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1. Introduction 

Studies of protein-protein interactions play a central role in understanding protein function 
in biological systems, closing the gap between large-scale sequencing efforts and medically 
relevant outcomes. Increasingly, protein interaction interfaces that mediate communication 
between proteins are becoming targets for therapeutics, offering a possibility to disrupt 
critical interactions and specifically attenuate function (Fletcher and Hamilton, 2007; Fry, 
2006). 

Efforts to catalog, characterize, and link protein interactions with disease states and other 
phenotypes are ongoing, building on improvements in experimental techniques, such as 
high throughput two-hybrid assays or chip-based proteomics. Significant progress has 
also been achieved in structural genomics, providing detailed information for a growing 
number of macromolecular complexes and interaction interfaces by means of X-ray 
crystallography, NMR spectroscopy and other methods.(Aloy et al., 2005; Slabinski et al., 
2007)  

Despite impressive progress, existing experimental methods for mapping protein 
interactions suffer from many limitations. High throughput methods, such as two-hybrid or 
chip-based essays, are characterized by high rates of false positives and false negatives 
(Bader and Chant, 2006; Han et al., 2005), requiring further validation and detailed 
characterization of individual interactions. Obtaining detailed high-resolution information 
about protein interaction interfaces can also be challenging in many instances.  

For example, some complexes may not crystallize, or crystallize in a different than 
biologically relevant conformation. X-ray crystallography may also fail when multiple and 
incompletely mapped interactions or membrane domains are involved.(Lacapere et al., 
2007) This is exacerbated by the fact that each protein has been estimated to have around 9 
distinct interacting partners (and some are estimated to have hundreds interactants), with 
majority of the implied complexes unlikely to be resolved experimentally in the foreseeable 
future.(Aloy and Russell, 2004; Ritchie, 2008) 

Limitations of experimental techniques and attempts to circumvent the problem by 
focusing directly on protein interactions create an opportunity for computational 
approaches to complement and facilitate experimental efforts in that regard. In particular, 
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statistical and machine learning-based approaches are being increasingly used to facilitate 
identification of protein interfaces. There are a growing number of methods for protein 
interaction sites prediction that vary in terms of principles of the recognition of interaction 
interfaces, descriptors used to identify interacting sites (feature space) and learning 
algorithms used.  

From the point of view of a representation used to capture characteristics of interaction 
interfaces, one may distinguish two main groups of methods. The first group attempts to 
predict interaction sites using sequence information only.(Gallet et al., 2000; Ofran and Rost, 
2007) The second group of methods, takes available structural information into account 
(Fariselli et al., 2002; Lichtarge et al., 1996), typically involving the identification of sites on 
the surface of a monomeric structure that are either evolutionarily conserved (as for 
example in the pioneering evolutionary trace method by Lichtarge and colleagues (Lichtarge 
et al., 1996)), or have a propensity for interaction interfaces (see, e.g., (Jones and Thornton, 
1997)). 

Although evolutionary trace methods are relatively insensitive to structural detail and can 
identify conserved “hot spots”, their overall accuracy is limited.(Caffrey et al., 2004; Porollo 
and Meller, 2007) On the other hand, detailed structural information can be used to 
characterize patches on the surface of a protein in terms of their geometric and other 
properties (see, e.g., (Bordner and Abagyan, 2005; Koike and Takagi, 2004; Neuvirth et al., 
2004)). Structural conservation can also be taken into account when multiple structures 
within families are available.(Chung et al., 2006; Ma et al., 2003) 

While structural information improves prediction accuracies (with the risk of increasing the 
sensitivity to the choice of a specific structure), challenges remain and new insights are 
required to improve state-of-the-art in the field.(de Vries and Bonvin, 2008; Zhou and Qin, 
2007) Further progress also requires continued systematic evaluation of new methods. In 
this regard, the lack of standard definitions and consistent evaluation criteria adds to the 
challenge and often makes direct comparison of existing methods impossible.  

One problem that contributes to the difficulty of fair evaluation and objective comparison of 
different methods is related to the uncertainty concerning the definition of the negative 
class. The assignment to the “non-interacting” class is at best tentative, given the 
incompleteness of information regarding all possible interactions and interacting partners. 
Despite the growing number of resolved structures of protein-protein complexes, another 
challenge is the relative paucity of carefully curated and properly stratified (to represent 
different types of complexes) benchmarks.  

This chapter reviews computational methods for the prediction of protein interaction sites, 
with a primary focus on structure-based approaches. The goal is to help the reader better 
understand the underlying concepts and limitations pertaining to current methods in the 
field. A number of methodological issues related to the training and validation of such 
methods are discussed as well. The benchmarks and assessment included in this chapter 
should also help making an informed decision as to when computational predictions can be 
regarded as sufficiently confident for a particular system of interest to warrant further 
experimental validation.  
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2. Definition of protein-protein interaction site 

The recognition of protein-protein interaction sites can be cast as a classification problem, 
i.e., each amino acid residue is assigned to one of the two classes: interacting or non-
interacting residues. Consequently, the problem may be solved using statistical and machine 
learning techniques, such as neural networks (Ofran and Rost, 2003b; Zhou and Shan, 2001) 
or Support Vector Machines (Bock and Gough, 2001; Yan et al., 2004).  

A clear definition of interacting residues is obviously required in order to predict whether a 
given amino acid residue is involved in protein-protein interactions. However, many 
alternative definitions are being used in the field. As the definition of an interaction site 
varies from one prediction method to another, it becomes difficult to directly compare their 
performance.  

2.1 Commonly used definitions 

If available, high resolution structural data readily provides a basis for atom or residue 
based definition of interaction sites. In fact, prediction methods discussed in this chapter 
primarily use information from resolved protein complexes to define the positive 
(“interacting”) and negative (“non-interacting”) classes. Protein quaternary structures are 
typically resolved by X-ray crystallography, and less frequently by NMR-spectroscopy or 
other techniques (Protein Data Bank, PDB – http://www.pdb.org/). While providing a high 
resolution structure, crystallographic data often remains inconclusive regarding the nature 
of the observed intermolecular contacts between protein chains. In particular, some of the 
observed contacts (and the resulting putative interaction interfaces) may be the result of 
crystal packing, rather than representing biologically relevant interactions. 

