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1. Introduction  

Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in a single 
gene, the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This disease 
primarily involves epithelial cells of the respiratory system, intestine, pancreas, gall bladder, 
and sweat glands. Although several organs are affected, the main cause of CF mortality and 
morbidity is due to pulmonary complications associated with impaired clearance and 
obstruction by viscous mucus secretions, which makes the lung epithelial cells the principle 
target for CF treatment. A monogenic disease such as CF was a priori an ideal candidate for 
gene therapy, as treatment of the disease was thought to be feasible with the introduction of 
the normal alleles of the CFTR gene into the airway epithelial cells to code for the functional 
protein.  

2. CFTR gene transfer to the airway epithelium 

The lung can be divided anatomically and physiologically into two regions, (i) the 

airways, consisting of the trachea, bronchi and bronchioles which brings air to the 

peripheral lung and (ii) the alveoli where the exchange of gas takes place. The airway 

epithelium is normally covered by a thin layer of mucus and acts as a natural barrier 

against foreign particles, including pathogens. In CF individuals, the airways are filled 

with sputum consisting of inflammatory cells, cell debris, highly viscous mucus and 

DNA, causing obstruction of the airways, constituting the major barrier for gene transfer 

as it prevents the cellular uptake of the vectors by the airway epithelial cells (Griesenbach, 

Alton et al., 2009; Hida et al., 2011 ). 

The main target tissue for CF gene therapy is believed to be the airway epithelium, which 

exhibits all ion transport functions of CFTR and is easily accessible. However, the nature of 

the cells which are the best target for CF gene therapy is still debatable. The transfer of genes 

to the airway results in gene expression primarily in lung epithelial cells, and the transgene 

is localised to the lung without much systemic distribution. The highest level of CFTR gene 

expression is found in the bronchial submucosal gland cells (Merten et al., 1996; Kammouni 

et al., 1999; Chow et al., 2000) and it was suggested that these glandular cells may be better 

reached by vasculature and systemic application of the vector rather than by the airways 

(Boucher, 1999 ; Kolb et al., 2006).  
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There are several ways of introducing therapeutic genes into human cells but the most 
efficient method of gene transfer into human cells is by the use of viral vectors. Viruses have 
evolved and developed natural strategies to enter, transfer their genetic material and 
reproduce in specific tissues of  their hosts, making them highly adapted as vectors to 
transfer genes into their natural target cells. Since 1989, twenty-nine clinical trials for CF 
have been carried out using adenovirus or adeno-associated virus vectors and non-viral 
vectors. In these gene therapy protocols, the major site of vector administration was the 
respiratory airways such as the nasal and lung epithelium. Unfortunately, the somewhat 
disappointing results of these clinical trials showed that CF gene therapy was more difficult 
than originally anticipated. The viral and non-viral vectors used in these trials revealed their 
limitations and inefficacy in gene transfer to the human airway epithelium.  

2.1 Adenovirus (Ad) vector  

The adenovirus as a gene transfer vector has several advantages over other vectors : (i) its 
capacity to incorporate large transgenes; (ii) its ease for genetic manipulation (Hong et al., 
2003; Magnusson et al., 2007; Magnusson et al., 2001 ); and (iii) its facility to be produced to 
high titres. The efficiency of Ad vectors in gene transfer has been demonstrated in numerous 
systems (Henning et al., 2002; Gaden et al., 2004; Toh et al., 2005) and the functional analysis 
of transgenes expressed by Ad can be tested in vitro in cell lines, ex vivo in tissues and in vivo 
in animal models. In vitro studies demonstrated that recombinant Ad vectors can express 
CFTR in cultured CF airway epithelial cells and correct the Cl- transport defect (Zabner et 
al., 1993). Following this, a number of in vivo studies in animals and in tracheal explants 
showed that Ad vectors can express CFTR as well as reporter genes in the airway epithelia 
(Rosenfeld et al., 1992; Harvey et al., 1999; Scaria et al., 1998 ).  

