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1. Introduction 

In general, nuclear transitions are almost independent of the atomic environment of the 
nucleus. This feature is a basic prerequisite for the widely used nuclear chronometers (with 
the most famous example of 14C, the so-called radiocarbon dating). However, a closer look at 
the details of nuclear transitions shows that under special circumstances the atomic 
environment may affect nuclear transitions. This is most obvious for electron capture decays 
where the nucleus captures an electron (typically from the lowest K-shell). A nice example 
for the experimental verification of this effect is the dependence of the electron capture half-
life of 7Be on the chemical form of the beryllium sample (Ohtsuki et al., 2004). Also the half-

lives of --decays may be affected by the environment: for fully ionized nuclei the emitted 
electron may remain in the (otherwise completely occupied) K-shell, thus enhancing the 
decay Q-value and decay rate. An experimental verification was found for 187Re (Bosch et 
al., 1996). As electron densities in solids may also vary with temperature (e.g. in the Debye-

Hückel model), -decay half-lives may also depend on temperature. However, the latest 

study of the decay branching between --decay and +-decay/electron capture in 74As could 
not confirm earlier claims in this direction (Farkas et al., 2009). The relevance of temperature 

and density dependence of --decay has been studied in detail in the review (Takahashi and 
Yokoi, 1987). 

Contrary to the above mentioned -decays where the role of electrons in the environment of 

the nucleus is obvious, the present study investigates electromagnetic transitions in nuclei. 

We also do not analyze electron screening where stellar reaction rates between charged 

particles at extremely low energies are enhanced because the repulsive Coulomb force 

between the positively charged nuclei is screened by the electrons in the stellar plasma. 

Details on electron screening can also be found in this book (Kücük, 2012) and in the latest 

review of solar fusion reactions (Adelberger et al., 2011). 

The electromagnetic transitions under study in this chapter are extremely important in 

almost any astrophysical scenario. Capture reactions like (p,), (n,), and (,) play key roles 
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in hydrostatic and explosive burning of stars, in the neutrino production of our sun, and in 
the synthesis of heavy elements in the so-called s-process and r-process. Photodisintegration 

reactions like (,p), (,n) and (,) define the reaction path in the so-called Ǆ-process which 
produces a significant amount of the rare p-nuclei. In addition, half-lives of isomeric states 
may be affected under stellar conditions via photon-induced excitation of so-called 
intermediate states. 

As we will show in this chapter, -transitions which are most affected by the electronic 

environment are found in heavy nuclei and are characterized by relatively low -transition 
energies below approximately 100 keV. First of all, astrophysical processes have to be 

identified where such -transitions play an important role. 

In early burning stages of stars from hydrogen burning up to silicon burning heavier nuclei 
are synthesized mainly by capture reactions along the valley of stability. Typical Q-values of 
these capture reactions between light nuclei are of the order of several MeV. In these 

scenarios -transitions are practically not affected by the surrounding plasma. A possible 

exception in the 7Be(p,)8B reaction will be discussed separately as a special example later in 
this chapter. 

The synthesis of heavy nuclei proceeds mainly via neutron capture reactions in the slow and 
rapid neutron capture processes (s-process, r-process). The s-process path is located close to 
stability, and typical Q-values for neutron capture reactions are again of the order of several 
MeV. The corresponding capture -rays are also not significantly affected by the 
environment. As the r-process operates close to the neutron dripline, typical Q-values 
decrease down to about 2-3 MeV or even below. However, under typical r-process 
conditions an equilibrium between the (n,) capture and (,n) photodisintegration reaction is 
found, and the r-process path becomes mainly sensitive to the neutron separation energies, 
but almost independent of the corresponding (n,) and (,n) cross sections. Although there 
may be some influence of the plasma environment on the low-energy -transitions in the r-
process, there is no significant influence on the outcome of the r-process. 

Contrary to the s-process and the r-process, the so-called rp-process proceeds via proton 
captures on the neutron-deficient side of the chart of nuclides close to the proton dripline. 
The Q-values of these (p,) reactions may become small. However, in general not much is 
known on nuclei on the path of the rp-process, and thus any discussion of the influence of 

the surrounding plasma on low-energy -transitions in the rp-process must remain quite 
speculative and is omitted in this chapter. 