A number of methods have been introduced to facilitate the process of filtering out crystal 
packing artefacts. Here, we used the approach adopted by the PISA server 
(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html). PISA discriminates crystal packing 
contacts from the functional protein–protein interaction using the size of solvent exposed 
area buried during association, as well as the number of residues constituting the interface, 
the number of salt and disulphide bridges at the interface, and the difference in approximate 
solvation energy upon complex formation.(Henrick and Thornton, 1998; Krissinel and 
Henrick, 2007) 

Two different approaches are commonly used to define an interaction site based on 3D 
structural data: (i) interatomic distance and (ii) change in accessible surface area (ASA) upon 
complex formation. Following the first approach, interaction sites can be defined based on 
the distance between non-hydrogen atoms of different protein chains. For example, distance 
cutoffs of 4Å (Bordner and Abagyan, 2005); 4.5Å (Hamer et al., 2010); 5Å (Chen and Zhou, 
2005); or 6Å (Ofran and Rost, 2003b) are used. This way of defining interaction sites is likely 
to miss some interchain contacts when water molecules are involved. A polar solvent, such 
as water, may bridge the interaction between two charged groups of amino acids that are 
too far apart to form a direct hydrogen bond.(Janin, 1999) In this regard, Neuvirth et al. 
introduced the Connolly interface index (CII) that is computed for circles of radius 10 Å 
around anchoring dots on the surface of monomeric structures. Atoms with CII above 
certain threshold are assigned to be interaction sites.(Neuvirth et al., 2004) 
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The second approach defines an interaction interface by using the concept of solvent 
accessibility or ASA. Specifically, ASA or the solvent accessibility of an amino acid residue 
in an unbound protein chain is contrasted with the corresponding ASA value for the same 
residue in a complex. Residues with a significant difference in ASA between the isolated 
chain and complex structures are then classified as “interacting”. The following cutoffs for 
ASA were used: the loss of > 99% ASA for a given atom (Bradford and Westhead, 2005); a 
residue loses > 1Å2 ASA in the complex (Chen and Jeong, 2009; Jones and Thornton, 1995; 
Liang et al., 2006); a residue ASA change by more than 20Å2 (Kufareva et al., 2007); relative 
solvent accessibility (RSA) of a given residue decreased by more than 4% and its ASA 
decreased greater than 5Å2 (Porollo and Meller, 2007). The latter definition uses relative 
ASA to address the considerable difference in size of amino acids, e.g. between glycine and 
tryptophan. 

Both approaches require high resolution structural data. However, the interatomic distance 
based approach seems to be more sensitive to problems with missing atoms or atoms with 
multiple occupancies. Table 1 illustrates the difference in the protein interface recognition 
resulting from alternative definitions. As can be seen from the table, the same protein 
quaternary structure may yield different subsets of residues deemed to be interaction sites, 
therefore leading to different prediction models and their reported performances.  

In what follows, we will refer to protein interfaces derived using our own ASA-based 
definition, dRSA > 4% and dASA > 5Å2 (Porollo and Meller, 2007), unless stated otherwise. 
This definition takes into account both relative and absolute change in ASA, and it attempts 
to filter out noise related to variation in RSA observed in structures resolved under different 
conditions, or for closely related homologs. 
 

Definition Chain Residues at the interface Interface 
ASA, Å2 

dASA > 1Å2 
I 

Y35 T41 C42 H57 C58 D60 R61 N95 T96 D97 D98 
V99 A99A L143 L151 W172 T175 C191 Q192 G193 
S195 T213 S214 F215 V216 S217 R217A L218 K224 

830 

E I18 I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 
E46 G47 S48 C49 A52 C53 F54 

994 

dRSA > 4% 
and 
dASA > 5Å2 

I 
Y35 T41 H57 D60 R61 T96 D97 V99 A99A L143 
L151 W172 T175 C191 Q192 G193 S195 S214 F215 
V216 S217 R217A L218 

810 
 

E I18 I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 
E46 G47 S48 C49 A52 F54 989 

dASA > 20Å2 
I Y35 H57 R61 T96 D97 V99 W172 Q192 S195 F215 

V216 R217A L218  
692 
 

E I19 L20 I21 R22 C23 A24 M25 L26 N27 P29 R31 E46 
S48 C49 938 

Table 1. The effects of using alternative definitions of protein interaction interfaces for a 
specific hetero-dimeric complex (PDB ID 1fle); dASA is the total loss of ASA for a given 
protein chain upon complex formation. 
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It should be noted that information on protein interaction sites may be also derived from the 
alanine scanning mutagenesis (ASM). Systematic replacement of the residues at the protein 
interface with alanine enables the evaluation of individual contribution of each interaction 
site to the binding energy. In this regard, the Alanine Scanning Energetics database (ASEdb, 
http://www.asedb.org/) provides ASM data on a number of protein-protein, as well as on 
some protein-DNA and protein-ligand interactions (Thorn and Bogan, 2001)  

However, ASM approach is very costly and laborious, thus considerably limiting the 
number of comprehensively studied proteins. A protein interface needs to be approximately 
defined beforehand to limit the number of alanine mutants to evaluate. Results of ASM may 
not necessarily indicate the contribution to the binding energy, as some alanine mutants 
may cause an adverse protein conformational change and therefore indirectly decrease the 
efficacy of the protein-protein binding. Moreover, some protein-protein interactions are 
allosterically regulated, and ASM may not reflect the actual driving forces for a given 
protein complex. Nevertheless, such data is of great value and may be used as an additional 
validation of prediction methods. For example, it was used to evaluate ability of the 
methods ISIS (Ofran and Rost, 2007) and APIS (Xia et al., 2010) to identify hot spots. 

2.2 Mapping interaction sites 

Methods that do not require information about the interacting partner(s) are the primary 
focus of this chapter. These methods aim at the recognition of either individual residues, 
surface patches, or whole interaction interfaces using only sequence, structure and other 
information about an individual target protein, assuming that it is involved in some 
sufficiently stable interactions.  

In light of the above, an important part of defining the residues as interaction sites is to 
retrieve as much information as possible on physical interactions for a given protein. 
Published studies on methods for the prediction of protein-protein interaction quite often 
ignore the fact that most proteins have multiple interaction partners that are mediated by 
alternative or overlapping interfaces. Therefore, using just one particular complex to 
identify the interaction interface and to derive the corresponding definition of the positive 
class, while ignoring all other complexes and interactions involving the same target protein 
chain (or its close homolog), may result in highly biased estimates of both false positive and 
false negative rates. 

With the significant growth of structural data, the problem can be addressed by taking into 
account interaction sites from alternative complexes that contain the same protein chain or 
its close homologs. Interaction sites identified in such homologs can be mapped to a 
representative sequence in order to enable more sensitive prediction and perform its fair 
accuracy evaluation. Figure 1 illustrates this issue for two proteins resolved in complexes 
with different partners.  

The protein shown in the left panel, caspase-9, utilizes overlapping interfaces for homo-
oligomerization (PDB ID 1jxq), and for its interaction with ecotin (PDB ID 1nw9). However, 
the former protein-protein interaction involves many more residues than the latter 
interaction (affected ASA 1954Å2 and 1019Å2, respectively). If the definition of the positive 
(“interacting”) class in caspase-9 were to be derived from the complex with ecotin (1nw9), 
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the accuracy of any method predicting correctly also the more extensive interface would 
have been wrongly underestimated. This problem can be addressed by mapping the 
interface from the homooligomer into the target structure, leading to the union of homo-
dimerization and caspase-9/ecotin interfaces to be taken as the true positive class. 