Ten CF clinical trials involving Ad vectors were conducted during the period 1993-2001 
(available in  Clinical Trials website : http://www.wiley.com//legacy/wileychi/ 
genmed/clinical/). The first Ad vector used in CF gene therapy trials involving CF 
patients was a serotype 2 (Ad2) vector, genetically modified in the E1 region to carry the 
CFTR cDNA, under the E1a promoter and had the same polyadenylation addition site as 
the E1b and pIX transcripts (Zabner et al., 1993). The results obtained from the early 
clinical trials with Ad vector administration in the nasal and pulmonary tissues showed 
that the Ad vectors were well-tolerated at low to intermediate doses in humans, and 
partially corrected the chloride transport (Zabner et al., 1993, Crystal, 1995; Welsh et al., 
1995; ). 

One major difficulty which was revealed from the clinical trials was the inefficient CFTR 
gene transfer to the airway epithelium of CF patients (Perricone et al., 2001). It is known 
today that several factors were responsible for the low efficiency of CFTR gene transfer 
(Crystal, 1995): (i) the nonspecific inflammatory reactions (Otake et al., 1998) and immune 
response to the Ad-CFTR vector (Gahery-Segard et al., 1998 ; Piedra et al., 1998); (ii) the 
airway epithelial cells lack high affinity receptors for Ad (Zabner et al., 1997), as these 
receptors have a basolateral localization, which makes them inaccessible to Ad-CFTR 
vectors (Walters et al., 1999); (iii) mechanical factors, like bronchial mucus (Arcasoy et al., 
1997 ; Perricone et al., 2000; Hida et al., 2011), or local bacterial infections, can negatively 
influence the effective binding of Ad vectors to the surface of epithelial cells, and the 
subsequent delivery of the therapeutic gene; (iv) a combination of the above different 
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mechanisms, or/and intrinsic properties of differentiated airway epithelial cells (Gaden et 
al., 2002). Another hurdle encountered with Ad vectors was that gene transfer to the airway 
epithelia was transient and the use of recombinant adenovirus vectors would require 
repeated administration. The requirement for repeated vector administration is a major 
concern as this will generate neutralizing antibodies against the vector in gene therapy 
recipients which would subsequently reduce gene transfer efficacy.  

2.2 Adeno-associated virus (AAV) vector  

AAV gene transfer vectors have attracted much interest due to their good safety profile (no 

known pathology has been found to be associated with AAV in humans), broad tissue 

tropism and more importantly prolonged gene expression due to the integration of their 

DNA into the cellular genome. These vectors are thought to exhibit less inflammatory and 

immune reactions than the adenovirus. However, there are still technical problems 

concerning the small cloning capacity which could barely accommodate the CFTR gene (4.7 

kb), and the difficulty in achieving high titers during AAV vector production. 

Six CF gene therapy clinical trials using AAV vectors were carried out from 1999 – 2007 

(Clinical Trials website : http://www.wiley.com//legacy/wileychi/genmed/clinical/). 

The first AAV-CFTR vector used showed physiological correction of chloride transport in 

nasal epithelial cells in gene therapy recipients, even in those with low CFTR mRNA 

expression (Wagner JA et al, 1999). The more recent clinical trials used the AAV vector, 

TgAAV-CFTR, developed by Targeted Genetics Corp, which carried the weak AAV long 

terminal repeat (LTR) promoter to drive CFTR gene expression (Griesenbach et al., 2009). 

The clinical data showed that repeated doses of aerosolised AAV-CFTR vector treatment did 

not result in significant therapeutic improvement (Moss et al., 2007). The reasons for these 

disappointing results could likely be that (i) AAV was inefficient in transducing airway 

epithelial cells via the apical membrane, (ii) the LTR promoter used to drive CFTR 

expression was too weak, or (iii) repeated administration of AAV to the lung resulted in the 

development of an anti-viral immune response (Griesenbach et al., 2009). In brief, the vector 

was well tolerated but there are still concerns about the toxicity and immunological 

responses related to the repeated administration of this vector. In addition, it was reported 

recently that insertional mutagenesis was observed in neonatal mice models treated with 

recombinant AAV vectors : the mice developed hepatocellular carcinoma which was 

associated with AAV vector integration (Dosante et al., 2007). 

