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1. Introduction 

Artificial intelligence emerged from human thinking that has both logical and intuitive or 

subjective sides. The logical side has been developed and utilized, resulting advanced von 

Neumann type computers and expert systems, both constituting the hard computing 

domain. However, it is found that hard computing can’t give the solution of very 

complicated problems by itself. In order to cope with this difficulty, the intuitive and 

subjective thinking of human mind was explored, resulting the soft computing domain 

(also called computational intelligence). It includes neural networks, fuzzy logic and 

probabilistic reasoning, the last gathering evolutionary computation (including genetic 

algorithms with related efforts in genetic programming and classifier systems, evolution 

strategies and evolutionary programming), immune networks, chaos computing and parts of 

learning theory. In different kind of applications, all pure artificial intelligence methods 

mentioned above proved to be rather complementary than competitive, so that combined 

methods appeared in order to gather the advantages and to cope with the disadvantages 

of each pure method. The scope of this chapter is to study and finaly compare some 

representative classes of pure and combined computational intelligence methods applied 

in engine knock detection. 

The internal-combustion engine is one of the most used vehicle power generators in the 

world today. When looking at the characteristics of a vehicle - and therefore the ones of the 

engine that drives it  - , some of the most important are the emissions, fuel economy and 

efficiency. All three of these variables are affected by a phenomenon that occurs in the 

engine called knock. Engine knock (also known as knocking, self-combustion, detonation, spark 

knock or pinging) in spark-ignition internal combustion engines occurs when combustion of 

the mixture of fuel and air in the cylinder starts off correctly because of the ignition by the 

spark plug, but one or more pockets of the mixture explode outside the normal combustion 

front. The importance of knock detection comes from the effects it generates; these can range 

from increased fuel consumption and pollution, the decrease of engine power and up to 

partial or complete destruction of the cylinders, pistons, rods, bearings and many other 

damages around the engine bay. 
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Internal combustion engines present an optimum working cycle that is right on the edge of 
self-combustion or knock. If engine knock occurs and is detected in a cycle then the ignition 
timing (spark angle) needs to be modified so that the next cycle does not suffer from the 
same phenomenon. This is why the detection needs to be done in under a cycle (Bourbai, 
2000; Li&Karim, 2004; Hamilton&Cowart, 2008; Erjavec, 2009). 

Engine knock can be detected using a series of devices placed in and around the engine bay 
like: pressure sensors mounted inside each cylinder, devices that measure the ionization 
current in the spark plug or accelerometers mounted on the engine to measure vibrations 
etc. The best and most accurate information on knock is given by the pressure sensors but the 
easiest and less expensive way to detect it is by using vibration sensors mounted on the 
engine (Erjavec, 2009; Gupta, 2006; Bosch, 2004; Thomas et al., 1997; Ettefag, 2008, Fleming, 
2001). The knock detection methods used so far for extracting information from the engine 
sensors include time, frequency (spectrum) or a diversity time-frequency analysis (Wavelet) based 
solutions (Adeli&Karim, 2005; Park&Jang, 2004; Radoi et al., 2009; Midori et al., 1999; 
Lazarescu et al., 2004; Jonathan et al., 2006). The restriction of average detection rates and 
the complexity of information needed for the Wavelet analysis support further 
developments and hybridization with mixed techniques that proved useful in other fields of 
application than the one explored in this chapter: wavelet-fuzzy (Borg et al., 2005), wavelet-
neural (Zhang&Benveniste, 1992; Billings&Wei, 2005; Wu&Liu, 2009; Banakar&Azeem, 2008) 
and wavelet-neuro-fuzzy (Ylmaz&Oysal, 2010).  

Among the pure computational intelligence methods described in (Wang&Liu, 2006; 
Prokhorov, 2008; Mitchell, 2010;Wehenkel, 1997), different types of neural network 
applications have been employed with better detection rates than the previous non-neural 
methods but no clear comparative analysis results have been presented so far for engine 
knock detection. The methods taken into account and finally compared in this chapter start 
with the Fuzzy Kwan-Cai Neural Network (Kwan&Cai, 1994) - for the application of which 
other neuro-fuzzy or fuzzy logic models were studied (Zhang&Liu, 2006; Ibrahim,2004; 
Liu&Li, 2004; Hui, 2011; Chen, 2005) -, expand to the Kohonen Self-Organizing Map (SOM) 
(Kohonen, 2000, 2002; Hsu, 2006; Lopez-Rubio, 2010) and end with Bayes Classifier (Larose, 
2006) to which results of this chapter conforming with other work (Auld et al., 2007) 
published so far have proved needing hybridization.  

Work started using two sizes of training and testing sample groups, both belonging to the 
Bosch Group database in order to see how data size can affect the results. The applications 
were built to handle both pressure and vibration samples in order to see which of them can 
supply the most valuable information. In addition, due to the lack of chapters available on 
this subject, through the analysis of the results, we can get a better impression of the nature 
of these types of signals, the coherence of samples and evolution of detection rates with 
every new sample added. Also, to complete the analysis, a comparison of the responses 
from pressure and vibration families of samples is made for the three methods. 

2. Mathematical background of used computational intelligence methods   

2.1 Fuzzy Kwan-Cai neural network 

The Fuzzy Kwan-Cai neural network shown in Fig.1 has four layers, each of them being a 
fuzzy block represented by a different type of fuzzy neurons with their own specific 
purpose and functions (Kwan&Cai, 1994). 
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Fig. 1. The Fuzzy Kwan-Cai Neural Network structure 

The first layer represents the input and is built with fuzzy input neurons, each one selecting 

a characteristic of the original sample vector. In the case of a two dimensional sample 

containing N1xN2 vector elements we will have a first layer that has N1xN2 neurons. For 

the neuron on the (i, j) position the equations are: 

 [1] [1]
ijij ijs z x  , (1) 

 [1] [1]
maxvij ijy s P , (2) 

for i=1, 2, …, N1; j=1, 2, …, N2, where [1]
ijs represents the state of the neuron on the (i, j) 

position for the first layer, [1]
ijz is it’s input value, ijx  is the value of the element (i, j) in the 

input sample pattern, ( 0ijx  ), [1]
ijy  is its output value and maxvP  is the maximum value of 

all the input elements. The notation will be kept for neurons belonging to all the following 

layers.  