In the so-called p-process or -process existing heavy seed nuclei are destroyed in the 

thermal photon bath of a hot environment by (,p), (,n) and (,) reactions leading to the 

production of the low-abundance p-nuclei. Again, the required -ray energy is of the order 
of several MeV, by far too high for a significant influence of the plasma environment. 

Further details on the various nucleosynthesis processes can be found in the latest textbooks 
(Iliadis, 2007; Rolfs and Rodney, 1988) and in several contributions to this book (Matteucci, 
2012; Pumo, 2012; Arnould and Goriely, 2012). 

At first view, it seems that the plasma environment is not able to play a significant role in 
any of the above processes. However, a closer look at the s-process nucleosynthesis shows 
that there are a number of cases where low-energy Ǆ-transitions turn out to be extremely 
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important because such transitions may be able to produce and/or destroy isomers and thus 
affect s-process nucleosynthesis. The s-process path is located along the valley of stability. 
The level schemes of the nuclei under study are well-known; this holds in particular for the 
excitation energies and spins. This information allows for a careful study of the influence of 
the plasma. 

Details of the s-process are given in this book (Pumo, 2012) and in a recent review (Käppeler 
et al., 2011). Here we repeat very briefly the most important properties of s-process 
nucleosynthesis. The main component of the s-process operates in low-mass AGB stars. Two 

alternating neutron sources are active. The 13C(,n)16O reaction operates for about 104 to 105 
years at low temperatures below 10 keV; in most cases this temperature is too low to affect 

isomer production or destruction. The  22Ne(,n)25Mg reaction is activated for a few years 
during so-called helium shell flashes at temperatures around 25 keV and densities of about 
103 g/cm3. (Gallino et al., 1998). Under these conditions dramatic variations of isomer 
production and destruction rates can be expected (Ward & Fowler, 1980; Mohr et al. 2007; 
Gintautas et al., 2009; Mohr et al., 2009; Hayakawa et al., 2010). It has to be noted that the 
stellar transition rates may exceed the experimentally accessible ground state contribution 
(Belic et al., 2002; Mohr et al., 2007b; Rauscher et al., 2011) by orders of magnitude. 

Two different temperature dependencies can be found for such low-energy Ǆ-transitions 
which should not be mixed up. First, the total transition rate between states is given by the 
sum over all contributing branchings; all these different contributions vary strongly with 
temperature because of the exponential temperature dependence of the surrounding 
blackbody radiation. Second, each individual transition may additionally be modified by the 
plasma environment; this may lead to an additional temperature and density dependence of 

individual transitions with low -ray energy. The latter effect is the main subject of this 
chapter. 

As example we have chosen the nucleus 171Tm. It has a ground state with Jπ = 1/2+ and a 
low-lying first excited state with Jπ = 3/2+ at the excitation energy of 5.04 keV. This state 
decays by a M1 transition with small E2 admixture (mixing ǅ = 0.021±0.001) with a half-
life of T1/2 = 4.77±0.08 ns. Because of its low energy, this transition is highly converted 
(internal conversion coefficient ǂ = 1408±55). All data have been taken from the latest data 
evaluation (Baglin, 2002). 171Tm is located on a neutron-rich branch of the s-process and 

may be reached either via the branching at 169Er in the 168Er(n,)169Er(n,) 170Er(n,) 171Er(ǃ-

)171Tm reaction chain or via the branching at 170Tm in the 169Tm(n,)170Tm(n,)171Tm chain. 

It is interesting to note that the destruction of 171Tm in the 171Tm(n,)172Tm capture 
reaction proceeds mainly via neutron capture in the thermally excited 3/2+ state 
(Rauscher et al., 2011). 

2. Modification of a particular transition 

As mentioned above, nuclear excitation in astrophysical plasmas may be significantly 

modified by the electronic environment -transitions of relatively low energy. Particles from 

the plasma other than photons interact with the nucleus and may excite it to an upper level. 

Thermodynamic conditions in the plasma may substantially alter the electronic environment 

of the nucleus and also perturb the de-excitation process of internal conversion. As a rule of 

thumb, every transition with an energy lower than 100 keV must be looked at, as internal 
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conversion can significantly contribute to the transition rate. Some examples for several -
transition energies have already been shown earlier (Gosselin et al., 2010). The two levels 

involved need not include the ground state, but can also be built on an isomeric state. 