2.3 Non-viral vectors 

Nine CF gene therapy clinical trials have been carried out using non-viral or synthetic 
vectors from 1995-2004 (Clinical Trials website : http://www.wiley.com//legacy 
/wileychi/genmed/clinical/). There are three main non-viral vector systems : cationic 
liposomes, DNA-polymer conjugates and naked DNA. Non-viral vectors have their 
limitations such as (i) low efficiency in gene transfer as compared to viral vectors, and (ii) 
loss of efficacy with repeated administrations. However, the major advantage of these 
vectors is that they are less immunogenic compared to Ad and AAV vectors. Their inefficacy 
is mainly due to intracellular barriers such as endosomal sequestration and cytoplasmic 
degradation, where Ca2+-sensitive cytosolic nucleases restrict the half-life of DNA to 50-90 
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mins (Pollard et al., 2001). The nuclear membrane of non-dividing, airway epithelial cells 
constitutes another intracellular barrier as the nuclear entry of exogenous DNA occurs only 
in cells that are actively dividing (Ferrari et al., 2002).  

To date, only cationic liposome-based systems have been tested in CF clinical trials. The first 

cationic liposome vector used was DC-Chol (3{N-[N’,N’-dimethylaminoethane]carbamoyl} 

cholesterol) mixed with DOPE (dioleoylphosphatidyl ethanolamine), complexed to CFTR 

plasmid DNA, and administered to patients via the nose. Cationic liposomes facilitate gene 

transfer by their interaction with DNA via their positively charged side chains and 

enhancing fusion with the host cell membrane via the hydrophobic lipid portion.  The 

results obtained were encouraging as partial restoration of CFTR function was observed. 

However, the transfection efficiency and the duration of expression would need to be 

increased for therapeutic benefit (Caplen et al., 1995). Improvements to non-viral vector 

gene transfer efficiency to the lung have been proposed by using DNA condensed to 

molecular conjugates carrying a 17 amino acid peptide ligand which targets the serpin-

enzyme complex receptor expressed on the apical surface of airway epithelial cells (Ziady et 

al., 2002). 

Recently, three non-viral gene transfer agents : (i) cationic liposome (GL67A), (ii) 

compacted DNA nanoparticle with polyethyleneglycol-substituted lysine 30-mer (NP) 

and, (iii) 25kDa-branched polyethyeneimine (PEI) were evaluated in vivo in a sheep lung 

model. The efficacy profile of these agents to deliver a plasmid carrying the CFTR cDNA 

to the ovine airway epithelium by aerosol administration was compared. The results 

showed that GL67A was overall the best gene transfer agent for aerosol delivery to the 

sheep lung, and was selected for clinical trials in CF patients (McLachlan et al., 2011). In 

an ongoing clinical trial by the UK CF Gene Therapy Consortium and funded by the CF 

Trust, CF patients were given a single dose of a plasmid carrying the CFTR cDNA, 

complexed to the cationic lipid GL67A. This initial single-dose clinical trial will assess the 

safety and duration of CFTR expression in patients. Another clinical trial is planned for to 

determine whether repeated non-viral CFTR gene transfer (12 doses over 12 months) will 

improve CF lung disease (Sinn et al., 2011). 

3. Tracking the CFTR in cells using GFP-CFTR fusion protein 

The green fluorescent protein (GFP) is a 27-kDa protein from the jellyfish Aequorea victoria, 
discovered by Shimomura and co-workers in the 1960’s and was shown to emit bright green 
fluorescence under UV light (Shimomura et al., 1962). It took another 30 years before this 
protein was cloned and its functionality demonstrated in different organisms (Prasher et al., 
1994 ; Chalfie et al. 1994; Inouye and Tsuji 1994 ; Tsien, 1998).  The GFP is widely used today as 
a biological marker in cell biology and gene transfer technology. The GFP can be detected in 
living cells without selection or staining, and be genetically fused to other proteins to produce 
fluorescent chimeras and generally does not alter the function or cellular localization of the 
fusion protein (Gerdes and Kaether, 1996 ; Lippincott-Schwartz and Smith, 1997). It is used as 
a reporter protein for studying complex biological processes such as organelle dynamics and 
protein trafficking. In gene transfer experiments, the GFP serves an in vivo marker, allowing 
for the determination of gene transfer efficiency and for selection of cells positive for the 
transgene. Other applications of GFP in gene therapy involve the use of GFP-tagged 
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therapeutic proteins to determine the site, level and duration of expression, or for the 
correlation between gene transfer efficiency and therapeutic outcome (Wahlfors et al., 2001). 