The second example on the right illustrates the mapping of the known interfaces into the 
beta subunit of E. coli DNA polymerase III. In addition to homodimerization interface (PDB 
ID 2pol), physical interactions with the delta subunit of the gamma complex (PDB IDs 1jqj, 
1jql) and DNA polymerase Pol IV (PDB ID 1unn) are mapped. Again, without this 
additional mapping step, prediction of these alternative interfaces would be considered as 
false positives during the evaluation process. 
 

 
A 

 
B 

Fig. 1. Mapping interfaces from alternative protein complexes: A. Interaction interfaces in 
caspase-9, derived from the complex with ecotin (PDB ID 1nw9, chains B-A, shown in red) 
and caspase-9 homooligomer (PDB ID 1jxq, chains A-B), which includes both red and blue 
patches; B. Interaction interfaces mapped into DNA Pol III from the homodimer of the beta 
subunit of DNA Pol III (PDB ID 2pol, blue), delta subunit (PDB IDs 1jqj and 1jql, red), and 
DNA Pol IV (PDB ID 1unn, yellow), with the overlap of the latter two shown in magenta. 
Interfaces identified by using the SPPIDER server (http://sppider.cchmc.org/) and mapped 
into the target structure by using POLYVIEW-3D 
(http://polyview.cchmc.org/polyview3d.html). 

The mapping, though, needs to be performed carefully, keeping in mind some important 
caveats. Sequence homology-based approach assumes that similar protein sequences adopt 
the same 3D fold and carry the same function, which is not always true. For example, 
paralogs may evolve to have distinct interaction partners and therefore perform different 
functions while having high sequence homology. Mapping interaction sites from such 
homologs might then result in incorrect expansion of the positive class to include patches 
utilized by other proteins with sequence similarity but distinct functions. In this context, one 
should comment that many methods for the prediction of interaction sites incorporate 
information about evolutionary profiles of protein families (e.g., obtained using PSI-BLAST 
to generate PSSM (Altschul et al., 1997)). Therefore, at least in some cases such methods 
arguably identify sites with a propensity to interact within the whole family, rather than just 
for the target protein.  
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Interactions specific to only some (or even only one) family members may require the 
identification of distinct interaction patches, rather than considering the problem of predicting 
the union of alternative interaction interfaces. Thus, mapping interaction interfaces might not 
be appropriate for evaluation of methods that attempt to predict such individual interaction 
patches. On the other hand, if ANY interaction patch that corresponds to a stable protein 
complex is to be found, then the union of all known interfaces constitutes the best 
approximation of the positive class and should be used for evaluation of the overall accuracy. 
As indicated above, this issue is often ignored altogether, even though it highlights the 
difficulty with a proper definition of a classification problem that best captures biologically 
relevant information while providing sufficiently “accurate” predictions. 

Conversely, some protein domains with conserved 3D structure and specific function may be 
very divergent in terms of amino acid sequence, and only structure alignment might be able to 
detect such distant similarity. For example, PB1 domain displays low sequence homology 
between proteins, but it has a highly conserved secondary structure pattern and the overall 3D 
fold.(Lamark et al., 2003) While having just a few conserved residues playing a role of hot 
spots, this domain is widely utilized in various biological systems for interactions between the 
PB1-containing proteins to conduct cell signaling.(Moscat et al., 2006) 

A PDB-wide structure alignment remains a computationally challenging task when it comes 
to a large protein set compiled for training or benchmarking a method for protein-protein 
interaction prediction. However, some current efforts, including for example the Dali 
database (http://ekhidna.biocenter.helsinki.fi/dali/start) (Holm et al., 2008), provide 
valuable resources in this regard. There have been also a number of studies published on the 
structure-based mapping of interaction sites, utilizing different schemes of hit weighting 
and homology recognition.(Albou et al., 2011; Oldfield, 2002; Park et al., 2001; Xu and 
Dunbrack, 2011)  

However, it remains to be seen how structure-based mapping methods can deal with 
situations when a protein undergoes a significant conformational change upon complex 
formation (e.g., in case of calmodulin), and a structure alignment is likely to fail to identify 
similarity between apo- and holo-forms. Most likely, the future methods will utilize a 
balanced combination of sequence- and structure-based homology in order to more 
accurately map interaction sites from the known physical interactions. In this work, in order 
to test the effects of mapping interaction sites from multiple resolved complexes, we used a 
sequence homology-based mapping with conservative thresholds for homology hits: 70 or 
90% of sequence identity. The interaction sites mapping process was automated through the 
SCORPPION web-server (http://scorppion.cchmc.org/). 

3. Types of protein complexes 

Biological diversity is very well represented at molecular level, in particular showing broad 
versatility in protein-protein interactions. Protein complexes can be classified into a number 
of broad categories, for example as homo- and hetero-oligomers; transient and obligatory 
(permanent), rigid and flexible complexes. Homo-oligomers are complexes consisting of two 
or more protein chains with identical amino acid sequence. Accordingly, assemblies of 
chains with different sequences are hetero-oligomeres. The number of chains participating 
in the assembly dictates the distinction on dimers, trimers, tetramers, and so forth.  
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Obligatory complexes (sometimes called obligomers) are considered to be protein 
assemblies that perform function only in the coupled state, whereas transient complexes are 
formed by proteins that were found to exists as monomers and to function separately as 
well. Rigid complexes may be considered as products of interaction between stable rigid-
body domains. Flexible complexes, on the other hand, are formed when one or more 
constituting proteins undergo significant conformational changes.  

Systematic analysis of the known protein complexes by several studies resulted in a number of 
observations that have significantly influenced the field of protein-protein interaction sites 
prediction. Ofran and Rost suggested that there are at least 6 types of contacts in proteins that 
display distinct amino acids compositions and contact preferences.(Ofran and Rost, 2003a) 
Thus, methods utilizing statistical contact propensities in their prediction models have to take 
into account different types of interactions. Another study found that even within a single 
interface the composition of amino acids varies depending on where the interacting amino 
acids are located, in the core of the interface or at its rim.(Chakrabarti and Janin, 2002)  

A closer look at transient complexes was presented in (Nooren and Thornton, 2003). The 
study distinguished “weak” and “strong” homodimers, and it found that weak transient 
homodimers demonstrate smaller, more planar and polar interfaces compared to permanent 
homodimers, whereas strong transient homodimers undergo large conformational changes 
upon complex formation, and demonstrate larger, less planar, and more hydrophobic 
interfaces. Interestingly, only weak transient homodimers were found to have residues at 
interfaces more conserved than other surface residues, whereas other proteins with different 
oligomeric states showed no pronounced amino acid conservation.  

