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1. Introduction 

Radiation therapy is one of the most important treatment tools in cancer therapy. It has a 

wide variety of indications for many malignant tumors, mostly for local control, whether a 

curative or palliative outcome is the intent, or as pre- or post-operative treatment as either 

neoadjuvant or adjuvant therapy. Radiation therapy is commonly used along with hormone 

therapy or chemotherapy. The full scope of the capabilities of radiation therapy is achieved 

particularly in combination settings with various anti-tumor modalities, the so-called 

multidisciplinary approach. To enhance the therapeutic efficacy of radiation sufficiently, one 

may choose radiation therapy in combination with cytotoxic chemotherapeutic agents or 

with warming devices used for hyperthermia treatment or utilize newly developing 

physical approaches as typified by intensity modulated radiation therapy, stereotactic 

radiation therapy, brachytherapy and image-guided radiation therapy. Moreover, an 

immunoenhancing agent might be selected in combination with radiation therapy from the 

standpoint of immunobiology in the treatment of cancer. Some promising data have been 

shown on the basis of immunological activation with ionizing radiation, demonstrating 

cytotoxic T lymphocyte (CTL) amplification and dendritic cell (DC) stimulation or 

maturation (Demaria, et al., 2004,Ganss, et al., 2002,Nikitina and Gabrilovich, 2001,Schuler, 

et al., 2003).  

Radiation therapy plays a crucial role in enhancing tumor immunogenicity by promoting 
cross-priming and eliciting anti-tumor T-cell responses, and generates inflammatory signals 
via induction of tumor cell death (Hong, et al., 1999,Quarmby, et al., 1999,Watters, 1999). 
Thus, ionizing radiation can achieve not only direct cancer cell death but also has an indirect 
and systemic anti-tumor mechanism outside of the irradiated field, which has been reported 
in some clinical settings (Antoniades, et al., 1977,Ehlers and Fridman, 1973,Kingsley, 
1975,Nobler, 1969,Perego and Faravelli, 2000,Rees, 1981,Rees and Ross, 1983,Sham, 1995). 
Local irradiation resulted in an anti-tumor effect at a non-irradiated location in a patient 
with hepatocellular carcinoma that regressed after palliative local radiotherapy for pain 
control of bone metastases (Ohba, et al., 1998). This rare phenomenon is known as the 
abscopal effect and is defined as a reaction following irradiation but occurring outside the 
zone of actual radiation absorption (Mole, 1953). The word “abscopal” is derived from the 
Latin prefix “ab,” meaning “away from,” and the Greek word “scopos,” meaning “target.” 
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The abscopal mechanism of action remains to be clarified, although a variety of underlying 
biological events can be hypothesized, mainly those induced by the immune system 
(Macklis, et al., 1992,Uchida, et al., 1989). Thus far, immunological activation with local 
irradiation has been explained by multiple possible mechanisms (Awwad and North, 
1990,Cameron, et al., 1990,Chiang, et al., 1997,Dybal, et al., 1992,Younes, et al., 1995,Younes, 
et al., 1995). 

This chapter gives an overview of theoretical mechanisms of the abscopal effect being 
progressively elucidated in the development of multidisciplinary approaches for cancer 
therapy.  

2. Speculation on the mechanism of the abscopal effect 

2.1 Possible cytokine contribution 

Historically, the abscopal effect has been described in various tumors with possible underlying 

mechanisms explaining each observed case. A 76-year-old patient with hepatocellular 

carcinoma was irradiated to control his bone metastases as palliative, not curative, therapy. Yet 

following this palliative radiotherapy the primary liver tumor regressed (Ohba, et al., 1998). 

Ohba et al. also found in this patient an increase in blood levels of tumor necrosis factor alpha 

(TNF-), which has known anti-tumor activity. They suggested that the primary tumor 

regression might have been caused by an immune response spearheaded by TNF-. TNF- 

has a paradoxical role in cancer by promoting growth, invasion, and metastasis in some 

tumors, while having a reverse effect in other cancers through destruction of blood vessels and 

cell-mediated killing. One wonderful review of the relation between TNF- and cancer is 

found in the Lancet Oncology (Szlosarek and Balkwill, 2003). 