3.1 Construction and in vitro applications of GFP-CFTR 

The CFTR protein is a 1,480 residue glycosylated molecule with 12 transmembrane domains 
and 3 intracytoplasmic domains (Figure 1). The protein is  highly glycosylated at two 
asparagine residues on the extracellular loop 4, in both the immature and mature-
glycosylated forms (Sheppard and Welsh, 1999). The immature CFTR has a high content of 
oligosaccharides of the mannoside type, and exists in the endoplasmic reticulum as a 
precursor before its transit to the trans-Golgi network. During the transit, the CFTR is 
processed into its mature form with the addition of complex carbohydrate chains containing 
polylactosaminoglycan sequences (O'Riordan et al., 2000). A functional CFTR requires the 
protein to be fully glycosylated, and its function as a chloride channel in epithelial cells is 
dependent on its cellular trafficking and transport to the apical membrane.  

The first direct visualization of the CFTR protein within cells was made possible by the 
genetic fusion of the green fluorescent protein (GFP) to the N-terminus of the CFTR 
protein. The choice of adding the GFP-tag at the N-terminus (Figure 1) was such that it 
would have minimal interference with the membrane-targeting signal thought to be 
encoded in the C-terminus of the protein (Milewski et al., 2001; Moyer et al., 1998 ). 
Functional and cell trafficking studies of the CFTR protein and its mutants were made 
possible with the expression of the GFP-fused protein in different cell lines, using 
expression plasmids (Moyer et al., 1999; Loffing-Cueni et al., 2001; Haggie, Stanton, and 
Verkman, 2002 ). The GFP-CFTR fusion construct displayed functionality in terms of 
apical membrane localisation in Madin-Darby Canine Kidney (MDCK) cells. Short circuit 
current measurements showed that the protein mediated cAMP-activated transepithelial 
chloride transport across monolayers of stably transfected MDCK cells (Moyer et al., 
1998). Studies of the dynamics of CFTR protein responses to bacterial infections, the 
manner by which the CFTR protein responds to, interacts with, and mediates 
translocation of P. aeruginosa and serovar S. typhi from the cell surface into the cell were 
also done using a GFP-CFTR fused protein (Gerçeker et al., 2000). 

 

Fig. 1. Schematic representation of the GFP-CFTR fusion protein and the topology of the 
different domains. The GFP is located on the N-terminus of the CFTR protein. GFP, green 
fluorescent protein ; TM, transmembrane domain ; NBD1, nucleotide binding domain 1 ; 
NBD2, nucleotide binding domain 2 ; R, regulatory domain ; NH2, protein aminoterminus ; 
COOH, protein carboxyterminus. 
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3.2 Ex vivo applications of GFP-CFTR  

The GFP-CFTR fusion constructs have also been inserted into viral vectors such as 
Adenovirus (Vais, 2004; Granio et al., 2007; Granio et al., 2010) and Sendai virus (Ban et al., 
2007) to facilitate the detection and direct tracking of the protein after gene transfer. When 
the Ad vectors, Ad5-GFP-CFTR and Ad5-GFP-CFTR∆F508, were used to transduce 
reconstituted airway epithelium from ∆F508 CF patients, the biologically active GFP-CFTR 
and the mutant GFP-CFTR∆F508 proteins could be directly tracked in the epithelial cells by 
confocal fluorescence microscopy due to their GFP-tag (Granio et al., 2007 ; see Figure 2, A 
and B). The GFP-CFTR protein (green) was observed to be located on the apical membrane 
of the reconstituted airway epithelium, at the same plane as the ZO-1 protein (red) which is 
the marker for tight junctions at the apical membrane. The nuclei of the cells were stained 
blue with DAPI (Figure 2, A and B). In epithelial cells infected with the Ad5 expressing the 
GFP-CFTR∆F508, the fluorescence was observed in the central and basal areas of the 
cytoplasm and none expressed at the apical surface (Figures 2, B and D). This was the first 
report showing the direct localization of an exogenous GFP-tagged CFTR protein on 
reconstituted human epithelial cells after Ad-mediated gene transfer (Granio et al., 2007). 

