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Implementation of Dynamic Logic Algorithm  
for Detection of EM Fields Scattered  

by Langmuir Soliton 

V.I. Sotnikov, R.W. Deming and L. Perlovsky 
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA, 

USA 

1. Introduction 

In plasma diagnostics, scattering of electromagnetic waves is widely used for identification 
of density and wave field perturbations. Very often difficulties with implementations of this 
type of diagnostics are connected with the fact that scattered signals have small amplitudes  
comparable with the noise level. Under such conditions it is very important to implement 
the algorithm which allows us to identify and separate the scattered wave spectrum from 
the noise pattern. In the present work we use a powerful mathematical approach, dynamic 
logic (DL) [1], to identify the spectra of electromagnetic (EM) waves scattered by a Langmuir 
soliton – a one-dimensional localized wave structure. Such wave structures are understood 
to be basic elements of strong plasma turbulence. 

We are interested in the implementation of the Dynamic Logic algorithm for diagnostics of 
electromagnetic waves scattered by Langmuir soliton in the presence of random noise with 
amplitudes comparable with the amplitudes of the scattered waves. Scattering of EM waves 
on Langmuir soliton was previously analyzed by many authors (see for example Sinitzin, 
1978, 1979; Mendoca, 1983). 

For our purposes we will use the results for electromagnetic wave (EM) scattering on 
Langmuir soliton obtained in Mendonca, 1983, where scattering on low frequency part of 
density perturbations (density well) as well as scattering on high frequency part of density 
perturbations was examined and corresponding expressions for the amplitudes of the 
scattered waves were obtained. 

2. EM scattering by Langmuir soliton 

Langmuir soliton is a solution to the well known Zakharov equations (Zakharov, 1972): 
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Here 0n  is the plasma density, n  the density of perturbation, e
s

T
c

M
  the ion-sound 

velocity ( eT  is electron temperature and M  is ion mass), E the complex amplitude of the 

Langmuir waves. 

Fundamental object of the theory of strong Langmuir turbulence, Langmuir soliton 
(Rudakov, 1972), can be obtained from the equations (1)-(2) when we are looking for  
traveling wave solutions in the form: 

 ( , ) ( ) exp[ ( )] .LS LS x LS LSt E x ut i k x t c c   E r e   (3) 

with imposed boundary conditions ( ) 0E x     and with LS pe    . In  (3) xe   is 

the unit vector along the x-axis. 

Below we will use a well known solution to (1)-(2) which is given by:  

 ( , ) sec ( )exp( ) . .LS LS x LS LS

x ut
t E h ik x i t c c
  


E r e                      (4) 

Where    is the soliton half-width, which can be expressed through the electrostatic energy 

density normalized to the plasma thermal energy density
2
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Frequency LS  and wave number LSk  are defined as: 
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where vTe  and Der are electron thermal speed and Debye radius.   

Electric field of an EM wave interacting with a Langmuir soliton can be written in the 
following form: 

 0 0( )
0 0( , ) . .i t

pE e c c k r
E r t e               (8) 

where pe  is the polarization unit vector, 0  and 0k are the frequency and the wave vector 

of the EM wave. These  are connected through the dispersion relation: 

 
2 2 2 2
0 0 pek c                                    (9) 

In the process of scattering the EM wave will interact with electron density perturbations 
associated with a Langmuir soliton. These density oscillations consist of high and low 
frequency parts: 
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  1 2n n n                   (10) 

The high frequency oscillations can be presented as: 

 ( )1/2
1 0

2
( ) sec ( ) . .
3 v

LS LSi k x t
LS

te

u x ut
n i W n h e c c 

 


           (11) 

For the low frequency part (density well) we can use: 

 2
2 0 sec ( )LS

x ut
n W n h 

 


                  (12) 

It is well known that the ratio 1 2/n n  is of the order of unity and we need to take into 

account contributions to the scattered EM fields from both high and low frequency parts of 

density perturbations. As a result far away from the soliton it is possible to obtain the 

scattered wave field in the following asymptotic form (Mendonca, 1983): 

 0 1 0 2( ) 2 ( ) ( ) 2 ( ) ( )iqx iqx
f LS s LS sE x A E E e B W E e                 (13)   

In (13)   ( )A   and ( )B   are given by: 
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where  1 and 2 are defined as: 

 1 0 LS                       (16) 

2 0     

As it follows from (13)-(16) at large distances from the soliton it is possible to detect four 

scattered waves. Below for illustrative purposes we are presenting these four scattered 

waves which appear due to interaction of the incident EM wave, propagating at the 450 

angle in x-y plane with the moving along the x - axis soliton.  