At least four different electromagnetic excitation processes may be able to excite a nucleus 
under typical astrophysical plasma conditions (Gosselin et al., 2010): 

 Radiative excitation. A photon from the blackbody spectrum in the plasma is absorbed 
by the nucleus (Ward & Fowler, 1980). 

 Nuclear Excitation by Electron Capture (NEEC). A free electron from the plasma is 
captured onto an empty atomic shell, giving its energy to the nucleus. This is also 
known as Inverse Internal Conversion (Gosselin & Morel, 2004). 

 Nuclear Excitation by Electron Transition (NEET). A loosely bound electron makes a 
transition to a deeper atomic shell and gives its energy to the nucleus (Morel et al., 
2004). 

 Inelastic scattering of electrons (Gosselin et al., 2009). 

Another non-electromagnetic excitation process is inelastic neutron scattering. It will not be 
dealt with in here, as it is strongly dependent on the specific astrophysical plasma in which 
it occurs. As the neutron spectrum is not directly related to the thermodynamic conditions 
of the plasma, but rather to the astrophysical site under study, it is impossible to plot an 
excitation rate as a function of the temperature as for the other processes. 

All these electromagnetic processes must be dealt with along with their inverse processes, 
respectively photon emission, internal conversion, bound internal conversion (BIC), super-
elastic scattering of electrons (a scattering process where the scattered electron gains some 
energy from the nucleus) and neutrons. 

Describing each process is a two-step undertaking. The first step is a microscopic 
description of the excitation process which uses quantum mechanics formalism and aims at 
calculating a cross section (when there is an incident particle) or a transition rate (when 
there is none, such as with NEET). The electronic environment of the nucleus is described 
with a relativistic average atom model (RAAM) (Rozsnyai, 1972) from which an atomic 
potential can be extracted which depends on the density and the temperature of the plasma.  

The second step is to derive a macroscopic plasma transition rate for all processes. 
Thermodynamics and plasma physics in the RAAM model are used to get distribution 
functions of photons or electrons and build the corresponding transition rate. Except for 
NEET, such a model is able to provide reliable values of electronic shells binding energies 
and occupancies, as well as a distribution function of free electrons. 

If the plasma can be considered to be at local thermodynamic equilibrium (LTE), the 
excitation and de-excitation rate of each process are related to each other by: 

 
2 1

2 1

E
fe kT

d i

J
e

J










 (1) 

In this expression, e is the excitation rate, d the de-excitation rate, Ji and Jf the spins of the 

initial and final states in the nucleus and E the nuclear transition energy. This relation is 
known as the principle of detailed balance and expresses the micro-reversibility of excitation 
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processes. Here, we consider that electrons and photons are at LTE, but obviously nuclei are 
not. 

2.1 Radiative excitation 

Radiative excitation occurs through the resonant absorption of a photon. Most astrophysical 

plasmas have a large blackbody component in their photon spectrum. A blackbody photon 

can easily be absorbed by a nucleus if its energy is very close to a nuclear transition energy. 

However, the huge number of blackbody photons ensures that the resulting rate is 

significant. Two de-excitation processes compete with photon absorption: spontaneous and 

induced emission. 

The microscopic cross section is a Breit and Wigner resonant capture cross section 

(Hamilton, 1975): 
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Here  is the photon frequency,  the gamma width of the excited nuclear level and  its 
total width. By folding this cross section with the blackbody distribution, we deduce an 
excitation rate: 
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where Tr is the radiative temperature and 
f iJ JT
  the transition radiative half-life. 

The induced de-excitation rate can be deduced from the spontaneous rate by multiplying by 
the number of modes: 
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where I is the blackbody radiative intensity. This gives a total de-excitation rate: 
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This total de-excitation rate and the excitation rate satisfy the principle of detailed 
balance. 

As mentioned above, all excitation processes were calculated for 171Tm. Fig. 1 shows 
excitation and induced emission rates becoming significant when the plasma temperature 
reaches a value in the same order of magnitude as the nuclear transition energy. 
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Fig. 1. Radiative excitation and de-excitation of 171Tm. 