The second layer is built of N1xN2 neurons and its purpose is to perform the fuzzification of 

the input patterns by means of the weight function ( , )w m n - also called the fuzzification 

function - , defined as: 

 
2 2 2( )( , ) m nw m n e   , (3) 

where parameters m=-(N1-1), …, +(N1-1), n=-(N2-1), …, +(N2-1) and ǃ determines how 
much of the sample vector each fuzzy neuron sees.  Each neuron from the second layer has 
M outputs, one for each neuron in the third layer. The output for the second layer neuron on 
position (p, q) is: 
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 [2] [2]
pqm pqmy q , (4) 

for  p=1, …, N1; q=1, …, N2; m=1,…,M, where [2]
pqmy  is the thm output of the second layer 

neuron on position (p,q) to the thm  third level neuron. The output function pqmq  is 

determined within the training algorithm. For a more simplified approach, we can choose 

isosceles triangles with the base ǂ and the height 1, mathematically defined as: 

  
[2]

[2][2] [2]
2

21 ,   
2

0,  

pq pqm

pq pqmpqm pqm pq

q
s

for sy q s

other

 


       



, (5) 

where 0  , p=1, …, N1; q=1, …, N2; m=1, …, M.  Parameter  ǉpqm  is the center of the 

isosceles triangle base. By means of the training algorithm, p, q and m values corresponding 

to ǂ and ǉpqm are determined. 

The third layer is made-up of M neurons each of them representing a learned pattern and so 

the value for M can only be determined at the end of the learning process. It can be seen as a 

fuzzy deduction (inference) layer. The output for the third layer neuron is: 

 
[3] [3] [2]

1... 1 1... 2min (min ( )m m p N q N pqmy s y   , (6) 

for m=1,…, M. 

The fourth and final layer is the network’s output layer and is made up of competitive 

neurons one for each pattern that is learned; it is the defuzzification layer. If an input pattern 

is more similar to the mth pattern that was learned, then the output of the mth comparative 

neuron will be attributed value 1 and the others value 0: 

 
[4] [4] [4]
m m my s z  , (7) 

 

[4]
m[4] [4]

[4]
m

0,   s
[ ]

1,   s
pqm m

if T
y q s T

if T

    


, (8) 

 
[3]

1... 1... 2max (max ( )m M j N mT y  , (9) 

for m=1,…, M, where T is defined as the activation threshold for all the neurons in the forth 
layer.  

The flowchart in Fig.2 summarizes the procedure of adapting and implementing the Fuzzy 

Kwan-Cai algorithm to the application proposed in the chapter. The differences from the 

standard theoretical algorithm are that the sample databases are first imported and 

validated for integrity and then separated into pressure and vibration, respectively training 

and testing classes. The standard classification steps follow and the algorithm ends with the 

calculation of the detection rate. 
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Fig. 2. Flowchart for implemented Kwan-Cai algorithm 

2.2 Kohonen Self-Organizing Map (SOM) 

The Kohonen Self-Organizing Map (SOM) with the structure presented in Fig.3 is a neural 

network characterized by the fact that neighboring neurons (cells) communicate among 

themselves by mutual-lateral interactions transforming into detectors of specific classes 

when given input patterns. The learning can be unsupervised or supervised (Kohonen, 2000, 

2002; Hsu, 2006; Lopez-Rubio, 2010) In this chapter the supervised learning algorithm was 

used. 
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The network transforms similarities among vectors into neural vicinities (the similar input 
patterns will be found as neighbors). 

 

Fig. 3. The SOM neural network 

From a structural point of view, the Kohonen neural network is composed of two layers out 
of which the first one is an input layer made of transparent neurons with no processing 
functions. Its purpose is to receive the input pattern and send it to the second layer. This 
first layer has the same size as the input pattern. 

The second layer contains M output neurons, a number equal or higher than the number of 
classes desired in order to classify the entry patterns. They can be arranged planar, linear, 
circular, as a torus or sphere, the training and performances being dependent on the 
network shape. The planar network can also be rectangular or hexagonal depending on the 
placement of neurons. 

An input vector n
pX R  is applied in parallel to all the neurons of the network, each of 

them being characterized by a weight vector: 

 0 1 11( , ,..., )T n
j j j n jW w w w R   , (10) 

for j=0, 1, …, M-1. 

In order to choose the winning neuron  j*  with its associated weight vector Wj* for an input 

pattern we must calculate the Gaussian distance dj between that pattern and each of the 

neuron’s weight vectors. The winner will be chosen by the lowest distance *
jd  of all: 

 j p jd X W  , (11) 

 * min{ }j jd d , (12) 

for j=0, 1, …, M-1. 
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After the winner determination process has finished the weights refining one is started and 

this must not have an effect on all the neurons but only in a certain vicinity *
jV  around the 

winner j*. Outside this perimeter the influence of this process is considered null. The radius 

of this vicinity starts out big and keeps on getting smaller and smaller with the refining 

process. 

The learning rate can have many expressions. In this application, the chosen expression was: 

 
* 2

0( ) exp[ / ]k jt r r     , (13) 

where rj* and rk are position vectors in the network representing the characteristic of the 

neural center of the vicinity and the neuron with the index k for which the refining process 

is taking place. Function ǈ0=ǈ0(t) decrease in time, representing the value of the learning rate 

in the center of the vicinity: 

 0( ) / pt a t  , (14) 

The parameter σ controls the speed of decreasing the learning rate, depending on the radius 

of the vicinity. 