 

Fig. 2. Cellular localisation of the GFP-CFTR and GFP-CFTR∆F508 protein in ex vivo 
reconstituted human airway epithelium after gene transfer with Ad5-GFP-CFTR (A) and 
Ad5-GFP-CFTR∆F508 (B). (A), (B) : reconstructed images of sagittal sections of transduced 
epithelia generated from the z-stack images obtained in confocal fluorescence microscopy. 
(C), (D) : schematic representation of the images shown in (A) and (B), respectively. 

The availability of appropriate cell receptors at the apical surface of airway epithelial cells 
is a crucial factor for the efficient uptake of viral vectors. A majority of viral vectors such 
as Adenovirus, AAV, Measles virus and pseudotyped retroviruses can only infect airway 
epithelial cells via the basal membrane (Kremer et al., 2007; Sinn et al., 2002; Teramoto et 
al., 1998; Zabner et al., 1997). Airway epithelial cells are not easily transduced by Ad5-
based vectors as the Coxsackie-Adenovirus Receptor (CAR), a high affinity receptor for 
Ad5 and many other Ad serotypes vectors are mainly localised in the tight junctions and 
not at the apical surface (Walters et al., 1999), and thus not accessible to Ad vectors. One 
strategy of overcoming this physical barrier was to design an Ad vector which will 
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recognise a receptor expressed on the apical surface of airway epithelium. The Ad 
serotype 35 (Ad35) or a chimeric Ad5F35 vector (a serotype 5 capsid carrying serotype 35 
fibers), which both recognise CD46 as receptor, a molecule found on the apical surface of 
human airway epithelium (Gaggar, Shayakhmetov, and Lieber, 2003; Sinn et al., 2002; 
Corjon et al., 2011) would be capable of directly infecting the airway epithelia from the 
apical membrane . 

The demonstration was recently made with a chimeric Ad5F35 vector expressing GFP-
CFTR. This chimeric vector transduced efficiently well-differentiated human airway 
epithelium via the apical membrane and showed stable expression of the GFP-CFTR 
protein. Measurements of transepithelial ion transport showed the correction of the chloride 
channel function at relatively low vector doses in ∆F508 CF airway epithelial cells (Granio et 
al., 2010). This is a successful example of a viral vector which was genetically modified to 
target a receptor on the apical surface of the airway epithelial cells for efficient gene 
transduction. In a separate study using an in vivo mice model, the Ad5F35 vector was found 
to preferentially target the lungs of CD46-transgenic mice after systemic administration of 
the vector (Greig et al., 2009). The chimeric Ad5F35 vector therefore shows promise as an 
efficient lung targeted gene transfer vector for CF. 

3.3 In vivo applications of GFP-CFTR 

A study was conducted to determine whether a GFP-CFTR fusion protein was functional 
as a transgene when expressed in vivo, in colonic and airway epithelial cells of CF mice, 
and had the capacity to correct the CF defect. To assess the in vivo function of the GFP-
CFTR, bitransgenic mice cftr ~Ss1D/~551D KI8-GFP-CFTR +/- were obtained by breeding 
K 18-GFP-CFTR mice to cftr c551D/c551D CF mice. The analysis of transcripts, protein and 
electrolyte transport in the colon and airways indicated that the K18-GFP-CFTR was 
expressed and partially restored the ion transport in the G551D CF mice model. Thus, it 
appeared that in vivo, the GFP-CFTR fusion protein was capable of supporting the 
complex interactions required to regulate epithelial chloride transport (Oceandy et al., 
2003). 