2.2 Nuclear excitation by electron capture 

NEEC is the inverse process of internal conversion. A free electron from the plasma is 
captured onto an atomic shell and the excess energy is used to excite the nucleus. It still has 
not been observed in the laboratory despite some attempts in channeling experiments 
(Kimball et al., 1991) and some projects with EBIT or EBIS (Marss, 2010). Considering NEEC 
in plasmas has first been proposed by Doolen (Doolen, 1978) in plasma at LTE. 

If an electron has a kinetic energy lower than the nuclear excitation energy, the NEEC cross 
section can be expressed by the Fermi golden rule (Messiah, 1961): 
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22

NEEC f b i r b
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E H E
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where ve is the incident electron speed, i and f the nuclear initial and final states wave 

functions, b and r the bound and free electron wave functions and b(E) the total final state 
density. The matrix element is directly related to the internal conversion coefficient 
(Hamilton, 1975), which gives a resonant electron capture cross section: 
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where 
f iJ JT
 is the radiative half-life of the transition,  the internal conversion coefficient, 

Er the resonance energy and  the nuclear level width. 

A NEEC rate in plasma can then be derived by folding this cross section with the free 
electron distribution: 
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with Eb the binding energy of the bound electron and fFD is the Fermi-Dirac distribution. 

 

Fig. 2. NEEC excitation and Internal Conversion de-excitation of 171Tm. 

At low temperatures, Fig. 2 shows a near constant internal conversion rate which is very 

close to the laboratory value. For higher temperatures, the number of bound electrons 

decreases as the atom is ionized, and the number of allowed conversions must decrease. At 

low temperatures, the NEEC rate is very small as there are few free electrons to be captured 

and few vacant atomic states on which they could be captured. The NEEC rate then rises as 

the temperature increases to reach a maximum. The decrease at the higher temperatures can 

be attributed to the rising kinetic energy of the free electrons, the fraction of which below the 

nuclear transition threshold becoming less and less important.  

2.3 Nuclear excitation by electron transition 

Nuclear Excitation by Electron Transition (NEET) occurs when a loosely bound electron 

makes a transition to a deeper atomic shell and gives its energy to the nucleus. This may 

happen when the electronic and nuclear transition energies are very close to each other 

(separated by less than the atomic widths). NEET requires at least one electron on the outer 

atomic shell and at least a vacancy on the inner atomic shell. The energy difference between 

the atomic and the nuclear transition energy is called the mismatch and is denoted by . In 

the laboratory, such restrictive conditions can only be achieved for a very small number of 

nuclei. In astrophysical plasma, various conditions of density and temperature can be 

encountered, with a huge number of different electronic configurations at various charge 

states. The electronic shell binding energies are modified and the energy resonance 

condition (0) can more often be achieved. 
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The probability of NEET occurring on an isolated and excited atom is given by: 
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where 1 and 2 represent the total width (atomic and nuclear) of the initial and final 
configurations, respectively, and |R1,2| is the atom-nucleus matrix coupling element (Morel 
et al., 2004). The NEET probability reaches a maximum when the mismatch is zero. 
Mismatch variations for a 3s-6s atomic transition on Fig. 3 exhibit matching conditions 
around a temperature of 4 keV for a plasma density of 100 g/cm3. 

 

Fig. 3. Mismatch of (3s1/ –6s1/2) atomic transition for 171Tm. 

The atom-nucleus coupling matrix element is little sensitive to temperature as illustrated on 
Fig. 4. As the temperature increases, there are less bound electrons. This reduces screening 
of the nucleus by the remaining bound electrons, whose orbitals are closer to the nucleus. 
The overlap between the electron and the nucleus wave functions is larger, which increases 
the coupling. 

In plasma, the NEET rate can be estimated as a summation over all initial configurations of 
the rate of creation of such a configuration multiplied by the NEET probability: 
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Here, N1 and N2 are the initial electronic occupations of the two atomic shells involved in 

the transition, of degeneracy 1 and 2, corresponding to outer and inner shell, respectively. 
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Fig. 4. Atom-Nucleus coupling matrix element of (3s1/2 –6s1/2) atomic transition for 171Tm. 