After the refining process for the current input vector is finished the next one is selected and 

so on until all the input vectors are used and the stop training condition is inspected. A 

useful stopping condition is the moment when the weights of the network cease being 

refined (are no longer being modified): 

 ( 1) ( ) ,ij ijw t w t    , (15) 

where i=0, 1, …, n-1 and j=0, 1, …, M-1. 

The flowchart in Fig.4 summarizes the procedure of adapting and implementing the 

Kohonen Self-Organizing Map algorithm to the application proposed in the chapter. The 

differences from the standard theoretical algorithm are the same as those described for the 

Fuzzy Kwan-Cai algorithm in Fig. 2. 

2.3 Bayes classifier  

For the Bayes Classifier working with Gaussian classes (Larose, 2006) considering first the 

case of two (R=2) 1-dimensional classes (n=1), the density of probability being of Gaussian 

nature can be defined: 

 

2

2

( )

21
( ) ( | ) ( ) ( ),

2

r

r

x m

r r r r
r

g x p x P e P  
 




    
  (16) 

where parameter  1;  2r .  
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Fig. 4. Flowchart for implemented Kohonen Self- Organizing Map algorithm 

Making an expansion to the n-dimensional case, the formula (16) for the Gaussian 
dispersion becomes: 

www.intechopen.com



 
Engine Knock Detection Based on Computational Intelligence Methods 

 

219 

 
11

( ) ( )
2

1/2/2

1
( | )

(2 )

T
r j rx m C x m

r n
r

p x e
C




  
 , (17) 

where { }r rm E x  represents the means of vectors in class r, {( )( ) }T
r r r rC E x m x m    is the 

matrix of covariance for the vectors in class r and { }rE   is an operator that determines the 

mean value and that is used to make estimations concerning mr  and Cr based on a finite 

number Nr of patterns from ωr. Their formulae are: 

 
1

r

r
r x

m x
N 

  , (18) 

 
1

r

T T
r r r

r x

C xx m m
N 

  , (19) 

Cr being a positive semi-defined symmetrical matrix. The discriminant function based on 

the Gaussian density of probability will be: 

 
11 1

( ) ln ( ) ln [( ) ( )]
2 2

T
r r j r r rg x P C x m C x m      , (20) 

The flowchart in Fig.5 summarizes the procedure of adapting and implementing the Bayes 

Classifier algorithm to the application proposed in the chapter. The differences from the 

standard theoretical algorithm are the same as those described for the Fuzzy Kwan-Cai 

algorithm in Fig.2 and the Kohonen Self-Organizing Map in Fig.4. 

3. Experimental results for each method 

3.1 Methodology description, results and analysis 

The algorithms treated in this chapter were tested on a Bosch Group database using two 

sizes of vector sample groups: one of 100 vectors and one of 1000, both of them containing 

pressure and vibration samples. In each case two thirds of the group was used for training 

and one third for testing. 

The vectors that make up the database represent samples taken from petrol engines, some 

corresponding to knock situations and some not. The signals related to these samples were 

taken from pressure and vibration sensors mounted in and around the engine bay. The 

change in pressure caused by knock activity is seen as an immediate rise in pressure due to 

causes outside the normal engine piston cycle. On the other hand, the vibration sensors will 

detect vibrations – knocking noises – representing abnormal combustion fields being 

generated inside the pistons. 

The applications have to declare knock or no knock for every sample vector received and, 

after testing the database, reach a verdict on the error of the process or in this case the 

identification rate. When knock is encountered actions can be taken to return the engine to a 

non-knock state. 
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Fig. 5. Flowchart for implemented Bayes Classifier 
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The testing method for both algorithms (Fuzzy Kwan-Cai and Kohonen Self-Organizing 
Map) is the following: one parameter varies between its theoretical limits whereas the others 
remain constant. It is obvious that the difference between the bigger training group and the 
smaller one should be the higher detection rate.  

The following tables contain only the significant part of the experimental results in order to 
outline the highest detection rates obtained.  

3.2 Fuzzy Kwan-Cai neural network results 

This type of neural network does not need training cycles because it learns as it studies the 
vectors it receives and builds its own classes in the testing process. In order not to get the 
wrong idea from the start we have to mention that the high number of classes observed in 
Table I and Table II for this neural network is due to the second nature of the application 
which acts like a “focusing lens”, examining the internal structure of the two main classes. 
Therefore it must be stated that the number of classes we are interested in, for this experiment, 
is two. The significance and proper function limits of this application for parameters given in 
Table I and Table II are: ǂ which is the base of isosceles triangles (ǂ [1.5; 3.5]), ǃ that 
determines how much of the sample vector each fuzzy neuron sees (ǃ [0.1; 1.6]) and Tf that 
represents the neural network’s sensitivity to errors (Tf [0.1; 0.35]).   

The first vector generates a class of its own, the next ones either are found relatives of one of 
the vectors that have come before and therefore are put in the same class or start a new class. 
The maximum detection results in the tables mentioned above are outlined by being bolded. 
Unsatisfactory results with high detection rates are presented in italic. 

Tables Ia and Ib present the pressure sample detection rate results for the Fuzzy Kwan-Cai 

neural network using the small sample database and the large sample database. According to 

Table Ia, the highest detection rate value of 68% was obtained for combination (3.5; 0.15; 1) 

where parameters Tf and ǃ are kept constant whereas ǂ varies.  

The same method has been used for Table Ib showing the combinations used by changing 
the parameter Tf while keeping constant the other two. Combinations are from (3.5; 0.35; 1) 
down to (3.5; 0.15; 1). A maximum correct detection rate of 93.40% was obtained for the (3.5; 
0.22; 1) group. 

