed in the erythrocyte cytoplasm which may be involved in the transport of cargoes 
between the Maurer’s clefts and red cell membrane compartments (Hanssen et al., 2008b). 
Moreover, the actin filaments attaching Maurer’s clefts to the knobs seem to provide 
support and guidance for the transport of such vesicles from the clefts to the host cell 
plasma membrane (Cyrklaff et al., 2011).  

In conclusion, nascent Maurer’s clefts are thought to originate from the parasitophorous 
vacuole membrane and then mature to form functionally independent compartments 
tethered to the erythrocyte membrane. These membranous compartments are not physically 
connected, as there is no bilayer continuum between the compartments at either the protein 
or lipid level but are connected by vesicles, likely transporting parasite proteins from the 
Maurer’s clefts to the host cell surface (Gruring et al., 2011; Hanssen et al., 2008b; Tilley & 
Hanssen, 2008). 

4.4 Biological roles of Maurer’s clefts 

Maurer’s clefts are described as an extracellular secretory organelle which functions as an 
intermediate compartment or ‘pre-assembly’ platform for the sorting and delivery of 

www.intechopen.com



 
Malaria Parasites 

 

116 

parasite-encoded proteins to their final destinations in the host cell (Przyborski, 2008). In 
addition to permanent resident proteins (Vincensini et al., 2005), Maurer’s clefts appeared to 
house some transient parasite-encoded proteins such as STEVOR (subtelomeric variable 
open reading frame) (Przyborski et al., 2005), KAHRP (knob-associated histidine rich 
protein) (Wickham et al., 2001), PfEMP3 (Knuepfer et al., 2005a) and the virulence factor, 
PfEMP1  (Knuepfer et al., 2005b) en route to their final destinations at the host cell periphery. 

Generation of PfSBP1 knock-out parasites showed that this Maurer’s clefts resident protein 
is essential for the export of the PfEMP1 adhesin to the erythrocyte surface; in addition, in 
these knock-out parasites, the Maurer's clefts morphology was altered and Maurer’s clefts 
were no longer found close to the periphery of the infected erythrocytes (Cooke et al., 2006). 
Furthermore, over expression, mutagenesis or deletion of other resident or associated 
Maurer’s clefts proteins such as MAHRP1 (Spycher et al., 2008), REX1 (that associates with 
the edges of Maurer’s clefts) (Hanssen et al., 2008a) and PfEMP3 (Waterkeyn et al., 2000) not 
only alter the morphology, formation and architecture of Maurer’s clefts, but also affect the 
delivery and presentation of the virulence factor PfEMP1 to the erythrocyte surface (Dixon 
et al., 2011; Maier et al., 2009). All these data demonstrate that the correct architecture and 
assembly of Maurer’s clefts and their connectivity to the host cell membrane are essential for 
the delivery of PfEMP1 to knobs and the cytoadhesive properties of P. falciparum-infected 
erythrocytes.  

Besides playing a role in protein exporting, Maurer’s clefts also potentially house 
chaperones (HSP), metabolic enzymes and proteins involved in signalling pathways 
(Vincensini et al., 2005). This indicates that Maurer’s clefts could be a multifunctional 
organelle serving as a platform for metabolic pathways and signalling processes such as 
phospholipids biosynthesis, protein modulation by phosphorylation and dephosphorylation 
eventually affecting merozoite egress or other biological processes as reviewed in (Lanzer et 
al., 2006). Hence, it is crucial to have a deeper insight of the organization and compositions 
of this membrane compartment. 

5. Export of parasite proteins to the host cell  

Upon merozoites invasion and trophozoite growth, huge erythrocyte remodelling has been 
made as discussed before for the parasite growth, nutrients acquisition, pathogenesis and 
immune evasion, by exporting parasite-encoded proteins to the host cell (Figure 3). In doing 
so, the parasite has to establish its own novel secretory and trafficking system in the host cell 
that lacks secretory pathways. In higher eukaryotes, the secretion or trafficking of proteins 
requires a chain of sequential and highly regulated steps that involve budding and fusion of 
small vesicles. Most proteins destined to be secreted or exported have a stretch of amino-
terminal hydrophobic signal sequence for translocation into the endoplasmic reticulum (ER) 
(von Heijne, 1985) then transit through the Golgi apparatus before exiting from the cell by 
exocytosis. These series of events are termed as the constitutive secretory pathway. In P. 
falciparum, like in other eukaryotes, secreted proteins undergoing a constitutive secretory 
pathway have a signal sequence composed of a stretch of about 15 to 20 hydrophobic amino 
acids from the N-terminal or a recessed N-terminal signal sequence up to 80 amino acids 
from the N-terminus addressing the protein to the ER (Lingelbach, 1993). Proteins either 
with the classical or recessed signal sequences are able to follow the “constitutive”  
or “default” secretory pathway into the parasitophorous vacuole (soluble proteins) or the  
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Fig. 3. Scheme of a P. falciparum-infected erythrocyte focusing on the host cell major changes 
(left panel) and a proposed model for export of parasite proteins beyond the confines of the 
parasite (right panel). The parasite is growing inside the parasitophorous vacuole, the 
membrane of which constitutes the interface between the parasite and its external 
environment. Extensions of the parasitophorous vacuole membrane (PVM) form the 
tubuvesicular network (TVN) extending into the host cell cytosol. Various parasite 
structures are transposed into the red cell cytosol: the Maurer’s clefts are flat and elongated 
membrane vesicles at the host cell periphery and linked to the host cell membrane and sub-
membrane skeleton; J dots are likely membrane structures that might traffic some parasite 
proteins through the erythrocyte cytosol. Complexes of exported parasite proteins 
interacting with the erythrocyte membrane and sub-membrane skeleton forms protrusions 
of the red cell membrane, referred to as knobs, that mediate adhesion of the infected 
erythrocyte to host cells.Parasite proteins exported to the host cell traffic through the 
parasite constitutive secretory pathway as soluble proteins (1) (membrane proteins are likely 
interacting with chaperones to maintain them as unfolded and soluble) and are released in 
the lumen of the parasitophorous vacuole (2). Interacting with chaperones in the 
parasitophorous vacuole, they are addressed to a translocon in the parasitophorous vacuole 
membrane (PVM) (2) and released in the host cell cytosol (3). The proteins are further 
addressed to the Maurer’s clefts, as soluble complexes and also possibly associated with J-
dots (4). Finally, soluble proteins are sorted from the Maurer’s clefts to the red cell cytosol 
and sub-membrane skeleton (5b) and membrane proteins are trafficked to the red cell 
plasma membrane (5a), likely by vesicles that fuse with the host cell membrane. 

parasite plasma membrane (integral membrane proteins) (Adisa et al., 2003; Tonkin et al., 
2006; Wickham et al., 2001). An example is the integral membrane P. falciparum exported 
protein-1 (PfEXP1), which possesses a classical N-terminal signal sequence and is exported 
beyond the parasite to the PVM (Günther et al., 1991). Another exported protein KHARP, 
involved in the cytoadherence complex, has a recessed N-terminal signal that contains 
information both necessary and sufficient for entry into the ER and trafficking to the 
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parasitophorous vacuole (Wickham et al., 2001). These data indicate that the parasite’s 
translocation machinery is able to recognize both the classical and recessed signal peptides, 
and in the absence of any additional sorting information, proteins are transported into the 
parasitophorous vacuole. However, a 34 amino acid sequence in the C-terminal region of 
eight studied PVM proteins was proposed to be the parasitophorous targeting motif (Eksi & 
Williamson, 2011). On the other hand, additional information is required for most proteins, 
which are exported beyond the confines of the parasite across the parasitophorous vacuole 
to the erythrocyte cytosol and surface. 

The unusual nature of export process of Plasmodium is further signified by the discovery of a 
novel pentameric amino acid sequence motif that directs the export of parasite encoded 
proteins beyond the parasitophorous vacuole. This conserved motif (R/KxI/LxE/Q/D) is 
referred to as Plasmodium Export Element (PEXEL) (Marti et al., 2004) or alternatively as 
Vacuolar Targeting Signal (VTS) (Hiller et al., 2004), which are identified by different 
algorithms with slightly different specificities but recognizing the same core sequence (van 
Ooij et al., 2008). Interestingly, a similar Host Cell Targeting motif (HCTM) is also detected 
in the Irish potato famine pathogen Phytophthora infestans for delivering virulence gene 
products into plant cells (Bhattacharjee et al., 2006). This has provided the first evidence that 
eukaryotic microbes share equivalent targeting signals and thus possible conserved 
mechanisms to access host cells (Haldar et al., 2006). The PEXEL motif is located about 20-40 
amino acids downstream from the signal sequence and is typically encoded in close 
proximity to the start of exon 2 in a two-exon gene (Charpian & Przyborski, 2008). The 
discovery of this motif, allowed the in silico prediction of the exported proteins of P. 

falciparum and other Plasmodium species. Using different algorithms, the P. falciparum 
exportome was predicted to contain more than 300 proteins (Hiller et al., 2004; Marti et al., 
2004; Sargeant et al., 2006). Many of these proteins have one or two predicted trans-
membrane domains (Sargeant et al., 2006; van Ooij et al., 2008) indicating that the parasite 
transport machinery can export both soluble and trans-membrane proteins. In addition, the 
amino acids surrounding the motif are important for the correct targeting or trafficking to 
the host cell as demonstrated by (Przyborski et al., 2005) for the efficient trafficking process 
of STEVOR.  