An accurate calculation requires a good knowledge of nuclear and atomic wave functions 
for every configuration. However, the huge number of electronic configurations in this 
approach, which mirrors the DCA (Detailed Configuration Accounting) approach used to 
determine atomic spectra (Abdallah et al., 2008), makes such a calculation a prohibitive task. 
Therefore, we replace the detailed spectrum of atomic transitions by a Gaussian envelope, 

whose mean energy and statistical standard deviation  are extracted from the RAAM 
(Faussurier et al., 1997). This quicker approach works the best when only outer atomic shells 
are involved. The NEET rate becomes: 
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 (11) 

The NEET rate as a function of electronic temperature is presented in Fig. 5. Many atomic 
transitions contribute to the total NEET rate, the 3s1/2–6s1/2 and 3p1/2-6p3/2 transitions being 
the two dominant ones around 4 keV (only the M1 and E2 transitions with a maximum 
NEET rate higher than 103 s-1 are shown). 

The average atom model cannot be steadily applied for atomic transitions involving deep 

shells because their average occupation numbers differ highly from the NEET requirements 

of at least a vacancy in the inner shell and an electron in the outer shell. In such cases, the 

mismatch of the RAAM mean configuration can be very different from the mismatches of 

the real configurations on which NEET is possible. When this discrepancy gets higher than 

the statistical standard deviation, a detailed configuration approach such as DCA can then 

not be avoided. 

Fully comprehensive DCA calculations are still out of reach of the fastest available 
supercomputers. However, a careful selection of the atomic transitions may significantly 
reduce the number of electronic configurations and may soon be an accessible goal. 
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Fig. 5. NEET excitation of 171Tm. 

2.4 Inelastic electron scattering 

In astrophysical plasmas, there usually exists a huge number of free electrons. If the nuclear 

transition energy is low enough, a significant part of these electrons might be able to excite 

the nucleus through Coulomb excitation. A semi-classical theory works well for high -above 

1 MeV- energy ions (Alder et al., 1956), whereas a more sophisticated quantum model is 

required to deal with electrons in the keV range. With an unscreened atomic potential, a 

WKB approximation can be successfully implemented (Gosselin et al., 2009). The WKB cross 

section is very close to the more exact usual DWBA quantum approach (Alder et al., 1956) 

but much computationally heavier. 

Cross sections exhibit usually low values in the 10-30 cm2 range which can be at least 
partially compensated by the huge number of free electrons in high temperature plasmas 
(above the nuclear transition energy). However, these cross sections also exhibit a non-
physical behavior close to the energy threshold where it does not drop to zero as it should 
do, as can be seen on Fig. 6. This can be explained by an “acceleration” of the incident 
electron by the unscreened potential as the global neutrality of the atom is not verified. 
Using a screened potential in the future will allow to get rid of this artifact. 

By folding this cross section with the free electron distribution, we easily deduce an electron 
inelastic scattering excitation rate in plasma as shown on Fig. 7. It is negligible at low 
temperatures when there are very few free electrons, and these electrons do not have a high 
enough energy to be above the threshold. This changes when the temperature reaches 
values around the nuclear transition energy. At high temperatures, the excitation rate does 
not vary much as the lowering cross section is compensated by the increasing velocity of the 
electrons. 
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Fig. 6. WKB Inelastic electron scattering cross section of 171Tm. 

 

Fig. 7. Inelastic electron scattering excitation rate of 171Tm. 

2.5 Lifetime evolution 

Fig. 8 summarizes excitation rates of the four electromagnetic processes present in plasma. 
NEEC dominates at low temperatures, radiative excitation at the hottest temperatures and 
NEET in between. The electron inelastic scattering never dominates although this situation 
could change at higher plasma density. 
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Fig. 8. Nuclear excitation rate in plasma of 171Tm. 

Highly variable rates of excitation also means highly variable rates of de-excitation which 
means that the nuclear lifetime of the excited level now depends on the plasma 
temperature. Fig. 9 shows these variations which cover nearly two orders of magnitude in 
the particular example of 171Tm at 100 g/cm3. Some other nuclei even exhibit larger 
variations, such as 201Hg (Gosselin et al., 2007) where the lifetime can be increased by a 
factor of more than 104. 

 

Fig. 9. Lifetime in plasma of 171Tm. 

However, this lifetime is an extension of the usual notion of lifetime in the laboratory. This 

plasma lifetime is the characteristic time required to get from any relative populations of 
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both the ground and excited states to the LTE (for the nuclear levels) relative populations, 

that is populations whose ratio is given by the Boltzmann factor. For high temperatures and 

a higher spin for the excited state, the population of the excited state reaches a higher value 

than that of the ground state. 