2.2 Hyperthermia-related abscopal effect 

Abscopal effects are usually associated with radiation therapy, however, one could 

sometimes see after other treatments as well, such as surgery or even hyperthermia. For 

example, in an experiment conducted in India, administering hyperthermia to the hind leg 

of a mouse for 40 min before transplanting a fibrosarcoma reduced the growth of the tumor 

in the heated leg (Vartak, et al., 1993). More surprisingly, it inhibited the growth of a tumor 

transplanted to the unheated leg as well. Actually, two to three weeks after hyperthermic 

treatment, tumor growth retardation had ceased in the leg that had been heated, but was 

still noticeable in the leg that had not been heated. Although the mechanism for this effect 

had not been investigated, the abscopal effect from hyperthermia turned out to be greater 

than its direct effect on the local target tumor. The authors concluded that local 

hyperthermia induced both direct and abscopal anti-tumor effects that might probably be 

the result of a systemic effect of hyperthermia in the host animal.  

2.3 Radiation-related abscopal effect 

In the clinical setting, Konoeda et al. conducted a practical study to investigate the 

mechanism of the abscopal effect in patients with breast cancer (Konoeda, 1990). Study 

subjects were 62 women with advanced breast cancer who received radiation therapy before 

surgery and then underwent mastectomy or tumor resection. Physical examination, 
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including palpation, indicated an abscopal effect on metastatic lymph nodes in 15 out of 42 

cases (35.7%).  Pathologic findings revealed an even greater tendency for regression, with an 

abscopal effect demonstrated in tissue samples from 22 of 42 cases (52.4%). Thus, more than 

half of these patients with advanced breast cancer exhibited some sort of abscopal effect 

following irradiation and surgery. The incidence of the abscopal effect was significantly 

higher in patients under 55 years old and was most frequent in patients who had 

"infiltrating lymphocytes around the degenerated cancer cells in the irradiated primary 

tumor nests."  In other words, under the favorable condition of a vigorous immune reaction 

to the tumor as indicated by the presence of abundant lymphocytes, the host was more 

likely to attack the tumor and bring about an abscopal response as a result. Among the types 

of lymphocytes, the authors claimed that the most prevalent cells had been identified as 

primarily CD8 and CD4 lymphocytes, which play a role in cellular defense against 

pathogens, malignant cells, and other foreign substances. According to the authors, their 

findings suggested that the abscopal effect was caused by activated cellular immunity in the 

hosts. Although the study was not large enough for data to yield statistically significant 

results, the survival rate among patients who exhibited the abscopal effect was higher than 

among those patients who showed no such reaction. 

The logical inference from this research is that the abscopal effect is a desirable and common 
systemic reaction to localized cancer treatment. Since the abscopal effect is dependent on a 
healthy immune system, one might infer that immune-damaging treatments should be kept 
to a minimum. In terms of this point, the trend in most parts of the world is in the 
undesirable direction, and immunosuppressive chemotherapy is given at every opportunity. 
The recruitment of leukocytes may have been inhibited by the antitumor chemotherapeutic 
agents, which would support the assumption that some types of recruited leukocytes play a 
role in the enhancement of the efficacy of radiation and the abscopal effect.  

2.4 Surgery-related abscopal effect 

Blay et al. reported that higher pretreatment interleukin (IL)-6 and C-reactive protein (CRP) 
levels in renal cell carcinoma were associated with a diminished response to cytokine 
therapy and poorer survival. Survival appeared to be better in those patients that had 
elevated CRP values that decreased to normal levels after nephrectomy compared to those 
whose CRP did not decrease to normal. For those whose pre-treatment CRP was within 
normal limits, there was no difference in survival between those who did or did not 
undergo nephrectomy (Blay, et al., 1992). Fujikawa et al. proposed that an IL-6-induced 
inflammatory response might inhibit the immune anti-tumor response. They suggested the 
following mechanism: in the setting of metastatic renal cell carcinoma and a primary tumor 
predominantly expressing IL-6, an associated drop in CRP following nephrectomy appears 
to curb the inflammatory response while simultaneously inducing immune activation 
(Fujikawa, et al., 2000).  