These findings were further supported by the study on a larger set of protein 
complexes.(Caffrey et al., 2004) Comparing the conservation scores derived from multiple 
sequence alignments to orthologs vs. paralogs, the study demonstrated that residues at the 
interfaces are rarely more conserved than other residues on the protein surface. This 
observation implies that prediction models solely based on evolutionary profiles are likely 
to have limited overall accuracy. 

Another large scale study has recently reported the results of PDB-wide analysis of protein-
protein interactions. Both sequence and structure based characteristics of protein interfaces 
were characterized, with special focus on proteins with multiple interaction partners.(Kim et 
al., 2006) This analysis showed that, while there are ancient interfaces conserved across 
archea, bacteria, and eukaryotes (attributed primarily to symmetric homodimers), by and 
large interfaces are not conserved and vary in shape and amino acid composition due to 
broad diversity of interactions and interaction partners. The suggested classification 
introduced as many as 6000 different types of interfaces that are available for search and 
matching from the SCOPPI database (http://www.scoppi.org/). 

4. Benchmarks of protein complexes 

Benchmarks specifically designed for the training and evaluation of methods for the 
recognition of protein-protein interaction sites are critical for further progress in the field. 
Such benchmarks should allow an unbiased and fair evaluation of prediction methods. 
Consequently, benchmark sets used for comparison of different methods should comprise a 
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diverse representative set of protein-protein interactions and contain no redundancy to the 
training sets used by individual methods.  

The uncertainty of the negative class assignment further complicates the choice of 
appropriate benchmarks. Designing a dataset that includes only carefully curated and well-
studied proteins, or their domains, with all known physical interactions mapped, may result 
in a very limited number of data points for training and validation. As a more feasible 
alternative one could consider assembling several diverse and non-redundant training and 
validation data sets that include complexes of different type and are characterized by some 
level of completeness of information regarding interactions and interaction sites.  

As a result of these difficulties, there is no established gold standard in the field. Most of the 
published methods refer to their own compilation of protein complexes derived from PDB. 
Here, we consider three protein sets used in the literature. The first compilation of protein 
complexes is a benchmark set for protein-protein docking, current version 3.(Hwang et al., 
2008) For this set, proteins in bound and unbound state were retrieved from PDB in a semi-
automated manner. Current version contains the total of 124 test cases; among those 88 are 
rigid-body cases, 19 of medium difficulty, and 17 difficult cases, which are classified by the 
degree of conformational change at the interface upon complex formation.  

While the primary purpose of Hwang et al. benchmark was to evaluate the protein docking 
methods, many protein interface prediction methods used it for their own and comparative 
evaluation.(de Vries and Bonvin, 2011; de Vries et al., 2006; Fiorucci and Zacharias, 2010; 
Guharoy and Chakrabarti, 2010; Li et al., 2008; Liu and Zhou, 2009; Qin and Zhou, 2007; Zhou 
and Qin, 2007) However, a thorough analysis of this benchmark set led us to conclusion that it 
is not suitable for evaluation of the methods predicting protein-protein interaction sites. For 
example, it contains 25 antibody-antigen cases (PDB IDs: 1fc2, 1ahw, 1bvk, 1dqj, 1e6j, 1jps, 
1mlc, 1vfb, 1wej, 2fd6, 2i25, 2vis, 1bj1, 1fsk, 1i9r, 1iqd, 1k4c, 1kxq, 1nca, 1nsn, 1qfw, 2jel, 1bgx, 
1e4k, 2hmi), which are asymmetrical functional protein-protein interactions, i.e. while one 
partner (in general: antibody, protease, or major histocompatibility complex) is evolved to 
bind its substrate, the second partner is not (except for the protease inhibitors).  

Therefore, all antibody-antigen complexes were removed from the set. In addition, protein 
chains no longer available in PDB (PDBID_ChainID: 1cd8_B, 1ml0_B, 2pab_C, 2pab_D, 
2viu_C, 2viu_E, 1aly_B, 1aly_C, 1jb1_B, 1jb1_C), difficult to interpret in terms of protein 
chains (1hia_A, 1hia_B, 1n8o_B, 1n8o_C) or too short (1n8o_A, 1k74_B, 1mzn_B, 1zgy_B) 
were removed. Finally, before using this benchmark set for evaluation of protein interface 
prediction methods, redundant chains were also removed. 

The second benchmark set represents 85 cases of proteins found in PDB both in bound and 
unbound state.(Albou et al., 2009) No complexes with asymmetrical function are included, 
such as antibody-antigen cases and others listed above. This set represents diverse protein-
protein interactions and allows the evaluators to estimate the role of conformational change 
on the accuracy of the methods, when predictions using bound structures versus unbound 
are compared. However, the set contains two cases, when only α-carbon coordinates are 
available (PDBID_ChainID: 3dpa_A and 2tld_I). These cases may be challenging to 
prediction methods that rely on high resolution data with all atoms resolved. 

The last benchmark set to be used in this work is the control set of the SPPIDER 
method.(Porollo and Meller, 2007) It was compiled based on the protein complexes 
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deposited in PDB after the compilation of the training set for the same prediction method. 
This manually curated and non-redundant (to the training set and within itself) set includes 
149 protein chains, deemed to be sufficiently diverse and representative enough to be used 
for cross-validation studies. The only update to the set involved replacing the chain 1r72_A 
by 1xcb_A, as the PDB entry 1xcb now supersedes 1r72. In what follows, this set is referred 
to as SPPIDER149. 

Table 2 and Figure 2 summarize the three datasets described above, after removing 
problematic cases from the first set, and redundant proteins from the first two sets. 
Redundancy was defined in terms of sequence homology: BLAST e-value < 0.001 when the 
alignment covers at least 70% of the query sequence (derived from the ATOM section of a 
PDB file). 150 chains derived from complexes in the first set and 78 chains in the second set 
were found non-redundant, and these (sub-) sets will be referred to as Hwang150B and 
Albou78B, respectively. The corresponding sets of chains that were retrieved from their 
unbound structures will be referred to as Hwang150U and Albou78U, respectively.  
 

Dataset Total chains Families Domains 
Hwang150B 150 42 107 

Albou78B 78 16 44 
SPPIDER149 149 76 75 

Table 2. Protein families and domains represented in non-redundant chains of the three 
benchmark sets used in this work. Families and domains defined according to the Pfam 
database (http://pfam.sanger.ac.uk/) (Finn et al., 2008) and mapped using sequence based 
search as implemented in SCORPPION (http://scorppion.cchmc.org/). 

 
Fig. 2. Overlap between protein families (left) and domains (right) identified within the 
three benchmark sets used here. 

Low to no overlap between the datasets discussed here is observed in terms of protein 
families and domains, suggesting a broad coverage of protein-protein interactions. This 
bodes well for estimates of the performance on different types of protein interfaces. On the 
other hand, the training sets for tested methods might partially overlap with the benchmark 
sets used here, leading to potentially overestimated accuracy. 