The pattern of the total normalized electric field amplitudes of scattered EM waves given in 

(13) is presented in Fig. 2. 

The Fourier spectrum of scattered EM waves is presented in Figure 3. Below we will use this 

spectrum in implementation of the Dynamic Logic algorithm. 

We are interested in implementation of Dynamic Logic algorithm for diagnostics of 

electromagnetic waves scattered by Langmuir soliton in the presence of random noise with 

amplitudes comparable with the amplitudes of the scattered waves. Imposing the random 
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Fig. 1. Scattered EM waves produced due to interaction of the incident EM wave with 
Langmuir soliton. 

 

 

Fig. 2. The pattern of the total normalized electric field amplitudes of scattered EM waves.   

 

 
Fig. 3. The Fourier spectrum of scattered EM waves from (13). 
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noise pattern on top of the Fourier spectrum in Figure 3 with amplitudes comparable with 
that of the scattered EM waves we will obtain the following 2D pattern in the Fourier space: 

  

Fig. 4. Combined Fourier spectrum, consisting from the spectrum of scattered EM waves 
and random noise pattern with comparable amplitudes. 

As it clearly seen in Figure 4, scattered EM wave spectrum is hidden in the noise pattern. 
Our aim is to apply Dynamic Logic algorithm in order to extract information on scattered 
EM waves from the pattern in Figure 4.  

3. Implementation of the dynamic logic algorithm 

In order to demonstrate the basics of the DL algorithm we will present below one 

illustrative example. Suppose we have two classes 1  and 2 . We also have samples 

kX where samples with k=1 belong to class 1 and with k=2 to class 2 . Every sample k  

has two features 1 2( , )k k kx xX . In Figure 5  two groups of samples are presented. Red dots 

define samples from class k=1 and blue dots – from class k=2. 

 
Fig. 5. Two groups of samples. Samples defines as red dots belong to the class k=1 and 
samples defined as blue dots to class k=1. 

Typically, due to random variations there is good reason to expect the features in every class 

to be distributed normally (that is, according to the well-known Gaussian function, or “bell 
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curve"). A normal distribution  is completely specified by its set of parameters { , }  M , 

where M  is the mean vector and   is the covariance matrix (related to the width, or 

“spread", of the distribution). The equation for a normally-distributed probability density 

function (pdf)  for the class k=1 is: 

 1
1 1 1 1

1

1 1
( , ) exp[ ( ) ( )]

2(2 ) | |

T
n n n

d
p


     


X X M X M   (17) 

In (17) 1( , )np X   is the probability that sample n with the feature vector ,1 ,2( , )n n nX XX   

belongs to process 1  with 1 1 1( , )  M  . In (17) 1M is the mean vector for the class 1  

and components of the mean vector are defined as: 

 1, 1( | )k kM X p d




  X X   (18) 

Components of the covariance matrix 1  for the class 1  are defined as: 

 1, 1, 1, 1 1( )( ) ( | , )ij i i j jX M X M p d 




    X X   (19)  

When we have N training samples 1,nX which belong only to class 1  the procedure to find 

the parameters of the Gaussian distribution 1 1 1={ , } M is as follows [6]. We need to 

introduce the likelihood function 1( )L  : 

 1 1, 1
1

( ) ( | )
N

n
n

L p


   X    

Logarithm of the likelihood function : 

 

1 1 1, 1
1

( ) ln ( ) ln ( | )     
N

n
n

LL L p


     X

 

 (20) 

can be maximized by setting to zero its partial derivatives with respect to the parameters 

1 1 1{ , }  M . Resulting maximum likelihood values for the mean and covariance in the 

class 1  are: 

 1 1,
1

1
 

                   

N

n
nN 

 M X


  (21) 

Components of the covariance matrix  for the class 1 are defined as: 

 1 1, 1 1, 1
1

1
  =  ( )( )

N
T

n n
nN 

   X M X M
 

 (22) 

www.intechopen.com



Implementation of Dynamic Logic Algorithm  
for Detection of EM Fields Scattered by Langmuir Soliton 

 

251 

Now we will return to the problem formulated at the beginning of this section. Suppose we 

have two processes (classes) running 1  and 2 . We also have identified N samples  

,1{ }nX which belong to class  1 and another N samples  ,2{ }nX  which belong to class 2 . 