3. Basic research for induction of radiation-related abscopal effect 

3.1 Basic research on the basis of immunological mechanisms 

Fms-like tyrosine kinase receptor 3 ligand (Flt3-L) is a growth factor that stimulates 
production of DCs and has been shown to induce antitumor immunity to several mouse 

www.intechopen.com



 
Modern Practices in Radiation Therapy 

 

278 

tumors, although its effects as a single agent are limited to early and more immunogenic 
tumors (Maraskovsky, et al., 1996,Maraskovsky, et al., 1997). The first study to test the 
combination of Flt3-L with local irradiation used the Lewis lung model of metastatic 
carcinoma (Chakravarty, et al., 1999). When Flt3-L was administered after the ablation of the 
primary tumor by high-dose local irradiation with 60 Gy, lung metastasis formation was 
inhibited and disease-free survival was enhanced compared with that of mice treated with 
irradiation or Flt3-L alone. Importantly, the anti-metastatic effect required T cells because 
this effect was not observed in nude (T cell-deficient) mice. These results provide 
preliminary evidence in support of the hypothesis that radiation-induced tumor cell death 
can release antigens for DCs to present to T cells. The high single dose of radiation used in 
this study limits its clinical applicability in addition to the fact that the intrinsic tumor 
immunogenicity could explain these responses. Nevertheless, these studies provided initial 
proof of the principle and stimulated some groups to further investigate whether more 
clinically relevant radiation doses could be used to elicit systemic antitumor immunity in 
combination with Flt3-L.   

Demaria et al. used mouse mammary carcinoma 67NR, a moderately immunogenic 
syngeneic tumor. A radiation dose sufficient to cause growth delay of the irradiated tumor, 
in this case 2 Gy, was able to induce a systemic antitumor effect only in combination with 
Flt3-L administration. Inhibition of tumor growth outside of the irradiated field was specific 
and required T cells, confirming that it was immune-mediated (Demaria, et al., 2004).  

Other groups have used a slightly different approach based on the same hypothesis, that 

radiation can free tumor-derived antigens for DC uptake and presentation. Nikitina et al.  

used in vitro bone marrow-derived DCs that were injected i.v. and s.c. around the tumor 

after local irradiation (Nikitina and Gabrilovich, 2001) whereas Teitz-Tennenbaum et al. 

used intratumoral injection of DCs (Teitz-Tennenbaum, et al., 2003). In both cases, the 

administration of DCs after radiation therapy was able to induce a potent antitumor 

immune response. Yasuda et al. reported intratumoral IL-2 injection after irradiation to 

colon adenocarcinoma enhances antitumor local control and abscopal metastatic inhibition 

via CD4 positive lymphocytes (Yasuda, et al., 2011). In another study, p53 appeared to 

mediate a radiation-induced abscopal effect in mice that was dose dependent (Camphausen, 

et al., 2003). Table 1 summarizes the possible underlying mechanisms for the abscopal 

effects observed preclinically or clinically. 

 

Table 1. Possible mechanisms for the abscopal effect 

Author Tumor type Treated sites (treatment) Observed abscopal effect Putative intrinsic mediator that induces abscopal effect

Preclinical

Vartak et al . fibrosarcoma hind leg (HT) tumor growth inhibition of unheated leg unknown

Chakravarty et al . LLC primary tumor (RT) lung metastasis regression DC

Demaria et al . mammary carcinoma 67NR primary tumor (RT) distant tumor growth inhibition DC

Teitz-Tennenbaum et al . melanoma/sarcoma primary tumor (RT) lung metastasis regression DC

Camphausen et al . LLC/fibrosarcoma hind leg (RT) distant tumor growth inhibition p53

Shiraishi et al . colon adenocarcinoma/LLC/fibrosarcoma primary tumor (RT) distant tumor growth inhibition/longer survival CD8 and CD4 lymphocytes/NK

Iida et al . hepatocellular carcinoma primary tumor (RFA) distant tumor growth inhibition DC

Yasuda et al . colon adenocarcinoma primary tumor (RT) liver metastasis inhibition CD4 lymphocytes

Clinical

Ohba et al . hepatocellular carcinoma bone metastasis (RT) primary tumor regression TNF-a

Konoeda et al . breast cancer breast (RT) metastatic lymph node regression CD8 and CD4 lymphocytes

Blay et al . renal cell cacinoma nephrectomy (surgery) longer survival IL-6 and CRP

Fujikawa et al . metastatic renal cell carcinoma nephrectomy (surgery) longer survival IL-6  

Abbreviations: RT, radiation therapy; HT, hyperthermia; RFA, radiofrequency ablation; LLC, Lewis lung carcinoma; DC ,dendritic cells; NK, natural killer; TNF, tumor necrosis factor; IL, interleukin; CRP, C-reactive prot

Table 1. Type of malignancies in relation to abscopal effect reported and possible underlying mechanism.
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Important factor is that radiation therapy appears to cause less immunosuppression 
compared to surgery or other invasive treatment modalities. Therefore, radiation therapy 
potentially should have the more favorable biological activity for inducing an abscopal 
effect than surgical procedures if the major underlying mechanism is based upon immune 
activation.  