Mapping of known interaction interfaces from alternative complexes was performed for 
each set using different approaches discussed in Section 2.2. Table 3 shows the number and 
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fraction of interacting residues for each protein set. Interaction sites were derived from (i) 
asymmetric units defined in the original PDB files, (ii) biological units (BUs) as defined by 
Protein Quaternary Structure (PQS) database, and (iii) BUs as defined by the PISA database. 
In addition, interaction sites were mapped from the PISA-based BUs of their close homologs 
using sequence identity 90 and 70% as a cutoff (Table 4). The estimates of accuracy for 
methods compared here were overall quite similar, and only the results for the latter 
threshold are reported in the following sections of the chapter. 

PDB also provides its own definition of biological units that differs from PISA.(Xu and 
Dunbrack, 2011) PDB defines biological units as separate models in the same PDB file. In 
addition, both PISA and PDB may rename chain labels starting from ‘A’ within each BU. 
This all makes it difficult sometimes to trace back the chains from the asymmetrical unit in 
automated manner. To be consistent, we will map interaction sites from BUs as defined by 
PISA. However, when no information can be mapped for a given chain, due to technical 
difficulties or inconsistency in BU definition, we will use a PDB-based asymmetric unit for 
the mapping of interaction sites. 
 

Dataset Total residues / 
On the surface 

PDB-based, % PQS-based, % PISA-based, % 

Hwang150B 31208 / 24687 19 21 19 
Albou78B 17412 / 13375 16 16 15 

SPPIDER149 25883 / 20885 29 28 28 

Table 3. Summary of the benchmarks used in this work with regards to the total number of 
residues, residues on the surface, and percentage of the surface residues found to be at 
protein interfaces derived from the asymmetric unit (PDB-based), and biological units (PQS-
based and PISA-based), respectively. 

 

Dataset Total / Surface residues SI70 SI90 
Hwang150B 31208 / 24687 10011 9674 
Hwang150U 32471 / 24595 10201 9661 

Albou78B 17412 / 13375 5819 5506 
Albou78U 16838 / 12342 5572 5294 

SPPIDER149 25883 / 20885 7863 7668 

Table 4. Summary of the benchmarks used in this work with regards to the total number of 
residues, residues on the surface, and interacting residues on the surface mapped to 
representative protein chains using BUs derived from the PISA database and 70 or 90% 
sequence identity cutoffs (SI70 and SI90), respectively. 

5. Prediction methods 

All prediction methods can be broadly classified by the type of data they use as an input. 
Sequence-based methods rely on some combination of the following protein features: amino 
acid hydrophobicity, evolutionary profile (e.g., similarity scores or Shannon entropy), amino 
acid composition or propensity to be at the interface, predicted structural features (e.g., 
secondary structure, solvent accessibility, order/disorder region, etc.), or their derivatives 
like mean or weighted average over a sequence window.  
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The structure-based methods, on the other hand, also utilize features derived from a 3D 
protein structure, such as solvent accessibility and secondary structure states, local topology 
(e.g., protrusions and cavities), hydrophobic and polar surface patches, temperature or B-
factors (for X-ray based structures), etc. In addition, there are a number of methods built 
using a consensus of the individual predictors with reportedly improved accuracy.(de Vries 
and Bonvin, 2011; Huang and Schroeder, 2008; Qin and Zhou, 2007) However, consensus-
based methods are not discussed here in detail, as the goal is to evaluate the discriminating 
power of the underlying principal features for each representative method.  

Described below are selected structure-based methods with at least somewhat orthogonal 
feature spaces that were available as web-servers at the time of data preparation for this 
work. Methods are listed in the order of the publication year of the original work. 

Evolutionary trace (ET) method (Lichtarge et al., 1996) identifies evolutionary conserved 
residues and maps them onto a protein 3D structure. Conserved residues in the core of a 
protein are deemed to be structurally important, whereas those on the surface are 
assumed to be functionally important. The method starts from constructing a multiple 
sequence alignments, and partitions the aligned sequences into groups by using their 
mutual sequence similarity. For each group, a consensus sequence is defined highlighting 
the positions with invariant amino acids. Consensus sequences are further aligned to 
identify (i) conserved residues across the entire protein family; (ii) class-specific residues 
that are invariant in some groups; and (iii) neutral residues that are not preserved in any 
single sequence group. Conserved and class-specific residues are then mapped onto 3D 
structure. Clusters of such residues on the surface of a protein structure are predicted to 
be functional. The ET method is available at 
http://mammoth.bcm.tmc.edu/ETserver.html  

ConSurf (Glaser et al., 2003) follows a similar approach by mapping the evolutionary 
conserved residues on 3D protein structure. The difference lies in computing the 
conservation scores that are relative with respect to other residues in a given protein. In 
addition, the outcome of the method is sensitive to the quality of multiple sequence 
alignment and to the overall length of a query sequence. For example, two 3D structures of 
the same protein, but with different sequence length representing its resolved part, may 
result in different location of the most conserved residues. The ConSurf method is available 
at http://consurf.tau.ac.il/, whereas its pre-computed results for the PDB deposited 
proteins are available from the ConSurfDB database (http://consurfdb.tau.ac.il/). 

It should be noted that the two methods described above were not designed to identify 
specifically protein-protein interaction sites, but rather to reveal any functional residues, 
e.g. involved in protein-DNA or protein-ligand interactions. However, since the authors 
of these methods refer to identification of protein interfaces as examples in their original 
publications, we chose these methods to serve as a separate group of predictors that rely 
primarily on evolutionary information, and can be contrasted with structure-based 
methods. 

PROMATE (Neuvirth et al., 2004) considers residues on the surface of a protein structure 
within 10Å circles around a given point. Spatially neighboring residues provide the 
following descriptors: (i) statistically derived chemical composition of binding sites, such as 
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propensity of individual amino acids, atom types, pairs of amino acids, and collective 
chemical properties (positively and negatively charged, polar, hydrophobic, and aromatic 
residues); (ii) evolutionary conservation in terms of diagonal elements of the PSI-BLAST-
derived position specific scoring matrix (PSSM); (iii) distance in the sequence between 
residues in the circle; (iv) secondary structure states, including extent of the loops. 
Additionally, temperature factors (B-factors) and bound waters are incorporated into the 
model whenever available. These descriptors are combined to yield a cumulative score that 
allows the circles to be classified as Interface, Non-interface, or Boundary. The neighboring 
circles are further clustered to define predicted interface patches. PROMATE is available at 
http://bioinfo.weizmann.ac.il/promate/  

Cons-PPISP (Chen and Zhou, 2005) employs a consensus of neural networks trained on (i) 
the position specific similarity scores derived from the PSI-BLAST multiple sequence 
alignment and (ii) observed (in the target structure provided as input) solvent accessibility 
for spatially neighboring residues. In addition to validation on crystal structures, cons-
PPISP was shown to provide accurate prediction of protein interfaces for a set of 8 NMR-
derived complexes, non-redundant to its training set. The web-server is available at 
http://pipe.scs.fsu.edu/ppisp.html  