Our aim is to design a classifier for sorting out the remaining unlabelled samples which 

belong either to the class k=1 or to the class k=2, assuming that we know the features  

1 2( , )n n nx xX  of  remaining samples, but do not know to which class do they belong. The 

procedure we should follow is as follows. First we gather a set of training samples N for 

each of the two classes k=1 and k=2. Next we assign feature values 1 2( , )n n nx xX  to each 

sample. Then for each class, separately, we estimate the mean and covariance using (22), to 

give us a set of parameters { , }k k k  M  with k = 1,2. Knowing these parameters we can 

compute the pdf  ( | )kp X  of the data according to equation (17).  Then we can compute, for 

each unlabelled sample, the probability  

 
( | ) ( )

( | )
( )

n k

n

p P k
P k n

p




X

X
  (23) 

where 
2

1

 ( ) ( | ) ( )
k

n n k
k

p p P k



 X X  

Equation (23) gives the probability ( | )P k n  that sample n belongs to class k. To classify the 

unlabelled sample n, we simply choose the class k’, for which probability is the highest.  

Equations (23) is just an expression of Baye’s rule. Note that in equation (23) it is assumed 
we know the a priori probabilities P(k) for each class. Obviously, for each sample the 
probabilities must add up to one, i.e. 

 
2

1

( | ) 1
k

k

P k n



   (24) 

After we described how to estimate the mean and covariance of a single normal (Gaussian) 

distribution from a collection of data samples, below we will describe how to estimate 

parameters when the pdf is a weighted mixture, or summation, of Gaussian functions.  

Gaussian mixtures can be used to model complicated data sets. In such a case, each source 

corresponds to a class k which is parameterized by its own mean and covariance which we 

need to estimate.  In addition to the mean and covariance, we also need to estimate the a 

priori probabilities for each class, i.e. what fraction of the samples belong to each class. The 

estimation of parameters for mixture models is complicated by the fact that the data samples 

are unlabelled, i.e. we don’t know which data samples correspond to which class. Because of 

this inconvenience, it will be impossible to compute direct analytical expressions for the 

maximum-likelihood parameter estimates. However, we will be able to derive a convergent, 

iterative process to estimate the parameters. To do so we will perform the following basic 

procedure. First, a generic model for the data is defined in which the parameters for each 

class k are assumed to be the only unknowns. Next, a metric is selected which will be used 

to evaluate the “goodness of fit” between the model and the data for certain set of parameter 

values. Finally, an algorithm is developed to maximize the “goodness of fit” with respect to 

the parameters. Below we will describe maximum likelihood (ML) parameter estimation, in 
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which we seek to maximize the log-likelihood of the parameters with respect to a collection 

of data samples.  This approach is appropriate for standard data in which all samples are 

weighted equally in terms determining model parameters.  

Next, we introduce an alternative known as maximum entropy (ME) parameter estimation. 
Here the parameters are chosen to maximize the Einsteinian log-likelyhood. This metric is 
appropriate for processing digitized image data, in which samples are weighted according 
to their pixel values. 

4. Maximum likelihood (ML) estimation 

We now describe maximum-likelihood (ML) parameter estimation for a Gaussian Mixture 
[1, 6]. Mathematically, the mixture model for two classes k=1 and k=2  is represented by the 
equation: 

 
2

1

( | ) ( |, ) 
k

k k
k

p r p




  X X   (25) 

where kr  is the mixture weight for class k and 1 1 2 2{ , , , }r r    is the total set of parameters 

for the mixture. Also ( , )k k k  M  is the subset of mean and covariance parameters for 

class k. Each class k has the normal (Gaussian) distribution: 

 11 1
( , ) exp[ ( ) ( )]

2(2 ) | |

T
k k k k

d
k

p


     


X X M X M    

Since kr   denotes the fraction of the total samples that belong to class k, it is, by definition, 

equivalent to the a priori probability P(k) for class k. It is a well-known fact that these 

probabilities should sum to one, i.e.: 