The abscopal effect apparently operates through mechanisms that are paralleled in gene 
therapy, local immunotherapy, hyperthermia, and post-surgical distant bystander effects. 
Recently, some investigators have suggested that the definition of the abscopal effect should 
have been broadened to include other forms of local therapy that have systemic effects, i.e., a 
distant bystander effect (Perego and Faravelli, 2000,Vartak, et al., 1993). Whether or not the 
definition should be extended to include local therapies other than radiation therapy that 
have a distant effect is a matter of debate. However, to unravel the abscopal effect of 
radiation, it seems prudent to evaluate other directed therapies that are associated with 
systemic effects (Kaminski, et al., 2005). Since the literal meaning is the same for abscopal 
and distant bystander, the terms could be used interchangeably to refer to any local therapy 
with a distant impact. 

3.2 Possible mechanisms via DC activation 

In recent years, the crucial role played by innate immunity, and in particular by DCs in 

enhancing T cell activation, has been widely clarified. DCs are lineage-negative, bone 

marrow-derived mononuclear cells found in peripheral blood or in many organs (O'Neill, et 

al., 2004). DCs can be broadly divided into myeloid or plasmacytoid DCs (MDCs and PDCs, 

respectively) on the basis of phenotypic, morphologic, and functional differences.  Antigens 

acquired both endogenously (i.e., synthesized within the DC cytosol) or exogenously 

(acquired from the extracellular environment) are processed into peptides, which are loaded 

onto major histocompatibility complex class I and II (MHC I and II) molecules and 

transported to the cell surface for recognition by antigen-specific T cells. DCs most 

efficiently capture antigens when they are in the immature phase. The terminal process of 

differentiation termed as maturation transforms DCs with weak immunostimulatory 

properties for antigen capture into cells specialized for T cell stimulation in the lymphoid 

organ. This process is accompanied by cytoskeletal reorganization, loss of adhesiveness, 

acquisition of cellular motility with development of characteristic cytoplasmic extensions, 

migration to lymphoid tissues, reduced phagocytic uptake, and T cell activation potential 

(O'Neill, et al., 2004). Natural killer (NK) cells are activated by type I interferon (IFN) 

produced from tumor tissues as a “danger signal” to attack tumor cells. Immature DCs 

uptake tumor tissue-derived products such as apoptotic bodies and necrotic bodies with 

tumor-associated antigens (Moretta, 2002). Mature DCs can secrete chemokines and 

cytokines that attract other immune cells and activate resting T cells. DCs can prime resting 

NK cells via proinflammatory cytokines such as IL-12 or IL-15 and NK-inducing 

chemokines such as IL-8 or macrophage inflammatory protein 1-alpha (MIP-1), and 

enhance their own maturation by attachment with activated NK cells. However, NK cells 

negatively regulate the function of DCs also by killing immature DCs in peripheral tissues. 

Moreover, a subset of NK cells, after migration to secondary lymphoid tissues, might have a 

role in the editing of mature DCs based on the selective killing of mature DCs that do not 

express optimal surface densities of MHC class I molecules. Maturation of DCs can be 
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induced by a growing number of exogenous and endogenous molecular signals, generally 

referred to as “danger signals” (Matzinger, 1994). Danger signals include host-derived 

proinflammatory cytokines, such as TNF, IL-1, IL-6, and type I IFN, and a variety of 

molecules released not only by microbes but also by damaged host tissues, including tumor 

involvement (Skoberne, et al., 2004). These noncytokine molecules signal primarily through 

transmembrane receptors related to Drosophila Toll protein, known as Toll-like receptors 

(TLR) (Kopp and Medzhitov, 2003), which are expressed by DCs.  

The major concern is whether ionizing radiation-induced apoptosis can increase tumor 
immunogenicity. The immunostimulatory activity associated with cell lysates (endogenous 
adjuvant activity) was shown to be elevated once the cells were stressed by ultraviolet 
radiation, indicating that injury can modulate this effect (Gallucci, et al., 1999,Shi, et al., 
2000). Some examples exist in which apoptotic cells show immunostimulatory features 
(Rock, et al., 2005). Immunization with apoptotic cells or in situ induction of tumor cell 
apoptosis induced T cell responses in vivo as exemplified in some reports (Kotera, et al., 
2001,Nowak, et al., 2003,Ronchetti, et al., 1999). Injection of immature DCs into tumor tissue 
after irradiation-induced tumor cell apoptosis can stimulate strong antitumor immunity 
(Kim, et al., 2004). These studies suggest that under some favorable conditions for an 
immunocompetent host, radiation-induced tumor cell death might be associated with the 
production of ideal maturation signals for DCs (Demaria, et al., 2005). 