WHISCY (de Vries et al., 2006) introduces prediction scores that are based on evolutionary 
and structural information. Conservation of residues on the surface is computed as the 
corrected sum of similarity scores between amino acids at a given position by pairwise 
comparison of a query sequence and sequences from a multiple alignment. Similarity scores 
are taken from the Dayhoff mutation matrix. ASA is the only structural information used. 
WHISCY is available at http://nmr.chem.uu.nl/Software/whiscy/index.html  

PIER (Kufareva et al., 2007) combines (i) statistically derived interatomic contact potentials, 
(ii) physical descriptors, such as observed solvent accessibility for separate atomic groups 
within amino acids, and (iii) sequence alignment based features, in particular, three different 
conservation scores (frequency-based, similarity matrix-based, and entropy-based). The 
surface of a protein structure is divided on individual patches. Using the descriptors listed 
above, all patches obtain a set of cumulative scores that further fed to a partial least squares 
(PLS) based regression model to predict protein interfaces. Since the PIER scoring heavily 
relies on atomic resolution, it may have difficulties with incomplete or of low resolution 
crystal structures. The corresponding prediction server is available at 
http://abagyan.ucsd.edu/PIER/  

SPPIDER (Porollo and Meller, 2007) is a neural network-based method that uses the 
difference between predicted from sequence and observed in an unbound structure RSA of 
amino acid residue as a novel and highly informative signal of interaction sites. Solvent 
accessibility prediction methods tend to predict residues at protein interfaces as buried, 
which is consistent with the fact that they are indeed getting buried upon complex 
formation, even though they are exposed in an unbound structure. The SABLE (Adamczak 
et al., 2004) method for RSA prediction was used to generate the input for SPPIDER. 
Additional features include averaged over spatially neighboring residues of (i) RSA 
predicted by SABLE; (ii) evolutionary conservation (in terms of Shannon entropy) of amino 
acid type, charge, hydrophobicity, and side chain size; (iii) amino acid contact numbers and 
hydropathy constants. The server is available at http://sppider.cchmc.org/  
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6. Evaluation 

6.1 Accuracy measures 

Prediction of protein interaction sites is typically cast as a classification problem. Therefore, 
a number of commonly used measures for two class classification problems can be 
employed to evaluate the accuracy. These measures include the two-class classification 
accuracy (Q2), recall or sensitivity (R), and precision or specificity (P), all expressed as 
percentage. 

 Q2= TP+TN
TP+TN+FP+FN

∙ ͳͲͲ% (1) 

 R= TP
TP+FN

∙ ͳͲͲ% (2) 

 P= TP
TP+FP

∙ ͳͲͲ% , (3) 

where TP are true positives, TN – true negatives, FP – false positives, and FN – false 
negatives.  

However, since the number of interaction sites can be much smaller than the number of non-
interacting residues, the classification problem at hand may be highly unbalanced. As a 
result, the measures listed above may be difficult to interpret and compare for different 
benchmarks. For example, with 90% of data points assigned to the negative class, a baseline 
classifier that predicts all residues as non-interacting achieves numerically high 90% 
classification accuracy. To provide a measure that balances sensitivity and specificity of 
predictions, the Matthews correlation coefficient (MCC) is often used (4) together with other 
measures. MCC ranges from -1, indicating an inverse prediction, through 0, which 
corresponds to a random classifier, to +1 for perfect prediction. 

 MCC= TP·TNି୊୔∙୊୒ඥሺ୘୔ା୊୒ሻሺ୘୔ା୊୔ሻሺ୘୒ା୊୔ሻሺ୘୒ା୊୒ሻ (4) 

Other measures that can be used to assess and compare classification methods are area 
under the receiver operating characteristic (ROC) curve and F-measure. 

6.2 Performance of selected methods 

The performance of several representative methods discussed in the previous section is 
assessed here in order to compare more systematically individual methods, and to quantify 
the effects of mapping additional interaction interfaces and using truly unbound structures. 
Different aspects of the performance are evaluated using benchmark datasets described in 
section 4 (SPPIDER149, Hwang150B/U, and Albou78B/U).  

For all evaluations, only residues with RSA of at least 5% were considered, thus excluding 
all fully buried residues in a given protein conformation. For methods providing a real 
valued score, multiple thresholds were tested as a basis for projection into two classes. The 
results for the best performing threshold in terms of MCC are reported in Tables 5 through 
9. The following values were found to be optimal for each method: ET with residues being 
ranked 1 (out of top 1, 5, and 10 rankings evaluated), ConSurf with evolutionary rank ≥ 5 (5, 
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7, 9 evaluated), WHISCY with threshold ≥ 0 (0, 0.18 evaluated), PIER with threshold ≥ 15 (0, 
15, 30 evaluated), and SPPIDER with threshold ≥ 0.3 (0.3, 0.5, 0.7 evaluated). 
 

Method SPPIDER149 Hwang150B Albou78B 
ET 0.08 0.04 0.01 
ConSurf 0.12 0.07 0.02 
PROMATE 0.10 0.10 0.09 
Cons-PPISP 0.30 0.22 0.17 
WHISCY 0.19 0.11 0.08 
PIER 0.37 0.27 0.22 
SPPIDER 0.41 0.28 0.20 

Table 5. The performance of representative methods measured using MCC on three 
different sets, with only the original PDB complexes used to define the positive class. 

As can be seen from Table 5, the overall accuracy of the methods evaluated here is rather 
limited. The two best performing methods, i.e., PIER and SPPIDER achieve MCC of about 
0.4 for SPPIDER149 set, 0.3 for Hwang150B, and 0.2 for Albou78B, respectively. Similar 
relative drop in accuracy is also observed for other methods, indicating that Hwang150B 
and Albou78B sets are more difficult to classify. This can be explained in part due to a larger 
imbalance between positive and negative classes in these benchmarks, especially in the 
Albou78B dataset (see Table 3). 
 