 1 1

( ) 1
K K

k
k k

P k r
 

     (26) 

Our goal is to compute the maximum likelihood (ML) parameter estimates  

1 1 2 2{ , , , }r r   
   

 
given the additional constraint in equation (25). As in the previous 

Section,  this is accomplished by a process that incorporates the derivatives of the log-

likelihood with respect to each parameter: 

 
1 1 1

( ) ln ( | ) ln ( | ) 
N N K

n k n k
n n k

LL p r p
  

      X X   (27) 

The maximum-likelihood parameter estimates exactly satisfy the equations: 

 1

1

( | )

( | )

N

n
n

k N

n

P k n

P k n










X

M


 (28) 
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 1

1

( | )( )( )

 =    

( | )
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n k n k
n

k N
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P k n

P k n




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X M X M
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 (29) 
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1
( | )

N
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r P k n
N 
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 (30) 
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j j
j

r p r p
P k n

p
r p



 
 




X X

X
X

 (31) 

Equation (31) is actually a form of Baye's and can be interpreted as the association 
probability, i.e. the probability that sample n belongs to class k. Equations (28) and (29) are 
intuitively pleasing in the sense that they are identical to their counterparts Eqs. (21) and 
(22) for the normal distribution, except that here each sample is weighted by the association 
probability P(k/n). 

Although Eqs. (28)-(31) look simple enough, they are actually a set of coupled nonlinear 

equations, because the quantity P(k/n) on the right-hand sides is a function of all the 

parameters 


, as can be seen from equations (31) and (25). If a person could solve these 

equations directly, they would yield the exact values for the maximum-likelihood 

parameters - unfortunately a direct solution is intractable. However, we can compute the 

parameters indirectly, by iterating back and forth between the parameter estimation 

equations (28)-(30) and the probability estimation equation (31). In other words, the 

parameter estimates  [ ( ) ( ) ( ), , I I I
k k krM ]  in iteration I are computed using the association 

probabilities ( 1)( / )IP k n  computed from the previous iteration (I -1). Next, the association 

probabilities ( )( / )IP k n  in iteration I are computed using the parameter estimates 

[ ( ) ( ) ( ), , I I I
k k krM  ] from iteration I. Mathematically, this procedure corresponds to an 

approximate set of equations, analogous to Eqs. (28)-(31), which are iteration procedure to 

compute parameter estimates:  
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   (32) 
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and iteration procedure to compute probabilities : 

 
( ) ( ) ( ) ( )

( )
( )

( ) ( )

1

( | ) ( | )
( | )

( | )
( | )

I I I I
I n nk k k k

I K
I I

j j
j

r p r p
P k n

p
r p



 
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 

X X

X
X

  (35) 

To initialize the procedure, parameter values are assigned at random, or by other means. 
Then the above set of equations is repeated until convergence, typically on the order of 100 
iterations.  

Below in Figures 6 – 7 results of implementation of the DL algorithm for the problem of 

identification of samples which belong to two different classes 1 and 2   described above 

and illustrated in Figure 5, are presented.  

 
Fig. 6. With increasing iterations, the Dynamic Logic (DL) model adapts to segment data 
samples drawn from multiple random processes.  In this example, the data samples are 
drawn from two Gaussian random processes, and the DL model consists of two 
components.  The dots and circles represent the data samples, while the black ellipses 
represent the 2-sigma extent of the DL covariance, centered at the mean for each DL 
component.  (a) Initially, the mean parameters for the components are assigned random 
initial values, and the covariance parameters are initialized in order to roughly span the 
sample data.  (b)  After several iterations the DL components begin to partition the data in a 
fuzzy manner as their evolving mean and covariance parameters cause them to “shrink” to 
fit each sample cluster.  (c) Upon convergence, the DL model correctly segments the 
samples, and the mean and covariance parameters of the DL components provide good 
estimates for the mean and covariance of the underlying random processes. 