Further dissecting this PEXEL motif, recent studies provided evidence of N-terminal 
processing of this motif as shown for PfEMP2, PfHRPII (Chang et al., 2008), PfKAHRP and 
GBP130 (Glycophorin Binding Protein) (Boddey et al., 2009), where this motif is recognized 
by a novel ER peptidase which cleaves on the C-terminal side of the Leucine residue in the 
PEXEL motif. Plasmepsin V is proved to be the ER-resident peptidase responsible for this 
cleavage (Boddey et al., 2010; Russo et al., 2010). The new N-terminus is then further 
acetylated in the parasite ER in a PEXEL independent process (Boddey et al., 2009; Chang et 
al., 2008). The processed protein should then present a motif that is recognized by a specific 
transporter in the parasitophorous vacuole membrane that helps translocating the protein 
across the PVM to the host cytosol. Indeed, a Plasmodium translocon of exported proteins 
(PTEX) located in the PVM has been identified in P. falciparum (de Koning-Ward et al., 2009). 
This translocon is ATP-powered and comprises heat shock protein 101, which belongs to a 
super family commonly associated with protein translocons, a novel protein termed 
PTEX150 (PF14_0344) and a known parasite protein, exported protein 2 (EXP2), which is 
suggested to be a potential channel since it is the membrane–associated component of the 
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core PTEX complex (de Koning-Ward et al., 2009). PfEXP2 lacks a typical hydrophobic trans-
membrane domain but was proved to be membrane-associated via an amphipathic helix 
located at the N-terminal part of the protein (Fischer et al., 1998). It has been proposed that, 
like bacterial pore forming proteins to which it shows some structural similarities, PfEXP2 
might insert into the PVM by oligomerization (Haase & de Koning-Ward, 2010). N-
acetylation may help the PVM translocon to differentiate between proteins to be exported 
beyond the PVM and those that should reside in the parasitophorous vacuole. In addition, 
protein unfolding maintained with the help of chaperones is an essential requirement for 
transport across the PVM (Gehde et al., 2009). Chaperones and proteases are the most 
abundant proteins in the vacuole, suggesting an important role of the vacuole both in 
protein folding and processing (Nyalwidhe & Lingelbach, 2006).  

Chimeric proteins with (Wickham et al., 2001) or without (Spycher et al., 2006) PEXEL motif 
located near the parasite periphery have been reported to localize to structures with the 
appearance of a necklace of beads that are resistant to recovery after photobleaching. These 
data suggest the presence of sub-compartments within the PVM. In addition, PfEXP1 and 
ETRAMP locating at the PVM define separate arrays demonstrating that the protein 
distribution in the PVM is non-random, hence reinforcing the idea of the presence of sub-
compartments within the PVM (Adisa et al., 2003; Spielmann et al., 2006a). Such sub-
compartments are proposed to house the PTEX translocon (Boddey et al., 2009; de Koning-
Ward et al., 2009).  

Exceptionally, the PEXEL motif is not sufficient to export a parasite protein into the host cell 
as illustrated by RIFIN proteins: members of the B-type subfamily of RIFINs are exported to 
the Maurer’s clefts while subfamily A-type RIFINs are retained within the parasite despite 
having the PEXEL motif (Petter et al., 2007). This observation highlights the role of 
additional motifs or protein-protein interactions for efficient export that might be even more 
important than the PEXEL motif since an increasing number of parasite proteins that lack 
such an export motif are reported. These proteins are termed as PEXEL negative proteins or 
PNEPs [(Spielmann et al., 2006b) and reviewed in (Spielmann & Gilberger, 2010)]. Some of 
the PNEPs including PfSBP1 (Saridaki et al., 2009), PfMAHRP1 (Spycher et al., 2008) and 
PfREX-1 (Spielmann et al., 2006b) are known to be exported to the Maurer’s clefts. The trans-
membrane domain of PfSBP1 was demonstrated to address the protein to the parasite ER 
and constitutive secretory pathway. One of the two characterized N-terminal domains of 
PfSBP1 with high negative net charge and acting independently is necessary for the protein 
export beyond the parasite to Maurer’s clefts (Saridaki et al., 2009). For PfMAHRP1, the 
second half of the N-terminal part of the protein and the trans-membrane domain contain 
the essential signal for trafficking to Maurer’s clefts (Spycher et al., 2006). As for PfREX-1, a 
hydrophobic stretch and additional 10 amino acid towards the C-terminal are important for 
the protein export (Dixon et al., 2008). The PfSURFIN4.2 protein was shown to localize at the 
Maurer’s clefts and the infected erythrocyte plasma membrane using immuno-electron 
microscopy (Winter et al., 2005), and found to be trafficked to the host cell as a PNEP. 
PfSURFIN4.2 protein export to the host cell does not depend on any of its two non consensus 
PEXEL-like motifs nor on its extracellular domain but requires its predicted trans-membrane 
domain (Alexandre et al., 2011). Interestingly, PfSURFIN4.2 was reported to accumulate in 
the parasitophorous vacuole in late schizonts, thus suggesting stage-dependent differential 
localization (Winter et al., 2005). Taken together, these studies showed that no obvious 
export motif is found among and shared by PNEPs but proved the importance of an 
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hydrophobic trans-membrane domain, likely addressing PNEPs to the parasite ER, and that 
of protein-protein interactions for their delivery beyond the confines of the parasite. 
Whether PNEPs indirectly use the PTEX translocon or an alternative export pathway calls 
for more investigations.  

To date, there are many proposed models of protein trafficking pathways across the PVM to 
the erythrocyte cytosol and surface, based on the studies of different parasite proteins which 
has broaden our knowledge of the presence of multiple exporting routes. The most popular 
model of protein export across the PVM is that unfolded proteins are secreted into the 
parasitophorous vacuole, and translocate through a channel or translocon (PTEX) into the 
host cytosol as discussed above. Ultrastructural studies showing strings of vesicles budding 
off from the PVM have provided evidence of vesicle trafficking in the infected erythrocyte 
cytosol (Trelka et al., 2000). PfEMP1 and PfEMP3 were found to be associated with these 
vesicles, and proposed to be delivered to the erythrocyte surface in the mode of vesicles 
(Trelka et al., 2000). In addition, homologues of two components of the classical vesicle-
mediated trafficking machinery COPII, PfSar1p and PfSec31p, were reported to be exported 
to the erythrocyte cytosol, suggesting a vesicle-mediated trafficking pathway for proteins 
across the erythrocyte cytoplasm (Adisa et al., 2001; Adisa et al., 2002). However, this model 
has been recently challenged because, even in the presence of slowly hydrolysable GTP 
analogues blocking vesicular trafficking, PfEMP1 was still properly trafficked to the 
erythrocyte membrane (Frankland et al., 2006). Moreover, the localization of the COPII 
proteins has been later redefined inside the parasite cytoplasm (Adisa et al., 2007). 
Furthermore, PfEMP1 is transported as a soluble chaperoned complex in the erythrocyte 
cytosol, transiently inserts into the Maurer’s clefts membrane and finally inserts into the 
erythrocyte membrane (Papakrivos et al., 2005). This has revealed another model of non-
vesicular mode of protein export where proteins may transport as soluble complexes in the 
erythrocyte cytosol and then interact transiently with Maurer’s clefts before reaching the 
erythrocyte membrane skeleton (Knuepfer et al., 2005a). Similarly, PfREX1 is exported across 
the PVM to the host cell cytosol as a soluble form and inserts to Maurer’s clefts via a putative 
coiled-coil motif (Dixon et al., 2008). Differently, PfMAHRP1 is trafficked to the Maurer’s 
clefts in a membrane-associated manner budding from the PVM (Spycher et al., 2006), 
adding to the evidence that nascent Maurer’s clefts might be connected to or bud from the 
PVM as previously discussed.  