4. Development of new vectors for CFTR transfer 

4.1 Human parainfluenza virus 

The human parainfluenza virus type 3 (PIV3) can infect the human airway epithelium and 

specifically targets ciliated epithelial cells (Zhang et al., 2005). In vitro studies using PIV3-

based vectors for CFTR gene transfer to CF epithelial cells resulted in the complete reversal 

of the CF phenotype, with the transepithelial ion transport, airway surface liquid volume 

regulation and mucus transport, restored to levels observed in non-CF epithelial cells 

(Zhang et al., 2009). In vivo administration of a PIV3 vector carrying a transgene coding for 

the rhesus -fetoprotein (rhAFP) to the nasal epithelium of the rhesus macaque (Macaca 

mulatta) showed expression and secretion of the rhAFP in the mucosal and serosal 

compartments. The transgene expression was transient and paralleled vector persistance, 

suggesting that as PIV3 was cleared, rhAFP expression was lost (Zhang  et al., 2010). The 

specificity of the PIV3 vectors for the airways make them particularly interesting as gene 

transfer vectors for CF therapy. 
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4.2 Respiratory syncytial virus 

The respiratory syncytial virus (RSV) can infect the lungs of CF patients, despite the physical 
barriers of the respiratory tract, such as the sticky and mucus-rich environment of the CF 
lung. In addition, this virus has a natural tropism for the luminal ciliated cells of the airways 
(Zhang et al., 2002). It was suggested that since RSV has the capacity for reinfections, 
repeated administrations of an RSV-based vector would be possible. Recently, it was 
demonstrated that a RSV vector carrying the CFTR gene can infect both non-CF and CF 
airway epithelium, and in particular the ciliated cells. In CF cells, the CFTR was expressed at 
the apical surface and showed correction of chloride channel activity which was equivalent 
in level observed in normal human airway epithelial cultures. Further studies in animal 
models are needed to determine the immune response to this vector, as well as its 
persistence in single and repeated administration (Kwilas et al., 2010). 

4.3. Integrative vectors 

The major goal of gene therapy is to have the delivered transgene safely and stably 
maintained in replicating cells. One approach to achieve genetic stability is via integration of 
the transgene into the host cell genome, using integrating vectors such as retrovirus and 
AAV vectors. The main dangers of integrative vectors are their uncontrolled or random 
integration which can cause (i) transgene silencing if the insertion occurs in condensed 
heterochromatin, or (ii) insertional mutagenesis if the integration event occurs near growth-
promoting genes leading to oncogenesis. The latter was encountered with lentivirus and 
AAV vectors, in animal models as well as in human clinical trials (Donsante et al., 2007; 
Hacein-Bey-Abina S, 2003 ).  

Just as for Ad vectors, lentiviral gene transfer to the human airway epithelium is 

inefficient due to the lack of receptors. The strategy of ‘‘pseudotyping’’ or substitution of 

the lentivirus envelope with the envelope protein of another virus, such as Ebola virus 

(Kobinger et al., 2003), baculovirus (Sinn et al., 2008) or Sendai virus (Mitomo et al., 2010) 

have demonstrated increase in gene transfer efficiency to the airway epithelium. Before 

the application of lentiviral vectors for pulmonary gene transfer, preclinical studies in 

large animal models will need to be carried out to carefully assess their efficacy and 

safety. 

4.4 Episomal vectors 

Extrachromosomal or episomal vectors are gene transfer agents which has the capacity of 

persisting in the nucleus of transduced cells without integrating into the host genome. Due 

to their nonintegrative nature, there is theoretically no risk of the physical disruption of the 

cell genome. In addition, episomal vectors can persist in multiple copies per cell, resulting in 

high expression of the therapeutic gene (Lufino, Edser, and Wade-Martins, 2009). Many of 

the episomal systems which has been developed are based on sequences derived from 

viruses such as the Epstein-Barr and Polyoma viruses, which have certain phases of their 

viral life cycle maintained episomally. The two major requirements of episomal vectors are 

the presence of a viral origin of replication and the expression of a virally encoded protein 

which is necessary for vector replication and its repartition into the daughter cells upon cell 

division.  
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4.4.1 Polyoma-derived episomal vectors 

The first stable episomal plasmid vector described in the literature contained sequences 
derived from the BK virus which belongs to the polyomavirus family. This episomal vector 
which carried most of the BK viral genome could persist at a stable copy number of 20–120 
copies/cell, depending on the cell line used, and showed low percentage of integration 
events (Milanesi et al., 1984). Its replication depended on the presence of the BK-derived 
origin of replication and a transactivating factor, a viral protein called large T antigen, which 
is responsible for binding to the viral origin of replication and mediating the vector 
replication. Replicating vectors based on Simian Vacuolating virus 40 (SV40) were among 
the first viral-based episomal systems to be developed. SV40 is a nonenveloped DNA virus 
with a double-stranded genome belonging to the family of polyomaviruses (Vera and 
Fortes, 2004). The SV40-derived vectors are composed of a cis-acting elements, essentially 
the SV40 origin of replication, and the sequence encoding for the SV40 T antigen.  