The possible contribution of radiation-induced apoptosis vs. necrosis to immunostimulation 

has not been fully elucidated, and no significant difference was seen in capabilities of both 

kinds of cell death for antigen presentation in vitro (Larsson, et al., 2001). Endogenous 

factors released from necrotic cells might be responsible for the ability of the necrotic body 

to activate DCs (Skoberne, et al., 2004). Examples of these are immunostimulatory self-DNA 

that binds TLR9, self-single-strand RNA that stimulates TLR7 and TLR8, secondary 

structures of messenger RNA that activate TLR3, and heat shock proteins that stimulate 

TLR4 (Demaria, et al., 2005). The induction of necrosis in vivo could be accompanied by the 

release not only of self-antigens but also inflammatory factors that may cause DC 

maturation and the whole immune response. Candidates for cell-associated antigens being 

cross-presented from dying cells could include heat shock protein-associated proteins, 

native proteins (Shen and Rock, 2004), peptides (Neijssen, et al., 2005), or other constituents. 

In general, it is considered that DC maturation signals are essential to convert cross-

tolerance to cross-priming (Steinman and Nussenzweig, 2002). 

Opinion is divided as to the ability of ionizing radiation to generate the signals required for 
DC maturation; however, the combined approach of inducing cell death by irradiation in 
combination with the administration of a chemotactic agent that activates DCs can lead to 
the priming or enhancement of antitumor responses (Shiraishi, et al., 2008). 

3.3 Attempts to consistently induce the abscopal effect  

Based on the theory of immunological activation with ionizing radiation, Shiraishi et al. have 

chosen MIP-1 in combination with radiotherapy and investigated whether MIP-1 could 
cause a broad-spectrum enhancement of the efficacy of radiotherapy in tumor-bearing mice. 
Although there are many reports concerning anti-cancer (Crittenden, et al., 2003,Nakashima, 

et al., 1996,Taub, et al., 1995,Zibert, et al., 2004) and anti-metastasis effects of MIP-1 (van 
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Deventer, et al., 2002), enhancement of radiation efficacy had not been investigated 
sufficiently. Radiation treatment at tumor bearing sites is known to induce strong 
inflammation in the irradiated field and to recruit tumor-specific T lymphocytes and DCs, 
which seem to play an important role in the remission of tumors (Friedman, 2002,Garnett, 

et al., 2004,Teitz-Tennenbaum, et al., 2003). MIP-1 or CCL3, is a chemokine known to be 
secreted from various leukocytes including T lymphocytes and activated macrophages, 
and to recruit CCR1- and/or CCR5-expressing leukocytes such as monocytes, DCs, NK 

cells and T lymphocytes (Rollins, 1997). It was also reported that MIP-1 could enhance 

survival of DCs (Sumida, et al., 2004) and primed T lymphocytes to generate IFN- 
(Lillard, et al., 2003).  

An active variant of human MIP-1 with improved pharmaceutical properties that carries 
a single amino acid substitution of the 26Asp to Ala was reported (Hunter, et al., 1995), 
which has a reduced tendency to form large aggregates at physiological pH and ionic 
strength. Myelosuppressive effect of the active variant (Arango, et al., 1999,Arango, et al., 
2001,Gilmore, et al., 1999,Lord, et al., 1995) was investigated in several clinical trials of 
patients receiving chemotherapy (Bernstein, et al., 1997,Broxmeyer, et al., 1998,Clemons, 

et al., 1998,Marshall, et al., 1998). We previously showed that the recombinant MIP-1 
variant, now called ECI301, strikingly enhanced the antitumor efficacy of subcutaneous 
tumor irradiation and induced an abscopal effect (Shiraishi, et al., 2008). Our study 
resulted in tumor-free mice with long-term survival without significant toxicity and 
complete rejection by surviving mice to a re-challenge with the same tumor cells. In 
accordance with our findings, no significant side effects of a compound with the same 
structure (BB-10010) had been reported previously when administered to human patients. 
Moreover, we observed a tumor-type- and mouse-strain-independent abscopal effect, 
indicating that the antitumor effect of ECI301 may be exerted via systemic inflammation 
and immune response. Marked infiltration of CD4+ and CD8+ cells was observed both in 
irradiated and non-irradiated sites. It was reported that DC precursors were mobilized 