To further elucidate the mechanisms of protein trafficking, Hanssen and collaborators have 
applied immunoelectron tomography combined with serial sectioning and immunogold 
labelling to explore the topography of infected erythrocytes (Hanssen et al., 2010). They 
proposed that the exported secretory system of P. falciparum comprises a series of modular 
units: TVN, Maurer’s clefts, and two different populations of vesicles of 25 and 80 nm in 
diameter in the erythrocyte cytosol, suggesting the presence of a vesicular-mediated 
trafficking pathway for the delivery of cargo between compartments to different 
destinations in the host cell (Hanssen et al., 2010). Recently, other extra-parasitic structures 
named ‘J-dots’ and containing the exported parasite Hsp40 co-chaperone, were identified in 
the infected erythrocyte cytosol and proposed to traffic parasite proteins to the host cell 
(Külzer et al., 2010). However, all parasite proteins identified so far as exported to the host 
cell are transiently associated with the Maurer’s clefts. Since Maurer’s clefts are physically 
tethered to the erythrocyte membrane, Hanssen and collaborators have proposed that 
proteins traffic from the Maurer’s clefts to the erythrocyte membrane via the membranous 
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tubular structure tethering the clefts to the host cell membrane (Hanssen et al., 2010). 
Alternatively, transport vesicles have been shown to be attached to the actin filaments that 
connect the Maurer’s clefts to the host cell membrane and might sustain the transport of 
proteins between these two compartments (Cyrklaff et al., 2011).  

6. Lipids remodelling: Implications of lipid rafts (DRMs) in human malaria 

Despite identifying the roles and biogenesis of specific extracellular compartments of the 
parasite and the discovery of the protein exporting PEXEL motif with different models of 
trafficking pathways proposed, the contribution of lipids in these cellular processes is 
poorly understood even though the exported proteins have to bypass several membrane 
barriers to reach their final destination. Upon merozoite invasion, there is a change in the 
lipid and protein compositions of the infected erythrocyte membrane indicating that the 
parasite also remodels micro-domains of its host cell membrane known as lipid rafts and a 
lipid raft-based biogenesis of the parasitophorous vacuole membrane has been proposed. In 
addition, lipid raft-based processes and interactions of both host and parasite origin might 
be crucial to maintain the stability of the vacuolar environment for the parasite growth and 
pathogenesis [reviewed in (Murphy et al., 2006)]. 

Lipid rafts also serve as a stage for protein assemblies, sorting and trafficking through 
endocytic and secretory pathways in other cell types [reviewed in (Hanzal-Bayer & 
Hancock, 2007)]. Do DRMs have any contributions to P. falciparum protein trafficking 
pathways in infected erythrocytes? Tamez and colleagues have described a vesicle-like 
membrane compartment in the infected erythrocyte cytosol, which might be implicated in 
the import of lipids from the erythrocyte membrane to the TVN (Tamez et al., 2008). 
Moreover, the binding of the parasite Hsp40 co-chaperone to “J-dots”, proposed to be 
involved in protein trafficking through the erythrocyte cytosol, was shown to be cholesterol 
dependent (Külzer et al., 2010). Furthermore, the presentation of the parasite virulence 
protein PfEMP1 on the erythrocyte surface involves the final insertion of the protein into 
cholesterol-rich domains of the erythrocyte plasma membrane (Frankland et al., 2006) and 
with more delivery in the presence of serum lipoproteins (Frankland et al., 2007). Whether 
all parasite proteins exported to the host cell surface are delivered to lipid rafts needs to be 
further investigated. 

In conclusion, elucidating and characterizing the functional roles of cholesterol rich DRMs 
during the intra-erythrocytic development of the P. falciparum parasite might shed new light 
on protein trafficking or host cell remodelling processes.  

7. Merozoite egress from the red cell: A split second event likely depending 
on very early changes to the red blood cell membrane 

The release of infectious merozoites from the host cell requires the opening of the 
parasitophorous and red cell membranes. Dvorak and collaborators have first observed that 
the swelling of the infected erythrocyte precedes the egress of Plasmodium falciparum 
merozoites by a few minutes (Dvorak et al., 1975). In addition, the use of amphiphiles, 
osmotic stress and protease inhibitors strongly suggested that merozoite release is pressure 
driven (Glushakova et al., 2009; Glushakova et al., 2005). Shortly before merozoite egress, the 
intracellular parasites seem to move more freely while the red cell membrane is still intact 
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(Abkarian et al., 2011), comforting previous studies providing evidence that, when the 
merozoites are close to egress, the PVM enlarges and ruptures before the erythrocyte 
membrane (Wickham et al., 2003). What drives a sudden increase in the osmotic pressure? A 
premature release of immature merozoites has been recently described which results from 
the inhibition of RNA degradation and is preceded by swelling of the infected erythrocyte 
(Balu et al., 2011). In addition, parasite proteases specifically active just prior to merozoite 
release could also participate in the increased osmolarity (Koussis et al., 2009). Noteworthy, 
proteases of both parasite and host origin have likely numerous roles in merozoite egress 
and might also participate in both the rupture of the PVM and the subsequent opening of 
the erythrocyte membrane (Arastu-Kapur et al., 2008; Chandramohanadas et al., 2009; Yeoh 

et al., 2007).  

Indeed, although first considered as an explosive event, merozoite egress from the red blood 
cell has been shown recently to occur through the opening and stabilization of an osmotic 
pore in the host cell membrane allowing the release of a limited number of merozoites 
(Abkarian et al., 2011). The pore opening is followed by the curling and buckling of the 
erythrocyte membrane, and this results in the wide-angular dispersion of the remaining 
merozoites. These events happen when a critical radius of the osmotic pore is reached. 
Abkarian et al 2011 hypothesized that this instability is biologically relevant as it disperses 
the merozoites and contributes to separate them efficiently from the infected cell membrane. 
Indeed, abortive egress events have been observed with a stop of curling and no buckling, 
resulting in the merozoites remaining stuck together inside the open erythrocyte and thus 
unable to further invade new red blood cells (Abkarian et al., 2011). Noteworthy, these data 
have been obtained with infected erythrocytes in suspension and it is important to 
determine whether merozoites release proceeds through similar steps in vivo, when red cells 
with mature parasites are sequestered in the microvasculature, adhering to endothelial cells. 
Observations of infected erythrocytes adhered to a glass substrate shed some light on this 
process: over 5 merozoites were sequentially released through a pore of similar radius (1 
µm) and with higher velocity as compared to non adhering cells, before curling occurred. 
The membrane was then projected backwards, thereby releasing merozoites but without 
actually pushing them forward. In brief, while similar steps are involved, the resulting 
dispersion of the merozoites looks different. These results suggest that adhesion maintains a 
membrane tension high enough to produce the overpressure driving more merozoites out of 
the host cell. Considering that P. falciparum infected erythrocytes are also able to adhere to 
non-infected erythrocytes, the merozoites would be released appropriately to re-invade in 

vivo efficiently.  

The curling and buckling of the infected erythrocyte membrane can originate from an 
additional elastic energy due to an asymmetry between the membrane leaflets (Abkarian 
et al., 2011). A nice illustration of this effect is the curling of a gift ribbon after one slides it 
between the thumb and a scissor blade, thus creating an excess area of the outer leaflet 
(Klales et al., 2007). In P. falciparum- infected erythrocytes, this asymmetry between the 
two membrane leaflets could originate from a lipid excess in the inner leaflet caused by a 
lipid release of parasite origin, a modification of the mechanical properties of the red cell 
membrane through changes of the cytoskeleton/membrane interactions [reviewed in (An 
& Mohandas, 2010)] and/or interactions of the erythrocyte membrane with the Maurer's 
clefts.  
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As described before, parasite-induced changes at the red blood cell membrane affecting its 
stability occur as early as parasite entry and very early intra-erythrocytic growth. Moreover, 
phosphorylation of host peripheral proteins increases upon parasite growth and might 
modulate the bio-physical properties of the red cell membrane throughout the parasite 
development ( Pantaleo et al., 2010). One might thus consider that on one hand the parasite 
weakens its host cell membrane and on the other hand it stabilizes it by exporting proteins 
to the red cell sub-membrane skeleton and recruiting host proteins to or from the sub-
membrane skeleton. 

However, the ability to curl and buckle has also been proposed to be an intrinsic property of 
the erythrocyte membrane when the cell is exposed to certain osmotic stress (Lew, 2011) 
although with marked kinetic differences as compared to the infected erythrocyte. Whether 
the parasite explores a property of its host cell and at what extent the changes of the red cell 
membrane and sub-membrane skeleton induced by the parasite are essential for efficient 
merozoite release need further investigations.  

8. Concluding remarks 

As described in this chapter, Apicomplexan parasites widely transform the parasitophorous 
vacuole in which they grow and multiply and which constitutes the interface between the 
parasite and its extracellular environment. Changes of its closed environment, the red blood 
cell cytoplasm and plasma membrane, induced by the life-threatening human malaria 
parasite Plasmodium falciparum have been extensively studied because these changes are 
crucial for the parasite development and some, referred to as knobs, are specific for this 
species and central to the pathogenesis of severe malaria. In the last decade, the set up of P. 

falciparum genetic engineering and the spectacular advances of imaging technologies, have 
considerably highlighted our knowledge of the red cell remodelling by the parasite, the 
processes involved and their importance for the parasite survival. 