The detection rate results in Tables Ia and Ib show that from this point of view the Fuzzy 
Kwan-Cai neural network is very stabile, small variations of its parameters not affecting the 
experimental outcome. It is clear from the results presented that an increase in the sample 
database leads to an increase in the detection rates, the network not being affected by 
sample vectors that are not cohesive in nature with the rest of their class.  

Tables IIa and IIb contain the vibration sample detection results. Table IIa represents the 
small sample database and Table IIb the large one. Table IIa uses the same method of 
parameter variation as Tables Ia and Ib but valid variations are not achieved because for a 
result to be considered satisfactory it should at least be higher than 50%. 

The first part of Table IIb contains results obtained by using combinations in the same way 
as Tables Ia, Ib and IIa, the parameter that varies being Tf whereas the others are kept 
constant. Used combinations start at (3.5; 0.35; 1) and end at (3.5; 0.15; 1). In this first set the  
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ǂ Tf ǃ Rate [%] No. classes

3.5 0.15 1 68% 2 

3.4 0.15 1 64% 4 

3.3 0.15 1 64% 4 

3.2 0.15 1 64% 4 

3.1 0.15 1 64% 4 

3 0.15 1 48% 5 

2.9 0.15 1 48% 5 

2.8 0.15 1 48% 7 

2.7 0.15 1 48% 7 

2.6 0.15 1 48% 7 

2.5 0.15 1 72% 9 

2.4 0.15 1 60% 9 

2.3 0.15 1 58% 11 

2.2 0.15 1 58% 11 

2.1 0.15 1 58% 11 

2 0.15 1 68% 12 

Table Ia. Pressure detection rates- small database           

 

Fig. 6. Plot of ǂ (blue) ,Rate[%](green) and No. classes (red) (Table Ia) 

 
 

ǂ Tf ǃ Rate [%] No. classes 

3.5 0.35÷0.23 1 93.40% 1 

3.5 0.22 1 93.40% 2 

3.5 0.21 1 93.40% 3 

3.5 0.2 1 93.40% 3 

3.5 0.19 1 93.40% 4 

3.5 0.18 1 93.40% 5 

3.5 0.17 1 93.40% 5 

3.5 0.16 1 93.40% 8 

3.5 0.15 1 93.40% 10 

3.5 0.35÷0.23 1 93.40% 1 

Table Ib. Pressure detection rates- large database 
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ǂ Tf ǃ Rate [%] No.classes 

3.5 0.35÷0.29 1 48% 2 

3.5 0.28 1 48% 3 

3.5 0.27 1 62% 6 

3.5 0.26 1 62% 6 
3.5 0.25 1 68% 9 

3.5 0.24 1 68% 9 

3.5 0.23 1 62% 9 

3.3 0.3 1 48% 3 

3.3 0.3 0.9 48% 3 

3.3 0.3 0.8 48% 3 

3.3 0.3 0.7÷0.3 48% 2 

3.3 0.3 0.2 48% 1 

Table IIa. Vibration detection rates-  small database              

 

Fig. 7. Plot of Tf (blue),Rate[%] (red) and No.classes (green) (Table IIa) 

ǂ Tf ǃ Rate [%] No. classes 

3.5 0.35÷0.24 1 93.40% 1 

3.5 0.24 1 93.40% 2 

3.5 0.23 1 93.40% 3 

3.5 0.22 1 93.40% 5 

3.5 0.21 1 93.40% 9 

3.5 0.2 1 82.05% 10 

3.5 0.19 1 93.13% 32 

3.5 0.18 1 92.34% 57 

3.5 0.17 1 90.23% 107 

3.5 0.16 1 85.75% 143 

3.5 0.15 1 85.75% 200 

3.3 0.3 1 85.10% 3 

3.3 0.3 0.9 85.10% 3 

3.3 0.3 0.8 85.10% 3 

3.3 0.3 0.7÷0.3 85.10% 2 

3.3 0.3 0.2 85.10% 1 

Table IIb. Vibration detection rates- large database               
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Fig. 8. Plot of Tf (blue) ,Rate[%](red) and No.classes (green) (Table IIb) 

maximum correct detection rate of  93.40% is achieved for (3.5; 0.24; 1) – values bolded. Set 

two contains combinations from (3.3; 0.3; 1) down to (3.3; 0.3; 0.2), parameter  ǃ varying 

between 1 and 0.2 and the other two staying constant. A detection value not as high but 

equally as important as the maximum one obtained in the previous set is showed in 

combinations from (3.3; 0.3; 0.7) to (3.3; 0.3; 0.3). The value is 85.10% and presents interest 

because it is a much higher value than the ones constantly obtained and also represents a 

correct class detection of two classes.  

The vibration situation presented in Tables IIa and IIb leads us to the same results revealed 

by Tables Ia and Ib, that an increase in the database size will lead to a substantial increase in 

the detection rate. 

In the case of the large sample group shown in Tables Ia and Ib, respectively in Tables IIa 

and IIb, the neural network does not show any difference in maximum detection rates, 

differences being observed only for the small sample group. Both tables also present the 

same maximum detection rate, showing that the network can learn to identify both types of 

samples with the same accuracy. 

Table III presents the time situation. It contains the average detection time situation for both 

pressure and vibration samples and also from a small and large database point of view. It is 

clear that the large database obtains better results with almost equally small detection times 

– 0.0022s for pressure and 0.0046s for vibration – and that pressure vectors have the 

tendency of being faster detected than vibration ones because the pressure group is more 

coherent and homogenous than vibration group. 

 

Average detection 
time [s] 

Pressur
e 

Vibratio
n 

Large database 0.0022 0.0046 

Small database 0.0052 0.0056 

Table III. Average detection times representing pressure and vibration for both small and 
large databases 
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What can be observed from the start is that the bigger sample group has almost equal 
detection times in both pressure and vibration cases to the smaller group, a significant 
increase being shown in the detection rates. The average detection times in Table III show 
that via optimization the network can be used in real–time knock applications with very 
good detection rates and with no prior in-factory learning processes. 