Method 
SPPIDER149 Hwang150B Albou78B 

R, % P, % R, % P, % R, % P, % 

ET 7.03 
6.39 

43.92 
51.73 

3.99 
3.44 

28.18 
48.89 

2.84 
3.57 

17.55 
60.60 

ConSurf 65.27 
63.00 

32.87 
40.97 

61.42 
55.91 

22.18 
41.07 

55.17 
53.19 

16.40 
41.66 

PROMATE 3.91 
3.22 

60.71 
64.29 

4.06 
2.56 

48.98 
63.78 

3.69 
1.85 

43.43 
58.29 

Cons-PPISP 33.40 
29.39 

60.59 
69.12 

26.25 
19.35 

42.42 
67.62 

22.46 
15.33 

34.80 
64.40 

WHISCY 29.38 
26.66 

45.42 
54.32 

21.15 
17.21 

29.77 
51.71 

20.49 
16.53 

21.83 
48.38 

PIER 
61.10 
54.38 

52.62 
60.31 

49.66 
38.64 

37.46 
60.86 

45.43 
31.20 

30.61 
56.99 

SPPIDER 80.36 
73.14 

48.47 
56.81 

63.15 
53.04 

34.11 
59.82 

56.22 
43.48 

26.49 
55.52 

Table 6. The effect of mapping interaction sites from homologous protein complexes on 
recall (R) and precision (P): the first line in each row shows R and P using original PDB 
complexes, whereas the second line indicates accuracy derived after mapping interaction 
sites using PISA BUs and homologous chains with 70% sequence identity. 

It should be noted that due to a sufficiently large number of data points (surface residues, 
see Table 3) included in each benchmarks, each of the correlation coefficients reported above 

www.intechopen.com



 
Protein-Protein Interactions – Computational and Experimental Tools 18

is statistically significantly different from 0 with a p-value < 0.05. Nevertheless, practical 
applicability of methods that achieve correlations of 0.2 and lower has to be judged using 
also other criteria and specific examples. In particular, evolutionary methods achieve very 
limited accuracy in this test, even though they may provide biologically valuable insights, as 
discussed later. 

The effects of mapping interaction residues from alternative complexes are illustrated in 
Table 6 using measures of sensitivity and specificity. The accuracy using the assignment of 
the positive class (interaction sites) derived from the original complexes is compared to the 
accuracy obtained re-labeling the “non-interacting” residues in mapped interfaces as 
“interacting” sites. Due to largely canceling effects of decreased rates of false positives and 
increased rates of false negatives, the mapping of interaction sites from PISA biological units 
does not affect significantly the performance of the prediction methods in terms of MCC, 
although a systematic small drop in accuracy is observed in most cases (data not shown).  

However, as can be seen from Table 6, all methods show a drop in recall while precision 
improves when mapping is applied. These results also allow one to trace how the trade-off 
between sensitivity and specificity was optimized for different methods. One striking 
example is ConSurf vs. ET comparison. On the other hand, most structure-based methods 
provide fairly well balanced predictions. In particular, precision improves considerably, 
with only a relatively limited drop in recall for the best performing SPPIDER method, 
followed by PIER and Cons-PPISP. The observed ranking could reflect the fact that 
SPPIDER was trained (although on a different set without homology to SPPIDER149 set) 
using mapping from alternative complexes to reduce the noise in learning from data and to 
provide a more balanced classification problem. 
 

Method Hwang150B 
SI70 

Hwang150U 
SI70 

Albou78B 
SI70 

Albou78U 
SI70 

ET 0.03 0.00 0.06 0.08 
ConSurf 0.03 0.05 0.00 0.00 
PROMATE 0.06 0.05 0.04 0.01 
Cons-PPISP 0.20 0.18 0.14 0.13 
WHISCY 0.09 0.16 0.06 0.08 
PIER 0.24 0.23 0.15 0.11 
SPPIDER 0.29 0.29 0.17 0.14 

Table 7. The effect of the bound versus unbound state of the protein structures used as an 
input in terms of MCC. In all cases, interacting residues were mapped using homology to 
PISA BUs with 70% sequence identity.  

The impact of conformational change and the use of structures in bound as opposed to 
unbound state as an input is assessed in Table 7. For that purpose, the overall accuracy in 
terms of MCC is compared using two pairs of sets of bound (taken from a complex by 
simply ignoring other chains) and truly unbound structures: Hwang150B vs. Hwang150U 
and Albou78B vs. Albou78U, respectively. Slight decrease in performance is observed for all 
but one structure-based method, the exception being WHISCY. The latter method starts 
from a low level, though. In addition, the WHISCY server did not generate results for a 
number of more difficult cases, suggesting that this trend might not hold on other data sets. 
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While the drop in accuracy is limited for other methods tested, it should be emphasized that 
benchmarks included here sample relatively small conformational changes due to induced 
fit. Therefore, further systematic studies will be required to better delineate the range of 
applicability of structure-based method for the recognition of protein interaction sites.  

Table 8 demonstrates how the performance estimates can be inflated when accuracy 
measures are computed based on all residues as opposed to computing the accuracy for 
each protein and then averaging over all proteins. Per protein averages, together with 
measures of variance (here we report standard deviations), allow one to assess better the 
range of expected accuracies for individual proteins. As can be seen from Table 8, the 
observed large standard deviations suggest large protein to protein variation and indicate 
that all tested methods fail dramatically for at least some proteins. It should be also noted 
that using per protein measures PIER is the top performing method, followed by SPPIDER 
and Cons-PPISP. 
 

Method MCC Q2, % R, % P, % 

ET 0.06±0.12 
0.08 

65.64±17.83 
71.21 

9.60±16.07 
7.03 

29.35±35.01 
43.92 

ConSurf 0.12±0.15 
0.12 

54.44±8.16 
52.80 

64.54±14.06 
65.27 

39.61±22.69 
32.87 

PROMATE 0.07±0.13 
0.10 

64.01±19.63 
71.16 

5.72±8.93 
3.91 

28.30±39.31 
60.71 

Cons-PPISP 
0.23±0.23 

0.30 
69.52±13.23 

74.15 
37.50±22.11 

33.40 
58.99±29.71 

60.59 

WHISCY 0.14±0.20 
0.19 

67.39±13.14 
71.03 

26.58±19.79 
29.38 

42.64±28.00 
45.42 

PIER 0.30±0.23 
0.37 

71.18±11.47 
72.54 

58.73±24.80 
61.10 

55.22±27.09 
52.62 

SPPIDER 0.29±0.20 
0.41 

66.94±13.82 
69.39 

79.16±24.79 
80.36 

49.19±21.69 
48.47 

Table 8. Comparison of the accuracy measures calculated per residue by merging data from 
all chains (the bottom line in each row) and per protein averages and standard deviations 
(the top line in each row), using the SPPIDER149 set (similar effect is observed on other 
benchmarks). 

Not all web-based implementations of the methods are reliable. While requesting and 
retrieving predictions from the evaluated servers, we faced multiple failures. Table 9 
illustrates the reliability of the corresponding servers from the user`s point of view by 
presenting the numbers of proteins failed to be processes within each benchmark set. The 
most reliable web-servers appear to be PIER and SPPIDER, whereas ET, ConSurf, and 
WHISCY are quite unreliable, which makes it more difficult to evaluate servers on a large 
scale. 

Prediction methods that seemingly perform poorly according to some evaluation criteria can 
still greatly facilitate further experimental and computational studies on protein 
interactions. One might argue that predicting possible interaction interfaces should be 
directed at the recognition of the sites that contribute most to the binding energy. Such hot 
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spots also represent the most natural target for further validation, e.g., using mutagenesis, 
or as targets for therapeutics.  
 