Upon intra-erythrocytic parasite growth, new permeation pathways in the red cell 
membrane and extensions of the parasitophorous vacuole membrane in the host cell cytosol, 
named the tubovesicular network, participate in the import of nutrients from the 
extracellular milieu. Other membrane structures transposed by the parasite in the cytoplasm 
of its host cell, referred to as Maurer’s clefts, and proposed to generate from the 
parasitophorous vacuole membrane, are central to the transport of parasite proteins to the 
red blood cell. They tightly interact with the host cell membrane even upon merozoite 
release. This interaction together with exported parasite proteins interacting with the host 
cell sub-membrane skeleton might prevent the premature rupture of the red cell membrane 
and consequent release of immature merozoites. Maintaining the integrity of the red cell 
membrane upon its growth is likely crucial for the parasite because it has weakened its host 
cell membrane by altering the cohesion between the plasma membrane and sub-membrane 
skeleton via the phosphorylation and the recruitment of host cell membrane and skeletal 
proteins. On the other hand, one can consider that the parasite has prepared its host cell 
membrane not only for entry but also for egress because reversing the parasite-induced 
modifications, for example by the activation of phosphatases, would highly facilitate the 
rupture of the red cell plasma membrane. 
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The merozoite release, following the engulfment of the infected erythrocyte, relies on an 
unique site of opening allowing the egress of the first one or two merozoites; the release of 
the remaining merozoites results from the curling and eversion of the red blood cell 
membrane. Importantly, the same sequence of events has been observed whether the 
infected erythrocytes were in suspension or adhering to the substrate (which is the usual 
status of P. falciparum infected erythrocytes because of cytoadherence to the micro-vessel 
endothelium and to non-infected erythrocytes). The physical parameters of curling and 
eversion of the red cell membrane emphasized once more the importance of parasite-
induced changes to the host cell membrane. 

Red blood cell remodelling by the malaria parasite necessitates both efficient export of 
parasite proteins to the host cell and extensive membrane synthesis. These processes, 
together with the parasite enzymatic activities, such as proteases, protein kinases and 
phosphatases, which are crucial for the intra-cellular survival of the parasite and evasion 
from splenic clearance and host immune response, deserve precise characterization because 
they are Achilles heels that could be targeted by specific drugs or antibodies.  

9. Acknowledgements 

We are very grateful to Maryse Lebrun for critical reading of the manuscript and apologize 
to researchers whose work has not been directly cited in this review because of limiting 
space. This work was supported by the University Montpellier 2 and the CNRS. XY Yam 
was supported by the MalParTraining FP6 Marie Curie Action under contract No. MEST-
CT-2005-020492. A Mbengue is supported by a PhD fellowship from the French Ministère de 
l’Education Nationale, de la Recherche et de la Technologie. 

10. References 

Abkarian, M., Massiera, G., Berry, L., Roques, M., Braun-Breton, C., 2011, A novel 
mechanism for malaria parasite egress from the red blood cell. Blood,. 

Adisa, A., Albano, F.R., Reeder, J., Foley, M., Tilley, L., 2001, Evidence for a role for a 
Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface 
of malaria parasite-infected erythrocytes. J Cell Sci 114, 3377-3386. 

Adisa, A., Rug, M., Foley, M., Tilley, L., 2002, Characterisation of a [delta]-COP homologue 
in the malaria parasite, Plasmodium falciparum. Mol. Biochem. Parasitol. 123, 11-21. 

Adisa, A., Rug, M., Klonis, N., Foley, M., Cowman, A.F., Tilley, L., 2003, The Signal 
Sequence of Exported Protein-1 Directs the Green Fluorescent Protein to the 
Parasitophorous Vacuole of Transfected Malaria Parasites. J. Biol Chem 278, 6532-
6542. 

Adisa, A., Frankland, S., Rug, M., Jackson, K., Maier, A.G., Walsh, P., Lithgow, T., Klonis, 
N., Gilson, P.R., Cowman, A.F., Tilley, L., 2007, Re-assessing the locations of 
components of the classical vesicle-mediated trafficking machinery in transfected 
Plasmodium falciparum. International Journal for Parasitology 37, 1127-1141. 

Aikawa, M., Miller, L., Johnson, J., Rabbege, J., 1978, Erythrocyte entry by malarial parasites. 
A moving junction between erythrocyte and parasite. The Journal of Cell Biology 

77, 72-82. 

www.intechopen.com



 
Human Erythrocyte Remodelling by Plasmodium falciparum 

 

125 

Aikawa, M., Miller, L.H., Rabbege, J.R., Epstein, N., 1981, Freeze-fracture study on the 
erythrocyte membrane during malarial parasite invasion. The Journal of Cell 
Biology 91, 55-62. 

Alexandre, J.S.F., Yahata, K., Kawai, S., Torii, M., Kaneko, O., 2011, PEXEL-independent 
trafficking of Plasmodium falciparum SURFIN4.2 to the parasite-infected red blood 
cell and Maurer's clefts. Parasitology International 60, 313-320. 

Allred, D.R., Gruenberg, J.E., Sherman, I.W., 1986, Dynamic rearrangements of erythrocyte 
membrane internal architecture induced by infection with Plasmodium falciparum. 
Journal of Cell Science 81, 1-16. 

An, X., Mohandas, N., 2010, Red cell membrane and malaria. Transfus Clin Biol 17, 197-199. 
Arastu-Kapur, S., Ponder, E.L., Fonovic, U.P., Yeoh, S., Yuan, F., Fonovic, M., Grainger, M., 

Phillips, C.I., Powers, J.C., Bogyo, M., 2008, Identification of proteases that regulate 
erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nature chemical 
biology 4, 203-213. 

Atkinson, C., Aikawa, M., Perry, G., Fujino, T., Bennett, V., Davidson, E., Howard, R., 1988, 
Ultrastructural localization of erythrocyte cytoskeletal and integral membrane 
proteins in Plasmodium falciparum-infected erythrocytes. Eur J Cell Biol 45, 192-199. 

Atkinson, C., Aikawa, M., 1990, Ultrastructure of malaria-infected erythrocytes. Blood Cells 
16, 351-368. 

Balu, B., Maher, S.P., Pance, A., Chauhan, C., Naumov, A.V., Andrews, R.M., Ellis, P.D., 
Khan, S.M., Lin, J.W., Janse, C.J., et al., 2011, CCR4-associated factor 1 coordinates 
the expression of Plasmodium falciparum egress and invasion proteins. Eukaryotic 
Cell 10, 1257-1263. 

Bannister, L., Mitchell, G., Butcher, G., Dennis, E., 1986, Lamellar membranes associated 
with rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the 
mechanism of invasion. Parasitology 92, 291-303. 

Bannister, L., Mitchell, G., 1989, The fine structure of secretion by Plasmodium knowlesi 
merozoites during red cell invasion. J Protozool 36, 362-367. 

Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., Taraschi, T.F., 
Howard, R.J., 1995, Cloning the P. falciparum gene encoding PfEMP1, a malarial 
variant antigen and adherence receptor on the surface of parasitized human 
erythrocytes. Cell 82, 77-87. 

Baumeister, S., Winterberg, M., Duranton, C., Huber, S.M., Lang, F., Kirk, K., Lingelbach, K., 
2006, Evidence for the involvement of Plasmodium falciparum proteins in the 
formation of new permeability pathways in the erythrocyte membrane. Mol 
Microbiol 60, 493-504. 

Behnke, M.S., Khan, A., Wootton, J.C., Dubey, J.P., Tang, K., Sibley, L.D., 2011, Virulence 
differences in Toxoplasma mediated by amplification of a family of polymorphic 
pseudokinases. Proc. Natl. Acad. Sci. U.S.A 108, 9631-9636. 

Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J.F., Lebrun, M., 2009, Export of a 
Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form 
the moving junction during invasion. PLoS Pathog 5, e1000309. 

Besteiro, S., Dubremetz, J.-F., Lebrun, M., 2011, The moving junction of apicomplexan 
parasites: a key structure for invasion. Cellular Microbiology 13, 797-805. 

Bhattacharjee, S., Hiller, N.L., Liolios, K., Win, J., Kanneganti, T.-D., Young, C., Kamoun, S., 
Haldar, K., 2006, The Malarial Host-Targeting Signal Is Conserved in the Irish 
Potato Famine Pathogen. PLoS Pathog 2, e50. 

www.intechopen.com



 
Malaria Parasites 

 

126 

Bietz, S., Montilla, I., Külzer, S., Przyborski, J.M., Lingelbach, K., 2009, Recruitment of 
human aquaporin 3 to internal membranes in the Plasmodium falciparum infected 
erythrocyte. Mol. Biochem. Parasitol 167, 48-53. 

Blisnick, T., Morales Betoulle, M.E., Barale, J.-C., Uzureau, P., Berry, L., Desroses, S., Fujioka, 
H., Mattei, D., Braun Breton, C., 2000, Pfsbp1, a Maurer's cleft Plasmodium 
falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. 
Parasitol 111, 107-121. 