In practice, one can decide whether convergence has been obtained by plotting the log-

likelihood vs. iteration number and looking for a leveling of in the curve. The procedure is 

guaranteed to converge, in the sense that LL will never increase between successive 

iterations. However, convergence to an extraneous local minimum is sometimes possible. If 

this error occurs, and can be detected, the user must repeat the procedure after choosing a 

new set of initial conditions. The iterative procedure described above was pioneered by 

Perlovsky [1] and, independently, by others. In fact, the procedure has been shown to be an 

application of the well-known expectation-maximization (or EM) algorithm which is 

described, for example, in [20] and the references therein. 
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5. Maximum entropy (ME) estimation 

In ML estimation, discussed above, we utilized the log-likelihood  to determine the “goodness 
of fit" between the model and the data. This well-known metric is appropriate for standard 
data in which all samples are weighted equally in terms determining model parameters. 
However for some data sets, for example those involving digitized images, we require a 
different metric that will incorporate the natural weighting of samples corresponding to 
their pixel values [1,6]. For these problems we now introduce the metric known as the 
Einsteinian log-likelihood: 

 0
1

( ) ( )ln ( | )
N

E n n
n

LL p p


   X X   (36) 

Here, the function  0( )np X  denotes the distribution of pixel values as a function of pixel 

position within the image. Note that nX  is no longer a vector of classification features, as 

has been the case up until now, but rather a vector giving the position 1 2[ , ]Tn n nx xX  of the 

nth  pixel in the image. 

The Einsteinian log-likelihood LLE, which was introduced by Perlovsky[1], has some 
interesting physical interpretations relating to photon ensembles, etc., as discussed in [1]. It 
is also related to some standard measures of similarity used in the information theory arena. 
In fact, maximizing LLE  with respect to the parameters is equivalent to minimizing the 
relative entropy, or Kullback-Leibler distance [5]. 

 0
0 0

( )
( | ) ( )ln[ ]

( )x

p x
D p p p x

p x
   (37) 

In any case, it is easy to see that if 0( ) 1np X , then the Einsteinian log-likelihood LLE   in 

equation (36) reduces to the standard log-likelihood LL given by equation (27). 

The equation describing our mixture distribution is the same as equation (25): 

 
1

( | ) ( |, ) 
K

k k
k

p r p


  X X   (38)   

Where 

 11 1
( , ) exp[ ( ) ( )]

2(2 ) | |

T
k k k k

d
k

p


     


X X M X M   

Also, as before, ( , )k kr   , k = 1; 2; ::: ;K , is the total set of parameters for the mixture, 

while { , }k k k  M  is the subset of mean and covariance parameters for class k, and kr  is 

the mixture weight for class k. Substituting equation  (38)  into equation (37), we obtain the 

following expression for the Einsteinian log-likelihood: 

 0
1 1

( ) ( )ln ( | ) 
N K

E n k n k
n k

LL p r p
 

   X X   (39) 
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For convenience we will assume that the data 0( )np X is normalized, i.e.: 

 0
1

( ) 1 
N

n
n

p


 X   (40) 

Therefore, to insure that also: 

 
1

( | ) 1
N

n
n

p


  X   (41) 

so that the data and model have the same total energy, the kr  must sum to one, i.e.: 

 
1

1
K

k
k

r


   (42) 

Our goal is to compute the maximum entropy (ME) parameters  


 which maximize LLE  

given by equation (39) subject to the constraint in equation (42). The mathematical 

derivation for the ME parameter estimates is almost identical to the mathematics governing 

the ML estimates. The result is that the ME parameters exactly satisfy the equations:  
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As described in Section IV, the parameter estimation equations, above, are actually a set of 

coupled nonlinear equations, due to the implicit dependence within the bracket notation on 

the unknown parameters. However, we can compute the ME parameter estimates using a 

convergent, iterative process, identical to the process described in Section IV for the ML 

parameter estimates. In this process we alternate, in each iteration, between updating the 

probabilities ( | )P k n  and the parameters { kM , k , kr }.  
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Applying maximum entropy estimation method to the problem of detection of scattered by 
a Langmuir soliton EM waves hidden in a noise pattern (see Fig. 5) we will obtain the 
following result, presented in Fig. 7. 

 
Fig. 7. (upper left) The combined measured spectra of several soliton waves are completely 
obscured by measurement noise.  (upper right)  The DL model is initialized with random 
model parameters.  (lower left)  After a few iterations the DL model begins to learn the 
structure of the data, and model components begin to adapt to fit the soliton spectra.  (lower 
right)  Upon convergence, the DL model is able to adaptively segment the data into 
background noise vs. multiple soliton spectra, despite the low signal-to-clutter ratio. 
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