3. Stellar transition rates 

As shown before in this chapter, thermalization between the ground state and the first 

excited state of 171Tm is achieved on a timescale far below 1 second, i.e. much faster than the 

timescales of the astrophysical s-process. This result remains valid as long as the levels 

under study are connected by a direct Ǆ-transition or a Ǆ-cascade. A similar result has been 

derived explicitly for the ground state band of 176Lu (Gintautas et al., 2009). Thus, because of 

the prompt thermalization within Ǆ-bands it is obvious that the stellar transition rate of any 

photon-induced reaction has to be calculated including all contributions of thermally excited 

states. This holds in particular for (Ǆ,n) and (Ǆ,ǂ) reactions for the astrophysical Ǆ-process, 

but also for the photodestruction of isomers in the s-process. Because the required photon 

energies for (Ǆ,n) and (Ǆ,ǂ) reactions is of the order of several MeV, the influence of the 

surrounding plasma remains small, and we focus on the photodestruction of isomers in the 

following. 

The K-isomers are found in heavy deformed nuclei. Transitions between states with large 

differences in the K quantum number are strongly suppressed by selection rules. Thus, there 

are no direct transitions between low-K states and high-K states. As a consequence, 

thermalization has to proceed via higher-lying so-called intermediate states (IMS) with 

intermediate K quantum number which have a decay branching to the low-K and to the 

high-K part of the excitation spectrum of the respective nucleus. The transition rates from 

the low-K side and the high-K side of the spectrum to the IMS define the timescale for 

thermalization. Typically, these IMS are located at excitation energies above 500 keV. They 

decay down to the lowest states with low and high K by Ǆ-cascades where energies of the 

individual Ǆ-transitions are obviously much smaller than the excitation energy, i.e. the 

energies may be as low as 100 keV or even below. This is the energy region where the 

plasma effects become important. The full formalism for the calculation of stellar reaction 

rates is given in an earlier work (Gosselin et al., 2010). The essential result is that the stellar 

reaction rate λ* for transitions from the low-K to the high-K states (and reverse) can be 

derived by a formula similar to Eq. (2) which leads to 

 * 1 2

1 2


 


  

 (12) 

where Γ1 and Γ2 are the total decay widths to the low-K and the high-K states respectively in 

the deformed nucleus under stellar conditions (i.e., summed over all levels, each particular 

transition width Γi→f being modified by the plasma environment according to the discussion 

in this work). It should be noted that the smaller of the two widths Γ1 and Γ2 essentially 

defines the stellar reaction rate λ* for transitions from the low-K to the high-K states because 

the larger width cancels out in the above equation. 
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4. Some selected examples 

In the following section we discuss three examples in greater detail. The first two examples 

are so-called K-isomers which are relevant in the astrophysical s-process (176Lu and 180Ta). 

The last example is the 7Be(p,)8B reaction with its low reaction Q-value of 137 keV. 

4.1 
176

Lu in the astrophysical s-process 

176Lu is a so-called s-only nucleus because it is synthesized only in the astrophysical s-

process. It is produced either in its high-K Jπ;K=7-;7 ground state with a half-life of 38 giga-

years (quasi-stable for the s-process) or in its low-lying low-K Jπ;K=1-;0 isomer at 123 keV 

with a half-life of less than 4 hours. The 175Lu(n,)176Lu reaction produces most of 176Lu in 

the low-K isomeric state which decays by ǃ- emission to 176Hf. 176Lu can only survive if the 

isomer is coupled to the high-K ground state (Heil et al., 2008). The most relevant IMS for 

this coupling is located at 839 keV with Jπ;K=5-;4, although other IMS have been suggested 

very recently (Gintautas et al., 2009; Dracoulis et al., 2010). 

The IMS at 839 keV decays predominantly to the high-K part of 176Lu; thus, the decay branch 

to the low-K part defines the stellar reaction rate. The decay properties of the IMS at 839 keV 

are well known from various Ǆ-spectroscopic studies (Doll et al., 1999; Klay et al., 1991; 

Lesko et al., 1991). The lowest Ǆ-ray energy is 123 keV, and three further Ǆ-rays are observed 

at higher energies. Because of the relatively high energies the stellar reaction rate is only 

weakly affected. The dominating effect is NEEC in this case. However, the modification of 

the stellar transition rate remains far below a factor of two in the astrophysically relevant 

energy region (Gosselin et al., 2010). 