Blisnick, T., Vincensini, L., Barale, J.C., Namane, A., Braun Breton, C., 2005, LANCL1, an 
erythrocyte protein recruited to the Maurer's clefts during Plasmodium falciparum 
development. Mol. Biochem. Parasitol 141, 39-47. 

Blisnick, T., Vincensini, L., Fall, G., Braun-Breton, C., 2006, Protein phosphatase 1, a 
Plasmodium falciparum essential enzyme, is exported to the host cell and implicated 
in the release of infectious merozoites. Cellular Microbiology 8, 591-601. 

Boddey, J.A., Moritz, R.L., Simpson, R.J., Cowman, A.F., 2009, Role of the Plasmodium Export 
Element in Trafficking Parasite Proteins to the Infected Erythrocyte. Traffic 10, 285-
299. 

Boddey, J.A., Hodder, A.N., Gunther, S., Gilson, P.R., Patsiouras, H., Kapp, E.A., Pearce, J.A., 
de Koning-Ward, T.F., Simpson, R.J., Crabb, B.S., Cowman, A.F., 2010, An aspartyl 
protease directs malaria effector proteins to the host cell. Nature 463, 627-631. 

Braun-Breton, C., Blisnick, T., Barbot, P., Bulow, R., Pereira da Silva, L., Langsley, G., 1992, 
Plasmodium falciparum and Plasmodium chabaudi: characterization of 
glycosylphosphatidylinositol-degrading activities. Experimental Parasitology 74, 
452-462. 

Chandramohanadas, R., Davis, P.H., Beiting, D.P., Harbut, M.B., Darling, C., 
Velmourougane, G., Lee, M.Y., Greer, P.A., Roos, D.S., Greenbaum, D.C., 2009, 
Apicomplexan parasites co-opt host calpains to facilitate their escape from infected 
cells. Science 324, 794-797. 

Chang, H.H., Falick, A.M., Carlton, P.M., Sedat, J.W., DeRisi, J.L., Marletta, M.A., 2008, N-
terminal processing of proteins exported by malaria parasites. Mol. Biochem. 
Parasitol 160, 107-115. 

Charpian, S., Przyborski, J.M., 2008, Protein Transport Across the Parasitophorous Vacuole 
of Plasmodium falciparum: Into the Great Wide Open. Traffic 9, 157-165. 

Cooke, B.M., Buckingham, D.W., Glenister, F.K., Fernandez, K.M., Bannister, L.H., Marti, 
M., Mohandas, N., Coppel, R.L., 2006, A Maurer's cleft-associated protein is 
essential for expression of the major malaria virulence antigen on the surface of 
infected red blood cells. J. Cell Biol. 172, 899-908. 

Crabb, B.S., Cooke, B.M., Reeder, J.C., Waller, R.F., Caruana, S.R., Davern, K.M., Wickham, 
M.E., Brown, G.V., Coppel, R.L., Cowman, A.F., 1997, Targeted Gene Disruption 
Shows That Knobs Enable Malaria-Infected Red Cells to Cytoadhere under 
Physiological Shear Stress. Cell 89, 287-296. 

Cyrklaff,M., Sanchez, C.P., Killian, N., Bisseye, C., Simpore, J., Frischknecht, F., Lanzer, M., 
2011, Hemoglobin S and C interfere with actin remodeling in Plasmodium 
falciparum-infected erythrocytes. Science 2011 Nov 10. [Epub ahead of print] 

de Koning-Ward, T.F., Gilson, P.R., Boddey, J.A., Rug, M., Smith, B.J., Papenfuss, A.T., 
Sanders, P.R., Lundie, R.J., Maier, A.G., Cowman, A.F., Crabb, B.S., 2009, A newly 
discovered protein export machine in malaria parasites. Nature 459, 945-949. 

www.intechopen.com



 
Human Erythrocyte Remodelling by Plasmodium falciparum 

 

127 

Dixon, M.W.A., Hawthorne, P.L., Spielmann, T., Anderson, K.L., Trenholme, K.R., Gardiner, 
D.L., 2008, Targeting of the Ring Exported Protein 1 to the Maurer’s Clefts is 
Mediated by a Two-Phase Process. Traffic 9, 1316-1326. 

Dixon, M.W.A., Kenny, S., McMillan, P.J., Hanssen, E., Trenholme, K.R., Gardiner, D.L., 
Tilley, L., 2011, Genetic ablation of a Maurer's cleft protein prevents assembly of the 
Plasmodium falciparum virulence complex. Mol Microbiol 81, 982-993. 

Dluzewski, A.R., Fryer, P.R., Griffiths, S., Rangachari, K., Wilson, R.J., Gratzer, W.B., 1988, 
Exclusion of red cell membrane cytoskeleton from the parasitophorous vacuole 
membrane of the internalised malaria parasite. Cell Biol Int Rep 12, 149. 

Dluzewski, A., Fryer, P., Griffiths, S., Wilson, R., Gratzer, W., 1989, Red cell membrane 
protein distribution during malarial invasion. J Cell Sci 92, 691-699. 

Dluzewski, A., Zicha, D., Dunn, G., WB, G., 1995, Origins of the parasitophorous vacuole 
membrane of the malaria parasite: surface area of the parasitized red cell. Eur J Cell 
Biol. 68, 446-449. 

Duranton, C., Tanneur, V., Lang, C., Brand, V.B., Koka, S., Kasinathan, R.S., Dorsch, M., 
Hedrich, H.J., Baumeister, S., Lingelbach, K., et al., 2008, A high specificity and 
affinity interaction with serum albumin stimulates an anion conductance in 
malaria-infected erythrocytes. Cell Physiol Biochem 22, 395-404. 

Dvorak, J.A., Miller, L.H., Whitehouse, W.C., Shiroishi, T., 1975, Invasion of erythrocytes by 
malaria merozoites. Science 187, 748-750. 

Eksi, S., Williamson, K.C., 2011, Protein Targeting to the Parasitophorous Vacuole 
Membrane of Plasmodium falciparum. Eukaryotic Cell 10, 744-752. 

El Hajj, H., Lebrun, M., Arold, S.T., Vial, H., Labesse, G., Dubremetz, J.F., 2007, ROP18 is a 
rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. PLoS 
Pathog 3, e14. 

Elmendorf, H., Haldar, K., 1994, Plasmodium falciparum exports the Golgi marker 
sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature 
erythrocytes. J. Cell Biol. 124, 449-462. 

Etzion, Z., Perkins, M., 1989, Localization of a parasite encoded protein to erythrocyte 
cytoplasmic vesicles of Plasmodium falciparum-infected cells. Eur J Cell Biol 48, 
174-179. 

Fairhurst, R.M., Wellems, T.E., 2006, Modulation of malaria virulence by determinants of 
Plasmodium falciparum erythrocyte membrane protein-1 display. Curr Opin 
Hematol 13, 124-130. 

Ferru, E., Giger, K., Pantaleo, A., Campanella, E., Grey, J., Ritchie, K., Vono, R., Turrini, F., 
Low, P.S., 2011, Regulation of membrane-cytoskeletal interactions by tyrosine 
phosphorylation of erythrocyte band 3. Blood 117, 5998-6006. 

Fischer, K., Marti, T., Rick, B., Johnson, D., Benting, J., Baumeister, S., Helmbrecht, C., 
Lanzer, M., Lingelbach, K., 1998, Characterization and cloning of the gene encoding 
the vacuolar membrane protein EXP-2 from Plasmodium falciparum. Mol. Biochem. 
Parasitol. 92, 47-57. 

Frankland, S., Adisa, A., Horrocks, P., Taraschi, T.F., Schneider, T., Elliott, S.R., Rogerson, 
S.J., Knuepfer, E., Cowman, A.F., Newbold, C.I., Tilley, L., 2006, Delivery of the 
Malaria Virulence Protein PfEMP1 to the Erythrocyte Surface Requires Cholesterol-
Rich Domains. Eukaryotic Cell 5, 849-860. 

www.intechopen.com



 
Malaria Parasites 

 

128 

Frankland, S., Elliott, S.R., Yosaatmadja, F., Beeson, J.G., Rogerson, S.J., Adisa, A., Tilley, L., 
2007, Serum Lipoproteins Promote Efficient Presentation of the Malaria Virulence 
Protein PfEMP1 at the Erythrocyte Surface. Eukaryotic Cell 6, 1584-1594. 

Fremount, H.N., Miller, L.H., 1975, Deep vascular schizogony in Plasmodium fragile: organ 
distribution and ultrastructure of erythrocytes adherent to vascular endothelium. 
The American Journal of Tropical Medicine and Hygiene 24, 1-8. 

Frischknecht, F., Lanzer, M., 2008, The Plasmodium falciparum Maurer's clefts in 3D. Mol 
Microbiol 67, 687-691. 