One can observe for the Fuzzy Kwan-Cai algorithm that different combinations of 
parameters can produce the same detection rates, so that a linear variation in any of the 
parameters will not always lead to a linear variation in the detection rate. 

3.3 Kohonen Self–Organizing Map neural network results 

The Kohonen–Self Organizing Map has a separate learning stage taking place before the 
detection process begins and being composed of epochs. After the learning stage has ended 
it does not need to be repeated and the processing of the test batch begins.  

For this neural network three sizes of neural maps were used – nine, one-hundred and four-
hundred neurons –, as shown in Tables IV, V, VI. They were tested on both pressure and 
vibration samples. 

Table IVa contains only the pressure sample detection rate results for the small vector 

database using the one hundred–neuron configuration. By keeping the number of epochs 

constant at 100 and the learning rate at 0.2 and by means of a variation of the neighborhood 

size from 90 down to 10, we obtained the following spike values: a detection rate of 80% 

marked bold-italic for the (100; 0.2; 83) group and the maximum value of the detection rate 

for the small database 82.85% marked bold for the (100; 0.2; 82) combination. 

Table IVb contains the pressure sample detection rates using the large database. From the 

start, using the nine-neuron map, an important fact appears: the nine-neuron map can not 

cope with the large database due to the small number of neurons that have to remember a 

large amount of samples, leading to confusion and very low detection rates. The variation 

methods are the same ones as in the complete version of Table IVa but, even by varying 

each of the parameters and keeping the other two constant, we can not obtain a spike value 

higher than 29.78% marked italic, value resulting from the combination (100; 0.4; 5). 

Performing the same variation techniques as in Table IVa, the maximum value for the 

detection rate in Table IVb results of 90.57%  from the (400; 0.2; 400) and (500; 0.2; 400) 

combinations – both marked bold - , with lower but not less important spikes of 89.66% for 

(100; 0.2; 400) and (100; 0.3; 400) – marked bold-italic.  

Table Va contains the vibration sample detection rates for the small database. The same 
variation methods as those in Tables IVa and IVb were used for the exact same values. The 
one-hundred-neuron network encounters its top value of 80% for the (100; 0.2; 95) combination 
and also a smaller spike of 74.28% for (100; 0.2; 60). The four-hundred-neuron network tops 
out at the 82.85% detection rate for the (300; 0.2; 400) combination of parameters. The same 
marking methods as in the previous tables were also used here and in the following ones.  

The large database results for the vibration sample vectors are found in Table Vb. These 
values have come from the same methods of testing and values used in Tables IVa, IVb and 
Va. As in the case of the complete Table IVa (from which only the one-hundred neuron  
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No. neurons Epochs Learning rate Neighborhood Rate [%] 

100 100 0.2 90 68.57 

100 100 0.2 83 80 

100 100 0.2 82 82.85 

100 100 0.2 80 77.14 

100 100 0.2 70 74.28 

100 100 0.2 60 68.57 

100 100 0.2 50 71.42 

100 100 0.2 40 71.42 

100 100 0.2 30 71.42 

100 100 0.2 20 77.14 

100 100 0.2 10 65.71 

Table IVa. Pressure detection rates- small database                    

 

Fig. 9. Plot of No. Neurons (blue), Neighborhood (red) and Rate[%] (green)(Table IVa) 

 

No. neurons Epochs Learning rate Neighborhood Rate [%] 

9 100 0.2 5 23.03 

9 100 0.3 5 27.35 

9 100 0.4 5 29.78 

9 100 0.5 5 28.57 

9 100 0.6 5 19.75 

9 100 0.7 5 20.06 

400 100 0.2 400 89.66 

400 100 0.3 400 89.96 

400 100 0.4 400 87.84 

400 100 0.5 400 88.75 

400 100 0.6 400 89.96 

400 100 0.7 400 88.75 

400 100 0.2 400 89.66 

400 200 0.2 400 89.36 

400 300 0.2 400 88.75 

400 400 0.2 400 90.57 

400 500 0.2 400 90.57 

Table IVb. Pressure detection rates- large database                       
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Fig. 10. Plot of No. Neurons (blue), Neighborhood (red) and Rate[%] (green)(Table IVb) 

 

No. neurons Epochs Learning rate Neighborhood Rate [%] 

100 100 0.2 95 80 

100 100 0.2 90 65.71 

100 100 0.2 80 65.71 

100 100 0.2 70 57.14 

100 100 0.2 60 74.28 

100 100 0.2 50 65.71 

100 100 0.2 40 65.71 

100 100 0.2 30 68.57 

100 100 0.2 20 60 

400 100 0.2 400 65.71 

400 200 0.2 400 71.42 

400 300 0.2 400 82.85 

400 400 0.2 400 65.71 

400 500 0.2 400 62.85 

400 600 0.2 400 71.42 

Table Va. Vibration detection rates-  small database                           

 

Fig. 11. Plot No. Neurons (blue) Neighborhood(red) and Rate[%] green)(Table Va) 
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No. neurons Epochs
Learning 

rate 
Neighborho

od 
Rate [%] 

100 100 0.2 95 79.63 

100 100 0.2 90 79.93 

100 100 0.2 80 79.02 

100 100 0.2 70 81.15

100 100 0.2 60 78.11 

100 100 0.2 50 81.76 

100 100 0.2 40 75.98 

100 100 0.2 30 79.93 

100 100 0.2 20 76.59 

400 100 0.2 400 87.53 
400 100 0.2 375 89.05

400 100 0.2 350 88.75 

400 100 0.2 325 89.36

400 100 0.2 300 86.83 

400 100 0.2 275 86.62 

400 100 0.2 250 89.66 

400 100 0.2 225 88.75 

400 100 0.2 200 88.44 

400 100 0.2 175 88.44 

Table Vb. Vibration detection rates-  large database                            

 