4.2 
180

Ta and its uncertain nucleosynthetic origin 

180Ta is the rarest nucleus in our solar system (Lodders, 2003), and it is the only nucleus 
which does not exist in its ground state, but in an isomeric state. The ground state is a low-K 
state with Jπ;K=1+;1 and a short half-life of 8.154 hours. The isomer is located at an excitation 
energy of 77 keV; it is a high-K state with Jπ;K=9-;9. Because of its huge K quantum number, 
its decay to the ground state is highly suppressed, and also the energetically possible ǃ-
decays to 180Hf and 180W are largely hindered.  The half-life of the isomer is unknown with a 
lower limit of 7.1 x 1015 years (Hult et al, 2006; Wu & Niu, 2003). Despite significant effort, 
the nucleosynthetic origin of 180Ta is still uncertain. 

Various astrophysical sites and corresponding processes have been suggested for the 
nucleosynthesis of 180Ta. Very recently it has been concluded that a large contribution to the 
solar abundance can be produced in the neutrino burst during type II supernovae in the so-
called ν-process by the 180Hf(ν,e-)180Ta reaction (Hayakawa et al., 2010). Alternatively, in the 
same astrophysical site the classical p- or Ǆ-process may produce some 180Ta by 
photodestruction of 181Ta in the 181Ta(Ǆ,n)180Ta reaction (Arnould & Goriely 2003; 
Utsunomiya et al., 2006). Similar conditions for the temperature of several billions Kelvin (or 
kT ≈ 200 – 300 keV) occur in type Ia supernovae, and it has been found that some 180Ta can 
also be made in that site (Travaglio et al., 2011). In addition, some 180Ta may also be 
produced in the s-process via ǃ-decay of thermally excited 179Hf to 179Ta and subsequent 
neutron capture in the 179Ta(n,Ǆ)180Ta reaction or via isomeric ǃ-decay of 180mHf in the 
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179Hf(n,Ǆ)180mHf( ǃ-)180mTa reaction chain (Schumann & Käppeler, 1999; Beer & Ward, 1981; 
Yokoi & Takahashi, 1983; Mohr et al., 2007). 

A common problem in all above production scenarios is the survival of 180Ta in its isomeric 
state. If the production occurs in a high-temperature environment like any supernova 
explosion, then 180Ta is produced in thermal equilibrium between the low-K ground state 
band and the high-K isomeric band. Following the evolution of the isomer-to-ground state 
ratio, freeze-out is found around 40 keV with a survival probability of 180Ta in its isomeric 
state of 0.38±0.01 (Hayakawa et al., 2010). Under s-process conditions with its lower 
temperature, it is not clear how much 180Ta can survive in the isomeric state because of 
mixing between hotter and cooler areas of the thermally pulsing AGB star (Mohr et al., 
2007). The resulting yield of 180Ta depends sensitively on the properties of the lowest 
intermediate state (IMS) which couples the low-K and high-K bands. 

There is indirect confirmation for the existence of IMS which couple the low-K ground state 

and the high-K isomeric state from photoactivation experiments (Belic et al., 2002; Collins et 

al., 1990). However, no direct Ǆ-transition has been observed up to now. Based on 

reasonable estimates for transition strengths it has been suggested (Mohr et al., 2007) that 

the lowest IMS is located at an excitation energy of 594 keV with J=(5). This state decays 

with a transition energy of 72 keV and a half-life of about 16 ns to the low-K side of 180Ta. A 

weak branch to the high-K side can be expected via a transition to the 7+ state at 357 keV. 

This may lead to thermalization of 180Ta within days at the s-process temperatures around 

25 keV (Mohr et al., 2007). 