Gehde, N., Hinrichs, C., Montilla, I., Charpian, S., Lingelbach, K., Przyborski, J.M., 2009, 
Protein unfolding is an essential requirement for transport across the 
parasitophorous vacuolar membrane of Plasmodium falciparum. Mol Microbiol 71, 
613-628. 

Gilbert, L.A., Ravindran, S., Turetzky, J.M., Boothroyd, J.C., Bradley, P.J., 2007, Toxoplasma 
gondii targets a protein phosphatase 2C to the nuclei of infected host cells. 
Eukaryotic Cell 6, 73-83. 

Gilson, P.R., Crabb, B.S., 2009, Morphology and kinetics of the three distinct phases of red 
blood cell invasion by Plasmodium falciparum merozoites. International Journal for 
Parasitology 39, 91-96. 

Ginsburg, H., Kutner, S., Krugliak, M., Cabantchik, Z.I., 1985, Characterization of 
permeation pathways appearing in the host membrane of Plasmodium falciparum 
infected red blood cells. Mol. Biochem. Parasitol 14, 313-322. 

Glushakova, S., Yin, D., Li, T., Zimmerberg, J., 2005, Membrane transformation during 
malaria parasite release from human red blood cells. Current biology : CB 15, 1645-
1650. 

Glushakova, S., Mazar, J., Hohmann-Marriott, M.F., Hama, E., Zimmerberg, J., 2009, 
Irreversible effect of cysteine protease inhibitors on the release of malaria parasites 
from infected erythrocytes. Cellular Microbiology 11, 95-105. 

Grellier, P., Rigomier, D., Clavey, V., Fruchart, J.C., Schrevel, J., 1991, Lipid traffic between 
high density lipoproteins and Plasmodium falciparum-infected red blood cells. J. Cell 
Biol. 112, 267-277. 

Gruenberg, J., Allred, D., Sherman, I., 1983, Scanning electron microscope-analysis of the 
protrusions (knobs) present on the surface of Plasmodium falciparum-infected 
erythrocytes. J. Cell Biol. 97, 795-802. 

Gruring, C., Heiber, A., Kruse, F., Ungefehr, J., Gilberger, T.-W., Spielmann, T., 2011, 
Development and host cell modifications of Plasmodium falciparum blood stages in 
four dimensions. Nat Commun 2, 165. 

Günther, K., Tümmler, M., Arnold, H.-H., Ridley, R., Goman, M., Scaife, J.G., Lingelbach, K., 
1991, An exported protein of Plasmodium falciparum is synthesized as an integral 
membrane protein. Mol. Biochem. Parasitol 46, 149-157. 

Haase, S., de Koning-Ward, T.F., 2010, New insights into protein export in malaria parasites. 
Cellular Microbiology 12, 580-587. 

Haldar, K., de Amorim, A., Cross, G., 1989, Transport of fluorescent phospholipid analogues 
from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected 
cells. J. Cell Biol. 108, 2183-2192. 

www.intechopen.com



 
Human Erythrocyte Remodelling by Plasmodium falciparum 

 

129 

Haldar, K., Samuel, B.U., Mohandas, N., Harrison, T., Hiller, N.L., 2001, Transport 
mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular 
network. International Journal for Parasitology 31, 1393-1401. 

Haldar, K., Kamoun, S., Hiller, N.L., Bhattacharje, S., van Ooij, C., 2006, Common infection 
strategies of pathogenic eukaryotes. Nat Rev Micro 4, 922-931. 

Hanssen, E., Hawthorne, P., Dixon, M.W.A., Trenholme, K.R., McMillan, P.J., Spielmann, T., 
Gardiner, D.L., Tilley, L., 2008a, Targeted mutagenesis of the ring-exported protein-
1 of Plasmodium falciparum disrupts the architecture of Maurer's cleft organelles. 
Mol Microbiol 69, 938-953. 

Hanssen, E., Sougrat, R., Frankland, S., Deed, S., Klonis, N., Lippincott-Schwartz, J., Tilley, 
L., 2008b, Electron tomography of the Maurer's cleft organelles of Plasmodium 
falciparum-infected erythrocytes reveals novel structural features. Mol Microbiol 67, 
703-718. 

Hanssen, E., Carlton, P., Deed, S., Klonis, N., Sedat, J., DeRisi, J., Tilley, L., 2010, Whole cell 
imaging reveals novel modular features of the exomembrane system of the malaria 
parasite, Plasmodium falciparum. International Journal for Parasitology 40, 123-134. 

Hanzal-Bayer, M.F., Hancock, J.F., 2007, Lipid rafts and membrane traffic. FEBS Lett 22, 
2098-2104. 

Harrison, T., Samuel, B.U., Akompong, T., Hamm, H., Mohandas, N., Lomasney, J.W., 
Haldar, K., 2003, Erythrocyte G Protein-Coupled Receptor Signaling in Malarial 
Infection. Science 301, 1734-1736. 

Henrich, P., Kilian, N., Lanzer, M., Cyrklaff, M., 2009, 3-D analysis of the Plasmodium 
falciparum Maurer's clefts using different electron tomographic approaches. 
Biotechnology Journal 4, 888-894. 

Hiller, N.L., Akompong, T., Morrow, J.S., Holder, A.A., Haldar, K., 2003, Identification of a 
Stomatin Orthologue in Vacuoles Induced in Human Erythrocytes by Malaria 
Parasites: A role for microbial raft proteins in Apicomplexan vacuole biogenesis. J. 
Biol. Chem. 278, 48413-48421. 

Hiller, N.L., Bhattacharjee, S., van Ooij, C., Liolios, K., Harrison, T., Lopez-Estrano, C., 
Haldar, K., 2004, A Host-Targeting Signal in Virulence Proteins Reveals a 
Secretome in Malarial Infection. Science 306, 1934-1937. 

Homewood, C.A., Neame, K.D., 1974, Malaria and the permeability of the host erythrocyte. 
Nature 252, 718-719. 

Kamata, K., Manno, S., Ozaki, M., Takakuwa, Y., 2008, Functional evidence for presence of 
lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal 
transduction. American Journal of Hematology 83, 371-375. 

Khanna, R., Chang, S.H., Andrabi, S., Azam, M., Kim, A., Rivera, A., Brugnara, C., Low, P.S., 
Liu, S.C., Chishti, A.H., 2002, Headpiece domain of dematin is required for the 
stability of the erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A 99, 6637-6642. 

Kilejian, A., 1979, Characterization of a protein correlated with the production of knob-like 
protrusions on membranes of erythrocytes infected with Plasmodium falciparum. 
Proc. Natl. Acad. Sci U.S.A 76, 4650-4653. 

Kilejian, A., Rashid, M.A., Parra, M., Yang, Y.F., 1991, Sequence of the knob protein of 
Plasmodium falciparum recognized by a monoclonal antibody. Mol. Biochem. 
Parasitol 48, 231-233. 

www.intechopen.com



 
Malaria Parasites 

 

130 

Kirk, K., 2001, Membrane Transport in the Malaria-Infected Erythrocyte. Physiol. Rev. 81, 
495-537. 

Klales, A.M., Chakrabarti, B., Vitelli, V., Mahadevan, L., Manoharan, V., 2007. Physics of the 
curling ribbons. In: American Physical Society communication, APS March 
Meeting, March5-9, 2007. 

Knuepfer, E., Rug, M., Klonis, N., Tilley, L., Cowman, A.F., 2005a, Trafficking determinants 
for PfEMP3 export and assembly under the Plasmodium falciparum-infected red 
blood cell membrane. Mol Microbiol 58, 1039-1053. 

Knuepfer, E., Rug, M., Klonis, N., Tilley, L., Cowman, A.F., 2005b, Trafficking of the major 
virulence factor to the surface of transfected P. falciparum-infected erythrocytes. 
Blood 105, 4078-4087. 

Koshino, I., Takakuwa, Y., 2009, Disruption of lipid rafts by lidocaine inhibits erythrocyte 
invasion by Plasmodium falciparum. Experimental Parasitology 123, 381-383. 

Koussis, K., Withers-Martinez, C., Yeoh, S., Child, M., Hackett, F., Knuepfer, E., Juliano, 
L., Woehlbier, U., Bujard, H., Blackman, M.J., 2009, A multifunctional serine 
protease primes the malaria parasite for red blood cell invasion. EMBO J 28, 725-
735. 

Külzer, S., Rug, M., Brinkmann, K., Cannon, P., Cowman, A., Lingelbach, K., Blatch, G.L., 
Maier, A.G., Przyborski, J.M., 2010, Parasite-encoded Hsp40 proteins define novel 
mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cellular 
Microbiology 12, 1398-1420. 