Fig. 12. Plot of No. Neurons (blue), Neighborhood (red) and Rate[%] (green) (Table Vb) 

section has been presented in this chapter), the nine-neuron network in the complete Table 
Vb is not suited for working with such a large database, the network becoming confused. 
This shows in constant results under 50% which can not be taken into account as valid 
experimental results. These values can only be used as examples of exceptional cases. The 
one-hundred-neuron network section presented in Table Vb obtains a maximum detection 
rate of 81.76% for combinations (100; 0.2; 50), another important value over 80% being of  
81.15 % for (100; 0.2; 70) . The four-hundred-neuron network tops out at 89.66% for 
combinations (100; 0.2; 250) and present other important values of 89.36% for (100; 0.2, 325) 
and of 89,05% for (100; 0.2; 375). 
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Table VI represent the average detection times using both pressure and vibration vectors for 
both small and large databases. With values of 0.0023s (small database) and 0.0024s (large 
database) the pressure samples obtain smaller detection times than the vibration samples 
with 0.0027s (small database) and 0.0028s (large database). This situation is representative 
for the four-hundred-neuron network, this also being the slowest solution but with the 
highest detection rates. The nine-neuron network, even though it has the best detection 
times, can not be taken into account as a real application because it is not able to cope with 
large database. The one-hundred-neuron network is the best compromise between detection 
speed and detection rates as shown in this table.  

As with the previous described algorithms, the SOM results shown in Tables IV and V that 
an increase in the sample group size (training set case) will lead to an increase in detection 
rates. In this case, the two separate groups are not separated by big detection rate gaps. 

 

Average detection 
time [s] 

Small database Large database 

Pressure samples
Vibration 
samples 

Pressure 
samples 

Vibration 
samples 

SOM - 400 neurons 0.0023 0.0027 0.0024 0.0028 

SOM - 100 neurons 0.000193 0.000478 0.000538 0.000498 

SOM - 9 neurons 0.0000576 0.0000579 0.0000535 0.0000872 

Table VI. Pressure and vibration average detection times for both small and large sample 
databases 

As in theory, the experimental results in Tables IV, V and VI show that with the increase in 
neurons there is an increase in detection rates but a decrease in detection times because 
more neurons translate to more detail that can be remembered, so the distinction between 
knock and non-knock situations can be more precisely done - therefore a compromise must 
be made. Being interested not only in obtaining high detection rates but also detection times 
that would be coherent to the task at hand (samples must be processed in under an engine 
cycle so the modifications can be brought to the next one), the one-hundred-neuron map 
seems to be the best option from the three methods tested. The nine-neuron map, even if it 
produces very high detection times, has a very poor detection rate in both pressure and 
vibration groups making it useless for any further applications. 

The four-hundred-neuron map presented the highest detection rates for this neural network, 
values that are a little bit smaller than the Fuzzy Kwan-Cai but with detection times very 
similar to it, the only difference being that the SOM needs separate training. In this case, 
looking at the detection times in Table VI, the SOM does not seem to make any difference 
between pressure and vibration signals, the medium detection times showing very small 
variations. There is a small difference in detection rates between pressure and vibration 
samples; the SOM seems to handle both models very well. 

A very important factor in the good working of the Kohonen Self-Organizing Map is getting 
the number of epochs and the learning rate well calibrated. A greater than necessary 
number of epochs would lead to the situation where the network learns in the necessary 
time period but it is left with more epochs that are not used for learning. This situation, in 
combination with a high learning rate, would lead to the network learning everything very 
fast in the first epochs and then forgetting or distorting the knowledge in the following ones.  
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3.4 Bayes classifier results 

The Bayes Classifier, as described by its name, is not a neural network but has been included 

in this chapter as a basic reference point for the evaluation of the two neural networks. It 

uses a method of calculating the minimum distance from a sample to one of the knock or 

non-knock class centers - classes that are considered Gaussian by nature. That is why it 

presents the worst detection times, as shown in Table VIII. 

Table VIIa represents the combined pressure and vibration detection rates status for the 

small database. The way the testing has been done for this algorithm is by progressively 

growing from a small comparison group (the batch of samples chosen to represent the 

known classes for testing) versus large test group situation, to a large comparison group 

versus small test group situation.  

The process starts out with a balance of 11 training vectors and 90 testing ones, which leads 

to a detection rate starting from 65.50% for pressure and 55.55% for vibration and grows (for 

training vectors) versus shrinks (for testing vectors) in a progressive way to 85 training 

vectors and 16 testing vectors, leading to a detection rate ending at 43.75% for pressure and 

81.25% for vibration. An interesting detail can be observed in this table: the pressure vectors 

seem to present a constant state even though more and more are added to the learning 

group every time the detection rates stay approximately between 50% and 72.50%, the last 

value being the highest pressure detection rate.  

The change of state occurs at the end of the table where we can observe a decrease in the 

learning rate for the combinations of (80 training vectors; 21 testing vectors) with a detection 

rate of 42.85% and (85 training vectors; 16 testing vectors) with a detection rate of 43.75%.  

This decrease is due to the inclusion in the learning group of vectors that are radically 
different from their stated class; therefore, the knock or non-knock distinction can not be 
made. In the case of the vibration sample vectors the progression is of almost uniform 
growth from 55.55% to 81.25%, the last being also the maximum detection rate for the small 
database experiment. 

Table VIIb follows the same type of progression, only that  the large database is used for 

both pressure and vibration samples. The progression goes from a combination of (371 

training vectors; 629 testing vectors) with a detection rate of 93.64% for pressure and 90.30% 

for vibration samples to a combination of (671 training vectors; 329 testing vectors) with the 

maximum detection rate achieved in this table of  95.44% for pressure samples and 92.40% 

for vibration samples. Within this progression it can be seen more clearly that the pressure 

samples are very cohesive in nature and that, given enough samples, the algorithm goes 

past the problems it has with radically different sample vectors, maintaining a detection rate 

over 90% in every case. 