4.4.2 Epstein-Barr-derived episomal vector 

The major progress toward the development of an efficient episomal gene transfer vector 

came from plasmids based on the Epstein-Barr virus (EBV), a member of the family of 

herpesviruses. The EBV is capable of life-long persistence as an extrachromosomal, circular 

multicopy plasmid carried by B-lymphocytes in a latent state (Lindahl et al., 1976). The 

origin of replication (oriP, origin of plasmid replication) of EBV requires the trans-acting 

factor EBV Nuclear Antigen-1 (EBNA-1) for replication (Rawlins et al., 1985; Yates, Warren, 

and Sugden, 1985 ). The EBNA-1 binds to metaphase chromosomes and interphase 

chromatin, and this interaction facilitates the partition of oriP plasmids into daughter cells 

during mitosis (Ito et al., 2002). Plasmid constructs containing EBV episomal elements have 

been tested in pre-clinical animal models for treatment of diseases such as hemophilia and 

diabetes. The delivery of the EBV-based episomes were made by injections to the target 

tissues. Although the efficacy of transduction was less efficient in vivo compared to viral 

vectors, long term expression of the therapeutic gene was obtained (Mei et al., 2006 ; Yoo et 

al., 2006).    

4.4.3 Adeno-EBV hybrid episomal vector 

A hybrid Adenovirus-EBV (Ad-EBV) episomal vector has a major interest as it exploits the 

advantages of both vectors, combining the efficiency of gene transfer of the Ad vector with 

the episomal replicative nature of the EBV vector. Helper-dependent adenovirus (HD-Ad) 

vectors which are deleted of all viral coding regions, also known as gutless Ad, (Kochanek et 

al., 1996 ; Parks et al., 1996), are also interesting vectors as they are less immunogenic. The 

use of HD-Ad vectors for the development of episomal Ad-EBV vector brings further 

advantage to these vectors for their use in gene therapy. 

Circular replicating Ad-EBV vectors can be obtained by co-infecting an adenovirus carrying 
EBNA-1 and oriP elements with a loxP site at both ends, with a second adenovirus encoding 
Cre recombinase, whose expression will result in the circularisation of the first virus (Dorigo 
et al., 2004; Gallaher et al., 2009). Another strategy described for obtaining circular Ad 
episomes which does not rely on the expression of a viral protein such as EBNA-1, was 
based on the human origin of replication derived from the lamin B2 locus with the site-
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specific FLPe recombinase and Frt recognition sites. This vector system produces circular 
episomes free of viral coding or bacterial DNA sequences (Kreppel and Kochanek, 2004). A 
more recent study described the development of an HD-Ad-EBV vector in which Cre 
recombinase is transiently expressed from a hepatocyte-specific promoter such that the 
vector generation and transgene expression are tissue specific. The results obtained using 
this strategy were highly promising as long-term persistence of the circularized vector DNA 
and stable transgene expression in hepatocytes was observed in immunocompetent mice 
(Gil et al., 2010). 

5. Conclusions 

Profitable lessons have been drawn from the past two decades of CF gene therapy trials 
using different transfer vectors. The numerous difficulties and problems encoutered have 
helped in the improvement and design of future gene transfer vectors. New viral vectors 
such as RSV and PIV which specifically targets cilliated lung epithelial cells have been 
developed for pulmonary gene transfer. Significant improvement have been made for 
high-density Ad episomal vectors to achieve efficiency and specificity of 
transduction, coupled to long-term vector persistance and stable transgene expression. In 
parallel, the GFP has served as a very useful in vivo marker for the evaluation of gene 
transfer vectors. The visualization of CFTR protein in situ by means of the GFP fluorescent 
tag has contributed towards a better comprehension of CFTR multiple functions such as 
its cellular trafficking and the dynamics of its interactions with intracellular as well as 
extracellular partners.  
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