Because of the low transition energy of only 72 keV, a significant modification of the 

corresponding transition strength can be expected. Enhancements of the radiative strength 

of up to a factor of 10 for this transition have been calculated (Gosselin et al., 2010) which are 

mainly based on NEEC. However, unfortunately the influence on the stellar transition rate 

between low-K states and high-K states remains very small. The stellar transition rate as 

given in Eq. (12) is essentially defined by the weak branch of the 594 keV state which has a 

transition energy of more than 200 keV. As transitions with such high energies are 

practically not affected by the plasma environment, the stellar transition rate remains almost 

unchanged. 

4.3 
8
B, the 

7
Be(p,γ)

8
B reaction, and solar neutrino production 

The 7Be(p,Ǆ)8B reaction is the key reaction for the production of high-energy neutrinos in 
our sun. It is one of the very few examples for a capture reaction between light nuclei 
where low-energy Ǆ-rays play a significant role. The Q-value of this reaction is extremely 
low (137 keV), and together with the most effective energy of about 18 keV (at 
temperatures around 15 million Kelvin, typical for the center of our sun) we find a 
transition energy of about 155 keV in the low-mass (Z=5) nucleus 8B. The Ǆ-energy of 155 
keV is still too high to be significantly influenced by the surrounding plasma. Although 
experimental conditions in the laboratory (either a proton beam and neutral 7Be target or 
a 7Be beam in arbitrary charge state on a neutral hydrogen target) are quite different from 
the stellar environment of 7Be, the cross sections from laboratory experiments do not 
require a plasma correction for the electromagnetic transition strength to calculate the 
stellar reaction rates, as e.g. summarized in the NACRE compilation (Angulo et al., 1999) 
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or in a compilation of solar fusion cross sections (Adelberger et al., 2011). However, two 
further effects of the surrounding plasma have to be kept in mind here: (i) The electron 
capture decay of 7Be is significantly affected under solar conditions because electrons 
have to be captured from the surrounding plasma instead of the bound K-shell electrons 
for 7Be in a neutral beryllium atom. (ii) Electron screening affects all capture cross 
sections at very low energies. Because the electronic environment is different in 
laboratory experiments and under stellar conditions, different corrections have to be 
applied here. 

5. Conclusion 

The description of nuclear excitation in hot astrophysical plasma environment requires an 

accurate knowledge of each individual excitation process. The dominant processes are 

photo-excitation, where a photon close to the resonant nuclear transition energy is 

absorbed by the nucleus, NEEC and NEET, where an electron from the continuum 

(NEEC) or an outer electronic shell (NEET) is captured in a vacancy of the electronic 

cloud, and inelastic electron scattering, where an incident electron gives a part of its 

energy to excite the nucleus. 

Results for the excitation of the first isomeric state of 171Tm clearly exhibit a strong 

dependence upon the plasma temperature. The nuclear lifetime under plasma conditions is 

more than one order of magnitude higher than the laboratory value. All these calculations 

are made at Local Thermodynamic Equilibrium (LTE), a condition encountered in many 

astrophysical plasmas. 

However, nuclear excitation models in plasma need to be elaborated further. NEET rates 
require to take into account detailed electronic configuration, as the mean RAAM 
configuration is more often than not far from a real configuration on which NEET can occur. 
For high density plasmas, electron inelastic scattering is a major process and screening 
effects will have to be added to the description. 

In most astrophysical scenarios the influence of the surrounding plasma on astrophysical 

reaction rates will remain relatively small because the Ǆ-transition energies are too high to 

be significantly affected by the electronic environment. Note that typical Ǆ-transition 

energies exceed by far 1 MeV whereas plasma effects become most important below 100 

keV. Nevertheless, it should be always kept in mind that Ǆ-transitions with energies below 

about 100 keV may be modified dramatically. As soon as such a transition defines the stellar 

transition rate, the calculated stellar reaction rate without consideration of plasma effects 

may be wrong; this error may reach one order of magnitude in special cases, i.e. for very low 

Ǆ-transition energies. 

Such cases with small Ǆ-transition energies (and thus huge influence of the plasma 

environment) can be found in particular in the astrophysical s-process where the production 

and destruction of so-called K-isomers proceeds by low-energy Ǆ-transitions which connect 

the low-K and high-K parts of the excitation spectrum of heavy nuclei via intermediate 

states. However, for the two most prominent examples (176Lu and 180Ta) it is found that 

plasma effects remain relatively small for the resulting stellar reaction rates although one 

particular transition in 180Ta is enhanced by about a factor of 10. 
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