Table VIII represents the average detection times for both the small and large databases 

using both pressure and vibration samples.  

Being a simple comparative algorithm, we can see in Table VIII that an increase in the 
database size leads to a slowing down of the process because the comparison must be made 
with more vectors. In the case of the small database, pressure vectors are detected faster  
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Training vectors Test vectors Press. rate [%] Vib.  rate [%]

11 90 65.50 55.55 

12 89 56.17 58.42 

13 88 72.50 60.22 

15 86 51.16 53.48 

21 80 63.75 66.25 

28 73 54.79 64.38 

35 66 59.09 60.60 

41 60 68.33 70 

47 54 59.25 68.51 

55 46 56.52 73.91 

61 40 67.50 70 

65 36 52.77 77.77 

67 34 68.57 74.28 

75 26 50 76.92 

80 21 42.85 76.19 

Table VIIa. Pressure - vibration detection rates- small database         

 

Fig. 13. Test vectors (blue), pressure (red) and vibration rates(green) (Table VIIa) 

Training vectors Test vectors Press. rate [%] Vib. rate [%]

371 629 93.64 90.30 

391 609 93.43 90.14 

411 589 93.20 90.32 

431 569 92.97 89.98 

451 549 92.71 89.79 

471 529 92.43 89.60 

491 509 92.14 89.58 

511 489 91.82 89.77 

531 469 91.42 89.55 

551 449 91.09 89.08 

571 429 90.67 89.04 

591 409 91.44 89.48 

611 389 92.28 90.23 

631 369 93.22 91.32 

651 349 94.26 92.26 

Table VIIb. Pressure - vibration detection rates- large database         
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Fig. 14. Test vectors (red), training vectors (blue), pressure rates (green) and vibration rates 
(violet) 

Average detection time 
[s] 

Pressure Vibration

Small sample database 0.0287 0.0297 

Large sample database 0.0948 0.094 

Table VIII. Pressure and vibration average detection times for both small and large sample 
databases 

(0.0287s) than vibration samples (0.0297s). The large database experiments lead to almost 
equal average detection times between pressure (0.0948s) and vibration (0.094s) samples, 
with a tendency to better recognize vibration samples.  

There is little relevance in the detection rates for the small sample group, even though a 
small variation between pressure and vibration can be seen. The increase in detection rates 
due to a bigger knowledge database can also be seen from Tables VIIa and VIIb. 

The greatest importance of the Bayes Classifier in this chapter comes from its great sensitivity 
to change. When the knowledge group includes vectors that are incoherent with the others or 
that are more different, the detection rate goes down immediately. In this case, the algorithm 
can not classify properly because one or both classes contain vectors that are very far away 
from their centers and vectors from one class may get tangled up with the other one. By doing 
this the Bayes Classifier acts as a monitor for change in the constitution of the sample classes or 
a “magnifying glass” reacting to the internal composition of the data groups. 

Given a big enough knowledge database that is also very coherent in the nature of its 
classes, the detection rates go up and can be comparable to the neural networks but at a 
great cost in speed. 

4. Comparison among the three tested methods 

The first discussion will be based on the database size point of view. As we can see from 
Fig.15 and Fig.16 that summarize results in Tables I, II, IV, V and VII, the size of the 
learning, training or comparison database is very important in the good functioning of all 
three tested algorithms. 
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68
82,85

68,57

Detection rates (Pressure samples) [%]

Kwan- Cai SOM Bayes

(a) 

93,4

90,57

95,44

Detection rates (Pressure samples) [%]

Kwan- Cai SOM Bayes

(b) 

Fig. 15. Pressure sample detection rates using the small database (a) and the large database 
(b) for the Kwan- Cai, SOM neural networks and the Bayes Classifier  

An increase in the database size from one hundred to one thousand sample vectors will lead 

to a minimum increase of ten percent in the detection rates. For the small database, the 

Fuzzy Kwan-Cai neural network obtains maximum detection rates for the pressure samples 

at 68% that are higher than the ones for vibration samples at 48%, but after using the large 

data set the maximum pressure and vibration detection rates become equal at 93.40%. The 

difference in detection rates for the pressure and vibration samples using the small database 

shows that the pressure samples are more coherent and therefore easier to classify. The 

same evolution as shown by the Fuzzy Kwan- Cai is also true for the Kohonen Self-

Organizing Map (SOM). Even more so, the increase in learning database size will lead to a 

theoretical increase in the detection rate of the Bayes Classifier. 

The second discussion will be based on the detection rate point of view. As shown in Fig.15 

and Fig.16, the Bayes Classifier seems to show the best detection rates. Its fault is that it 

needs large amounts of comparison data in order to create classes that are comprehensive 

enough. Out of the three algorithms tested in this chapter, it is also the less stabile due to the 

fact that it calculates distances to the center of the comparison classes. If these classes are not 

well defined and separated, the detection rates fall dramatically. This can be seen in Table 

VIIb. The Fuzzy Kwan-Cai obtains the highest detection rates of all three algorithms - these 

being valid detection rates that are not influenced by the nature of learned vectors leading to 

the great stability of this method. The learning method used employs the automatic 

generation of learning classes as it goes through the sample set. The fuzzy logic creates a 

more organic representation of the knowledge classes than the boolean one. The Kohonen 

Self-Organizing Map (SOM) presents the second highest detection rates and a more 

controlled and stabile learning and training environment then the other two algorithms. 

Because the learning is done prior to the start of the testing process and in repetitive epochs, 

the neural network has the chance to go through the data set again and again until a 
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complete image is formed. The two neural networks show no considerable preference 

between pressure and vibration samples and present high stability to drastic variations in 

training samples which in a non-neural method could cause a decrease in detection rates. 