Lalle, M., Currà, C., Ciccarone, F., Pace, T., Cecchetti, S., Fantozzi, L., Ay, B., Breton, C.B., 
Ponzi, M., 2011, Dematin, a Component of the Erythrocyte Membrane Skeleton, Is 
Internalized by the Malaria Parasite and Associates with Plasmodium 14-3-3. J Biol 
Chem 286, 1227-1236. 

Lanzer, M., Wickert, H., Krohne, G., Vincensini, L., Braun Breton, C., 2006, Maurer's clefts: A 
novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected 
erythrocytes. International Journal for Parasitology 36, 23-36. 

Lauer, S.A., Rathod, P.K., Ghori, N., Haldar, K., 1997, A Membrane Network for Nutrient 
Import in Red Cells Infected with the Malaria Parasite. Science 276, 1122-1125. 

Lauer, S., VanWye, J., Harrison, T., McManus, H., Samuel, B.U., Hiller, N.L., Mohandas, N., 
Haldar, K., 2000, Vacuolar uptake of host components, and a role for cholesterol 
and sphingomyelin in malarial infection. EMBO J 19, 3556-3564. 

Lew, V.L., 2011, Malaria: surprising mechanism of merozoite egress revealed. Current 
biology : CB 21, R314-316. 

Lingelbach, K.R., 1993, Plasmodium falciparum: A Molecular View of Protein Transport from 
the Parasite into the Host Erythrocyte. Experimental Parasitology 76, 318-327. 

Lingelbach, K., Joiner, K., 1998, The parasitophorous vacuole membrane surrounding 
Plasmodium and Toxoplasma: an unusual compartment in infected cells. J Cell Sci 
111, 1467-1475. 

Maier, A.G., Cooke, B.M., Cowman, A.F., Tilley, L., 2009, Malaria parasite proteins that 
remodel the host erythrocyte. Nat Rev Micro 7, 341-354. 

Marti, M., Good, R.T., Rug, M., Knuepfer, E., Cowman, A.F., 2004, Targeting Malaria 
Virulence and Remodeling Proteins to the Host Erythrocyte. Science 306, 1930-1933. 

www.intechopen.com



 
Human Erythrocyte Remodelling by Plasmodium falciparum 

 

131 

Mercier, C., Adjogble, K.D.Z., Däubener, W., Delauw, M.-F.-C., 2005, Dense granules: Are 
they key organelles to help understand the parasitophorous vacuole of all 
apicomplexa parasites? International Journal for Parasitology 35, 829-849. 

Mikkelsen, R.B., Kamber, M., Wadwa, K.S., Lin, P.S., Schmidt-Ullrich, R., 1988, The role of 
lipids in Plasmodium falciparum invasion of erythrocytes: a coordinated biochemical 
and microscopic analysis. Proc. Natl. Acad. Sci. U.S.A 85, 5956-5960. 

Mordue, D.G., Desai, N., Dustin, M., Sibley, L.D., 1999, Invasion by Toxoplasma gondii 
Establishes a Moving Junction That Selectively Excludes Host Cell Plasma 
Membrane Proteins on the Basis of Their Membrane Anchoring. J Exp Med 190, 
1783-1792. 

Murphy, S.C., Samuel, B.U., Harrison, T., Speicher, K.D., Speicher, D.W., Reid, M.E., 
Prohaska, R., Low, P.S., Tanner, M.J., Mohandas, N., Haldar, K., 2004, Erythrocyte 
detergent-resistant membrane proteins: their characterization and selective uptake 
during malarial infection. Blood 103, 1920-1928. 

Murphy, S.C., Harrison, T., Hamm, H.E., Lomasney, J.W., Mohandas, N., Haldar, K., 2006a, 
Erythrocyte G Protein as a Novel Target for Malarial Chemotherapy. PLoS Med 3, 
e528. 

Murphy, S.C., Hiller, N.L., Harrison, T., Lomasney, J.W., Mohandas, N., Haldar, K., 2006b, 
Lipid rafts and malaria parasite infection of erythrocytes (Review). Molecular 
Membrane Biology 23, 81 - 88. 

Nguitragool, W., Bokhari, A.A., Pillai, A.D., Rayavara, K., Sharma, P., Turpin, B., Aravind, 
L., Desai, S.A., 2011, Malaria parasite clag3 genes determine channel-mediated 
nutrient uptake by infected red blood cells. Cell 145, 665-677. 

Nunes, M.C., Goldring, J.P., Doerig, C., Scherf, A., 2007, A novel protein kinase family in 
Plasmodium falciparum is differentially transcribed and secreted to various cellular 
compartments of the host cell. Mol Microbiol 63, 391-403. 

Nyalwidhe, J., Lingelbach, K., 2006, Proteases and chaperones are the most abundant 
proteins in the parasitophorous vacuole of Plasmodium falciparum infected 
erythrocytes. PROTEOMICS 6, 1563-1573. 

Pachlatko, E., Rusch, S., Müller, A., Hemphill, A., Tilley, L., Hanssen, E., Beck, H.-P., 2010, 
MAHRP2, an exported protein of Plasmodium falciparum, is an essential component 
of Maurer's cleft tethers. Mol Microbiol 77, 1136-1152. 

Pantaleo, A., Ferru, E., Carta, F., Mannu, F., Giribaldi, G., Vono, R., Lepedda, A.J., Pippia, P., 
Turrini, F., 2010, Analysis of changes in tyrosine and serine phosphorylation of red 
cell membrane proteins induced by P. falciparum growth. Proteomics 10, 3469-3479. 

Papakrivos, J., Newbold, C.I., Lingelbach, K., 2005, A potential novel mechanism for the 
insertion of a membrane protein revealed by a biochemical analysis of the 
Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol Microbiol 55, 1272-
1284. 

Pei, X., An, X., Guo, X., Tarnawski, M., Coppel, R., Mohandas, N., 2005, Structural and 
Functional Studies of Interaction between Plasmodium falciparum Knob-associated 
Histidine-rich Protein (KAHRP) and Erythrocyte Spectrin. J Biol Chem 280, 31166-
31171. 

Pei, X., Guo, X., Coppel, R., Bhattacharjee, S., Haldar, K., Gratzer, W., Mohandas, N., An, X., 
2007, The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum 
stabilizes spectrin tetramers and suppresses further invasion. Blood 110, 1036-1042. 

www.intechopen.com



 
Malaria Parasites 

 

132 

Petter, M., Haeggstrom, M., Khattab, A., Fernandez, V., Klinkert, M., Wahlgren, M., 2007, 
Variant proteins of the Plasmodium falciparum RIFIN family show distinct 
subcellular localization and developmental expression patterns. Mol. Biochem. 
Parasitol 156, 51 - 61. 

Przyborski, J.M., Miller, S.K., Pfahler, J.M., Henrich, P.P., Rohrbach, P., Crabb, B.S., Lanzer, 
M., 2005, Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum-
infected erythrocytes. EMBO J 24, 2306-2317. 

Przyborski, J.M., 2008, The Maurer's clefts of Plasmodium falciparum: parasite-induced islands 
within an intracellular ocean. Trends Parasitol 24, 285-288. 

Roggwiller, E., Betoulle, M.E., Blisnick, T., Braun Breton, C., 1996, A role for erythrocyte 
band 3 degradation by the parasite gp76 serine protease in the formation of the 
parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum. 
Mol. Biochem. Parasitol 82, 13-24. 

Rowe, J.A., Claessens, A., Corrigan, R.A., Arman, M., 2009, Adhesion of Plasmodium 
falciparum-infected erythrocytes to human cells: molecular mechanisms and 
therapeutic implications. Expert Rev. Mol. Med. 11, e16. 

Rug, M., Prescott, S.W., Fernandez, K.M., Cooke, B.M., Cowman, A.F., 2006, The role of 
KAHRP domains in knob formation and cytoadherence of P falciparum-infected 
human erythrocytes. Blood 108, 370-378. 

Russo, I., Babbitt, S., Muralidharan, V., Butler, T., Oksman, A., Goldberg, D.E., 2010, 
Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. 
Nature 463, 632-636. 

Saeij, J.P., Boyle, J.P., Coller, S., Taylor, S., Sibley, L.D., Brooke-Powell, E.T., Ajioka, J.W., 
Boothroyd, J.C., 2006, Polymorphic secreted kinases are key virulence factors in 
toxoplasmosis. Science 314, 1780-1783. 

Samuel, B.U., Mohandas, N., Harrison, T., McManus, H., Rosse, W., Reid, M., Haldar, K., 
2001, The Role of Cholesterol and Glycosylphosphatidylinositol-anchored Proteins 
of Erythrocyte Rafts in Regulating Raft Protein Content and Malarial Infection. J. 
Biol. Chem. 276, 29319-29329. 

Sargeant, T., Marti, M., Caler, E., Carlton, J., Simpson, K., Speed, T., Cowman, A., 2006, 
Lineage-specific expansion of proteins exported to erythrocytes in malaria 
parasites. Genome Biology 7, R12. 