into the circulation by administration of MIP-1 (Zhang, et al., 2004) and radiofrequency 
ablation-treated hepatocellular carcinomas (Iida, et al., 2010); however, we did not 
observe an increase in CD11c+ cell infiltration into the tumor tissue in this model. 
Depletion of CD8+ T cells by antibodies diminished the effect of combination treatment at 
the irradiated site, indicating that CD8+ T cells are involved in the antitumor effect. 
Furthermore, rejection of the same tumor type in the cured mice may have been mediated 
by the presence of these types of lymphocytes. An increased number of splenocytes with 

tumor-specific IFN--generating ability with the combination treatment also supports this 
assumption (Shiraishi, et al., 2010). Depletion of CD4+ T lymphocytes or NK1.1 cells by 
antibodies diminished the abscopal effect, indicating that these cells are involved in the 
remission either directly or indirectly. CD4+ T cells may play a role in generating 

cytokines such as IFN-, which may also activate other leukocytes (Dorner, et al., 
2002,Pender, et al., 2005,Shiraishi, et al., 2008).   

Further studies using C3H/HeN, C3H/HeJ and athymic mice will show whether the high 

mobility group box 1 (HMGB1) RNA level, an important mediator of local and systemic 

inflammation, is up-regulated at each tumor-bearing site (unpublished data). Results might 

clarify the underlying HMGB1-dependent mechanism for the abscopal effect via TLR4-

mediated inflammation (Fig. 1). 
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Fig. 1. Possible mechanism for radiation-induced abscopal effect. 

Ionizing radiation induces tumor cell death in the irradiated tumor, causes inflammation 
and activates the immune system via chemokines with HMGB1. Length of arrows means 
relative strength of the effects.  

HMGB1 = high mobility group box 13.4 Implications for future therapies 

For future development, further insights into the mechanisms underpinning abscopal 

signaling are required. Theoretical elucidation of the relevance of abscopal responses in 

radiation-induced carcinogenesis is also required, including molecular pathways and targets 

outside of directly exposed fields.   

A balance between angiogenic and anti-angiogenic molecules seems to be one of the key 

factors behind tumor growth. For example, several experimental animal models indeed 

suggest that the growth of a primary tumor can inhibit the production of distant metastases, 

probably due to inhibition of angiogenesis (Gorelik, 1983,Prehn, 1991). In contrast, the 

angiogenic inhibitors, angiostatin and endostatin, are known to function in tumor inhibition 

(O'Reilly, et al., 1997,O'Reilly, et al., 1994). Hartford et al. reported that the effect of 

irradiation of a primary tumor on angiogenesis at a distal site may differ from the effect of 

surgical removal of the primary tumor with respect to angiostatin production (Hartford, et 

al., 2000). They clearly demonstrated that, unlike surgery, irradiation of a tumor might 

enhance angiogenic suppression at a distal site. The involvement of angiogenic regulation in 

a radiation-induced abscopal effect should be emphasized as a clinical advantage in contrast 

to other invasive procedures, which may reduce possible angiogenic inhibition.   
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4. Conclusion  

In conclusion, data that possibly support an intriguing concept as an abscopal effect are 
reviewed. These data will encourage future therapeutic gain of immunostimulants 
utilization in the treatment of advanced or metastatic cancer. The development of safer, 
reasonable, and targeted therapies will be facilitated as we clarify the mechanisms for the 
abscopal effects. Future therapies will need to be optimized with tumor-type tailoring in 
consideration of various intra- or inter-tissue signals if these are to affect treatment outcome.  

Hopefully, a more aggressive effort for investigating and developing a potentially novel 
application of ionizing radiation in combination with immunotherapy will be needed. When 
the effectiveness of “immunoradiotherapy” in a clinical setting is established in a desirable 
manner, it could lead to a new era of cancer treatment, with common availability of 
established modalities, without significant adverse events. 

5. List of abbreviations and expansions in the order corresponding to 
apperances 

CTL, cytotoxic T lymphocyte 
DC, dendritic cell 

TNF-, tumor necrosis factor alpha  
IL , interleukin  
CRP, C-reactive protein  
Flt3-L, fms-like tyrosine kinase receptor 3 
MHC, major histocompatibility complex 
NK, natural killer 
IFN, interferon 

MIP-1, macrophage inflammatory protein 1-alpha 
TLR, Toll-like receptors 
HMGB1, high mobility group box 1 
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