Method SPPIDER149 Hwang150B Hwang150U Albou78B Albou78U 
ET 14 14 28 8 8 
ConSurf 21 12 13 4 4 
PROMATE 1 3 8 3 12 
Cons-PPISP 7 3 1 0 4 
WHISCY 34 15 17 8 9 
PIER 0 0 0 0 0 
SPPIDER 0 0 0 0 0 

Table 9. The number of proteins not included in each benchmark due to problems with the 
retrieval of the results as an indicator of the reliability of web-servers tested.  

 

 
A

 
B

Fig. 3. Examples of protein interaction sites predicted by ConSurf: A. A successful 
identification of the protein interface for the homodimer of phosphoglucose isomerase (PDB 
ID 1qxr, chain A); B. A multi-interface protein (CSL transcription factor) illustrates possible 
confusion with DNA binding sites that are the most slowly evolving residues at the surface 
of the protein in this case (PDB ID 2fo1, chain A). Residues in magenta are the most 
conserved, whereas variable sites are colored using cyan (see the ConSurf documentation). 

In this context, a special note needs to be made on the performance of evolutionary 
methods, such as ET and ConSurf. As we mentioned before, these methods were not 
designed specifically to predict protein-protein interaction sites, but rather to identify 
evolutionary conserved residues. Therefore, these methods may not able to discriminate 
between protein-protein, protein-ligand (e.g., co-factor or substrate), and protein-
DNA/RNA binding sites. An example of such a case is shown in Figure 3.  

On the other hand, highly conserved residues that are exposed on the surface of a protein 
are very likely functionally relevant, irrespective of the actual involvement in interaction. 
Despite all the limitations, evolutionary methods for the prediction of interaction sites have 
significantly contributed to the mapping of protein interactions and other functional 
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annotations, see e.g., (Kniazeff et al., 2002; Shenoy et al., 2006) and (He et al., 2003; Lietha et 
al., 2007), for ET and ConSurf, respectively. 

7. Discussion and conclusions 

Protein-protein interactions are essential for enzymatic functions, signal transduction, cell 
cycle regulation and other fundamental biological processes. In addition to addressing the 
fundamental questions of molecular biology, identification of residues involved in protein-
protein interactions has important medical relevance. Combined with recent advances in 
genome sequencing it facilitates delineating natural functional variants from pathological 
mutants, and conducting ‘molecular diagnostics’ as part of personalized medicine.(Su et al., 
2011) Detailed structural information on thousands of protein complexes also stimulates 
growth in the field of rational drug design by providing a new class of targets that include 
known protein interaction interfaces.(White et al., 2008) 

However, experimental identification and validation of a protein interface remains a 
challenging task, both in terms of labor and cost. Therefore, efforts to map and characterize 
protein interactions can considerably benefit from computational biology and structural 
bioinformatics. In particular, methods that integrate sequence and structure information 
achieved accuracies that are useful in selecting and prioritizing targets for mutagenesis and 
other experimental studies. 

In this chapter, we reviewed state-of-the-art in the field of computational prediction of 
protein-protein interaction sites. We evaluated some representative methods using several 
published benchmarks of protein complexes. The overall accuracy of existing methods, in 
accord with other recent evaluations, was found to be limited (the Matthews correlation 
coefficient between the predicted and true class assignment of up to 0.4). Therefore, further 
concerted efforts will be required to improve state-of-the-art in the field. To that end, we 
discussed the need for standard definition of protein interaction sites, developing more 
comprehensive benchmark protein sets, and appropriate ways of measuring/reporting the 
accuracy of predictions. 

We quantified the effects of taking into account multiple interaction interfaces and using as 
an input unbound structures that were resolved without interacting partners. Both of these 
issues are often ignored when evaluating the performance of interaction sites prediction 
methods. Yet, they are shown to impact significantly the estimates of performance. These 
two issues also highlight more fundamental difficulties with the definition of the negative 
class and current attempts to cast the problem in a computationally feasible way.  

Casting the prediction of interaction sites in terms of a two-class classification problem 
requires that examples of the negative (“non-interacting”) class be used for the training. 
With data points representing both “interacting” and “non-interacting” residues, a decision 
boundary separating the two classes can be optimized. These negative examples are defined 
in most cases by simply taking the complement of the positive class, i.e., all other (surface 
exposed) residues that are not known to be involved in interactions.  

Consequently, without mapping known interfaces alternative complexes, residues within 
such interfaces are incorrectly regarded as “non-interacting”. This could introduce problems 
in training, as misclassified vectors from the negative class may coincide with the bulk of the 
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density for the positive class. One strategy to address this issue is to filter out such difficult 
cases. As an alternative, one could also consider one-class approaches, in which only the 
positive class examples are used to learn a predictor. On the other hand, if residues from 
multiple complexes are systematically mapped, as advocated here, the negative class 
assignment as a source of noise should be gradually reduced with the progress in 
experimental mapping of interaction sites. 

Conformational changes upon complex formation pose another problem for the methods 
considered here. Protein flexibility and the induced fit effects upon complex formation are 
assumed to be limited. Obviously, this assumption does not hold in many instances of 
protein-protein interactions (and sometimes it breaks spectacularly, e.g., when the co-
folding of otherwise disordered interacting domains occurs). Therefore, methods 
presented here are of limited applicability when large conformational changes or flexible 
domains are involved.  

It should be also stressed that even a limited induced fit can pose significant challenges for 
structure-based methods. Simply ignoring all but one chain in a protein complex, and thus 
taking a de facto bound conformation as input, may lead to spurious effects in training and 
overly optimistic estimates of accuracy. For example, low B-factors of surface residues, 
which can be “locked” in a specific conformation by interactions with a co-factor, may not 
be a true signal of interaction sites (in many cases the opposite can actually be observed). 
Features that are capable of identifying interaction sites starting from a truly unbound 
structure should be emphasized.  

Reliable identification of residues that participate in binding to other proteins can help 
direct and streamline mutagenesis and other experimental studies, and to facilitate efforts to 
map entire interactomes. It can also reduce the levels of false positives (by assessing 
compatibility between predicted interfaces), and false negatives (by helping identify novel 
interactions) observed for experimental approaches that are used to map protein 
interactions. Another promising application is protein docking, in which predicted 
interfaces can be used for evaluating and ranking potential complex structures (de Vries and 
Bonvin, 2011), in analogy to docking methods that utilize limited NMR data. (Dominguez et 
al., 2003; Kohlbache et al., 2001) 

Further progress in the field will require new insights to overcome current limitations, as 
well as careful assessment of the accuracy in order to address possible biases in training and 
validation. Constant improvements in experimental techniques and a growing number of 
resolved macromolecular complexes, from which to learn better predictors, bode well for 
future efforts in this regard. 
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