Saridaki, T., Fröhlich, K.S., Braun-Breton, C., Lanzer, M., 2009, Export of PfSBP1 to the 
Plasmodium falciparum Maurer's Clefts. Traffic 10, 137-152. 

Spielmann, T., Gardiner, D.L., Beck, H.-P., Trenholme, K.R., Kemp, D.J., 2006a, Organization 
of ETRAMPs and EXP-1 at the parasite-host cell interface of malaria parasites. Mol 
Microbiol 59, 779-794. 

Spielmann, T., Hawthorne, P.L., Dixon, M.W.A., Hannemann, M., Klotz, K., Kemp, D.J., 
Klonis, N., Tilley, L., Trenholme, K.R., Gardiner, D.L., 2006b, A Cluster of Ring 
Stage-specific Genes Linked to a Locus Implicated in Cytoadherence in Plasmodium 
falciparum Codes for PEXEL-negative and PEXEL-positive Proteins Exported into 
the Host Cell Mol. Biol. Cell 17, 3613-3624. 

Spycher, C., Rug, M., Klonis, N., Ferguson, D.J.P., Cowman, A.F., Beck, H.-P., Tilley, L., 
2006, Genesis of and Trafficking to the Maurer's Clefts of Plasmodium falciparum-
Infected Erythrocytes. Mol. Cell. Biol. 26, 4074-4085. 

www.intechopen.com



 
Human Erythrocyte Remodelling by Plasmodium falciparum 

 

133 

Spycher, C., Rug, M., Pachlatko, E., Hanssen, E., Ferguson, D., Cowman, A.F., Tilley, L., 
Beck, H.-P., 2008, The Maurer's cleft protein MAHRP1 is essential for trafficking of 
PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol 
Microbiol 68, 1300-1314. 

Staines, H.M., Ellory, J.C., Kirk, K., 2001, Perturbation of the pump-leak balance for Na+ and 
K+ in malaria-infected erythrocytes. American Journal of Physiology - Cell 
Physiology 280, C1576-C1587. 

Tamez, P.A., Bhattacharjee, S., van Ooij, C., Hiller, N.L., LlinÃ¡s, M., Balu, B., Adams, J.H., 
Haldar, K., 2008, An Erythrocyte Vesicle Protein Exported by the Malaria Parasite 
Promotes Tubovesicular Lipid Import from the Host Cell Surface. PLoS Pathog 4, 
e1000118. 

Tilley, L., Hanssen, E., 2008, A 3D view of the host cell compartment in P. falciparum-
infected erythrocytes. Transfusion Clinique et Biologique 15, 72-81. 

Tonkin, C.J., Pearce, J.A., McFadden, G.I., Cowman, A.F., 2006, Protein targeting to 
destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. 
Current Opinion in Microbiology 9, 381-387. 

Torii, M., Adams, J.H., Miller, L.H., Aikawa, M., 1989, Release of merozoite dense granules 
during erythrocyte invasion by Plasmodium knowlesi. Infect. Immun. 57, 3230-
3233. 

Trager, W., Rudzinska, M.A., C., B.P., 1966, The fine structure of Plasmodium falciparum and 
its host erythrocytes in natural malarial infections in man*. Bull World Health 
Organ 35, 883-885. 

Trelka, D.P., Schneider, T.G., Reeder, J.C., Taraschi, T.F., 2000, Evidence for vesicle-mediated 
trafficking of parasite proteins to the host cell cytosol and erythrocyte surface 
membrane in Plasmodium falciparum infected ertythrocytes. Mol. Biochem. Parasitol 
106, 131-145. 

van Ooij, C., Tamez, P., Bhattacharjee, S., Hiller, N.L., Harrison, T., Liolios, K., Kooij, T., 
Ramesar, J., Balu, B., Adams, J., et al., 2008, The Malaria Secretome: From 
Algorithms to Essential Function in Blood Stage Infection. PLoS Pathog 4, e1000084. 

Vincensini, L., Richert, S., Blisnick, T., Van Dorsselaer, A., Leize-Wagner, E., Rabilloud, T., 
Braun Breton, C., 2005, Proteomic Analysis Identifies Novel Proteins of the 
Maurer's Clefts, a Secretory Compartment Delivering Plasmodium falciparum 
Proteins to the Surface of Its Host Cell. Mol Cell Proteomics 4, 582-593. 

von Heijne, G., 1985, Signal sequences : The limits of variation. Journal of Molecular Biology 
184, 99-105. 

Waller, K.L., Cooke, B.M., Nunomura, W., Mohandas, N., Coppel, R.L., 1999, Mapping the 
binding domains involved in the interaction between the Plasmodium falciparum 
knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. 
falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem 274, 23808-23813. 

Waller, K.L., Nunomura, W., Cooke, B.M., Mohandas, N., Coppel, R.L., 2002, Mapping the 
domains of the cytoadherence ligand Plasmodium falciparum erythrocyte membrane 
protein 1 (PfEMP1) that bind to the knob-associated histidine-rich protein 
(KAHRP). Mol. Biochem. Parasitol 119, 125-129. 

Ward, G., Miller, L., Dvorak, J., 1993, The origin of parasitophorous vacuole membrane 
lipids in malaria-infected erythrocytes. J Cell Sci 106, 237-248. 

www.intechopen.com



 
Malaria Parasites 

 

134 

Waterkeyn, J.G., Wickham, M.E., Davern, K.M., Cooke, B.M., Coppel, R.L., Reeder, J.C., 
Culvenor, J.G., Waller, R.F., Cowman, A.F., 2000, Targeted mutagenesis of 
Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts 
cytoadherence of malaria-infected red blood cells. EMBO J 19, 2813-2823. 

Wickert, H., Wissing, F., Andrews, K.T., Stich, A., Krohne, G., Lanzer, M., 2003, Evidence for 
trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a 
complex membrane network. Eur J Cell Biol 82, 271-284. 

Wickert, H., Gottler, W., Krohne, G., Lanzer, M., 2004, Maurer's cleft organization in the 
cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-
dimensional reconstruction of serial ultrathin sections. Eur J Cell Biol 83, 567-582. 

Wickert, H., Krohne, G., 2007, The complex morphology of Maurer's clefts: from discovery 
to three-dimensional reconstructions. Trends in Parasitology 23, 502-509. 

Wickham, M.E., Rug, M., Ralph, S.A., Klonis, N., McFadden, G.I., Tilley, L., Cowman, A.F., 
2001, Trafficking and assembly of the cytoadherence complex in Plasmodium 
falciparum-infected human erythrocytes. EMBO J 20, 5636-5649. 

Wickham, M.E., Culvenor, J.G., Cowman, A.F., 2003, Selective inhibition of a two-step egress 
of malaria parasites from the host erythrocyte. J Biol Chem 278, 37658-37663. 

Winter, G., Kawai, S., Haeggström, M., Kaneko, O., von Euler, A., Kawazu, S.-i., Palm, D., 
Fernandez, V., Wahlgren, M., 2005, SURFIN is a polymorphic antigen expressed on 
Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med 201, 1853-
1863. 

Yeoh, S., O'Donnell, R.A., Koussis, K., Dluzewski, A.R., Ansell, K.H., Osborne, S.A., Hackett, 
F., Withers-Martinez, C., Mitchell, G.H., Bannister, L.H., et al., 2007, Subcellular 
Discharge of a Serine Protease Mediates Release of Invasive Malaria Parasites from 
Host Erythrocytes. Cell 131, 1072-1083. 

Zuccala, E.S., Baum, J., 2011, Cytoskeletal and membrane remodelling during malaria 
parasite invasion of the human erythrocyte. British Journal of Haematology 154, 
680-689. 

www.intechopen.com



Malaria Parasites

Edited by Dr. Omolade Okwa

ISBN 978-953-51-0326-4

Hard cover, 350 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Malaria is a global disease in the world today but most common in the poorest countries of the world, with 90%

of deaths occurring in sub-Saharan Africa. This book provides information on global efforts made by scientist

which cuts across the continents of the world. Concerted efforts such as symbiont based malaria control; new

applications in avian malaria studies; development of humanized mice to study P.falciparium (the most virulent

species of malaria parasite); and current issues in laboratory diagnosis will support the prompt treatment of

malaria. Research is ultimately gaining more grounds in the quest to provide vaccine for the prevention of

malaria. The book features research aimed to bring a lasting solution to the malaria problem and what we

should be doing now to face malaria, which is definitely useful for health policies in the twenty first century.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xue Yan Yam, Alassane Mbengue and Catherine Braun-Breton (2012). Human Erythrocyte Remodelling by

Plasmodium falciparum, Malaria Parasites, Dr. Omolade Okwa (Ed.), ISBN: 978-953-51-0326-4, InTech,

Available from: http://www.intechopen.com/books/malaria-parasites/remodeling-of-the-red-blood-cell-by-

plasmodium-falciparum



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