The nature of these types of signals and their differences are outlined by the Bayes 

Classifiers sensitivity to unclear classes and the way in which the Fuzzy Kwan-Cai neural 

network works by showing the internal structure of the classes. 

 

 

Fig. 16. Vibration sample detection rates using the small database (a) and the large database 
(b) for the Kwan-Cai, SOM neural networks and the Bayes Classifier 

The third discussion will be based on the detection time point of view. As present in Fig.17 
and Fig.18 that summarize results in Tables III, VI and VIII, it is clear at first glance that the 
neural networks are far superior to the normal non-neural classification algorithm. The 
Bayes Classifier obtains the longest detection times due to the process of comparing each 
new vector to the knowledge classes. The best, valid, detection times are shown by the 
Kohonen Self-Organizing Map with the one-hundred-neurons configuration. This 
configuration, given optimization of the code, can lead to detection times coherent to the 
engine combustion cycles in which the knock detection needs to take place. Any number of 
neurons under one hundred will make it hard for the network to give satisfactory detection 
rates even though the detection times will decrease dramatically. In this chapter we are 
interested in maximizing the balance between high detection rates and low detection times 
and not achieving the two extremes and having to compromise one outcome. The second 
best detection times that are also very close to one another belong to the Fuzzy Kwan-Cai 
and SOM with the configuration of four-hundred-neurons. 

These two algorithms also show the highest detection rates from the methods tested in this 
chapter. In a real-time application there should not be any problem with the SOMs separate 
training stage because it would be performed only once inside the factory. The Fuzzy Kwan-Cai 
neural network presents a different advantage in that it can learn as it goes along, not needing a 
separate training stage and continuously receiving information and gaining knowledge.  
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It is clear from the information presented in this chapter that the best detection rates 
correlated to very good detection times belong to the Kohonen Self-Organizing Map with a 
configuration of one-hundred-neurons.  

The SOM with a configuration of four-hundred-neurons obtains results almost similar to the 
Fuzzy Kwan-Cai. The difference between these two networks is that the SOM requires a 
separate training stage where the separated and well defined learning classes are given to it 
and the Fuzzy Kwan-Cai learns as it receives sample vectors and builds its own classes.  

The Bayes Classifier is very useful for showing the nature of the knock and non-knock 
classes how well they are defined and separated due to its sensitivity to drastic variations in 
sample vectors. Its detection rate depends on the size of the knowledge database and its 
coherence making it useless in real-world applications. 

From a real-world application point of view, in order to further maximize detection rates, it 
is clear that a parallel process composed of a pressure-vibration analysis and detection 
becomes necessary, based on the experimental results. Due to the developments in digital 
signal processing (DSP) technology, the parallel process would not lead to an increasing 
detection times. 

5. Concluding remarks  

In order to avoid overcrowding, this final chapter contains general concluding remarks due 
to the fact that details and accurate conclusions have already been widely presented in 
chapters III and IV above.   

Three methods of knock detection were studied and compared in this chapter. Testing was 
performed on a Bosch Group database. Two of the three algorithms used are of neural 
nature: Fuzzy Kwan-Cai neural network – presenting the unsupervised learning approach 
and fuzzy inference core - and Kohonen Self-Organizing Map (SOM) – with a separate 
supervised learning stage - and the third is non-neural: Bayes Classifier. 

The three algorithms were either trained or had comparison classes and were tested on two 
different database sizes, one small of one hundred samples vectors and one large 
representing one thousand samples in order to show how the database size would affect the 
detection outcome.  

Experiments were made on both pressure and vibration sample vectors in order to see 
which of these are more coherent in nature, leading to results that show an overall greater 
coherence with slightly more increased detection rates and how this coherence might affect 
the algorithms being tested. The experiments performed have led to results that prove the 
superiority of the neural methods in contrast to the normal classification – the situation 
being looked at from a rate-time point of view as seen in Fig.15, Fig.16, Fig.17, Fig.18.The 
difference between the neural and non neural methods is represented by an average scale 
factor of 0,001s in favour of the neural. This superiority should be seen also from a stability 
to errors point of view as seen in Table VIIb where a stray vector can distort the judgement 
of the non neural Bayes Classifier so that detection rates fall.  

Comparisons were made between the algorithms leading to experimental results enabling 
us to draw conclusions on which methods are superior to others, in what way and also on 
the properties and nature of the database used in the experiments.  
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0,0052
0,000193 0,0023

0,0287

Detection times (Pressure samples) [s]

Kwan- Cai Small SOM 100 Small

SOM 400 Small Bayes Small

(a) 

0,0056 0,000538 0,0024

0,0948

Detection times (Pressure samples) [s]

Kwan- Cai Small SOM 100 Small

SOM 400 Small Bayes Small

(b) 

Fig. 17. Pressure sample detection times using the small database (a) and the large database 
(b) for the Kwan- Cai, SOM neural networks and the Bayes Classifier 

 

0,0022 0,000538 0,0027

0,0297

Detection times (vibration samples) [s]

Kwan- Cai Large SOM 100 Large

SOM 400 Bayes Large

(a) 

0,0046 0,000498 0,0028

0,094

Detection times (Vibration samples) [s]

Kwan- Cai Large SOM 100 Large

SOM 400 Large Bayes Large

(b) 

Fig. 18. Vibration sample detection times using the small database (a) and the large database 
(b) for the Kwan- Cai, SOM neural networks and the Bayes Classifier  

Suggestions for real-world applications were made in the prior chapter leading to further 

optimizations around the strengths and weaknesses of each algorithm. 

The three algorithms and most of all the two neural networks have long been used for 

varied applications showing great robustness and stability. The versions of these 

applications used in this paper are presented and have been used and tested in their 

standard form as presented in (Kohonen, 2000, 2002) and (Kwan&Cai, 1994) using as 

method of verification direct comparison of the outcome of detection and the optimal 
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known value for each vector at a time and incremented into an error counter. The databases 

were verified to be consistent of their description.  
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