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Rough Controller Synthesis  

 Carlos Pinheiro, Ulisses Camatta and Angelo Rezek 
Federal University of Itajuba,  

Brazil 

1. Introduction  

A new method to design rule-based controllers using concepts about rough sets is proposed. 

The method provides an efficient alternative for the design of rule-based controllers to 

compensate complex dynamic systems (nonlinear, with variable parameters, etc.). A 

systematic methodology to synthesize control rules is proposed. This approach serves to 

design fuzzy controllers and to define a new class of rule-based controllers, which will be 

called rough controllers. Numerical examples derived from computer simulations and a real 

application will be shown.  

Rule-based models constitute an important tool in the representation of dynamic systems 

and controller models that use artificial intelligence techniques (fuzzy logic, neuro-fuzzy 

system, etc.). In general, the rules encapsulate the relationships between the model variables 

and provide mechanisms to connect the representations of the same with its computational 

procedures (Pedrycz & Gomide, 2007). There are two main schemes to construct rule-based 

models, those based on expert knowledge and those that are data-driven. There are several 

hybrid schemes that could be somewhere in between. In applications where the extraction of 

knowledge by experts is difficult due to the amount of data involved, data-driven methods 

are more efficient.  

The Rough Set Theory (Pawlak, 1982) has been successfully applied in various areas such as 

data mining, decision systems, expert systems and other fields (Pawlak & Skowron, 2007). 

One of the main advantages of this approach is that it does not need for details in terms of 

probability distributions, belief intervals or possibilities values (Pawlak, 1991).    

Few papers have addressed applications with rough sets related to control systems that use 

continuous and sampled variables. Most papers deal with mostly pure binary or symbolic 

variables (Ziarko & Katzberg, 1993; Kusiak & Shah, 2006). 

This paper proposes a new approach to design rule-based controllers, aimed at 

applications in control systems of complex processes that utilize concepts about rough 

sets. 

This chapter is organized as follows: a review of basic concepts about rough sets; the 

methodology proposed to design rule-based controllers; application examples; and final 

conclusions. 
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2. Background 

An information system (IS) may be defined by S = (U,A), where U is a set of objects or 

observations (oi) called universe and A is a set of conditional attributes (aj). The generic 

tabular representation of an information systems is illustrated in Table 1, where decision 

attribute values are defined in the last column of the table for a given decision attribute (di) 

and its corresponding classification f(oi,di). Generally rough sets deal with nominal values. 

For numerical attributes a discretization process is necessary, converting the values in 

nominal data. Some approaches may be utilized to minimize eventual effects of data 

quantization (Skowron and Son, 1995). 

 

 a1 ... aj ... an d 

o1 f(o1,a1)  f(o1,aj)  f(o1,an) f(o1,d1) 

: :  :  : : 

oi f(oi,a1) ... f(oi,aj) ... f(oi,an) f(oi,di) 

: :  :  : : 

om f(om,a1) ... f(om,aj) ... f(om,an) f(om,dm) 

Table 1. Generic tabular representation of an IS 

Consider an equivalence relation over U called indiscernibility relation (1). The set of all the 
equivalence classes determined by IND(B) is represented by the notation U / IND(B). 

 { }2( ) ( , ) ,   ( , ) ( , )i j k i k j kIND B o o U a B f o a f o a= ∈ ∀ ∈ =  (1) 

Consider a set of all the elements from an equivalence class. Given O U⊆  , it is important to 

know how many elements of O are defined by the elementary sets of S. To achieve this 

purpose, the lower approximation (B*) and the upper approximation (B*) are defined (2). A 

set O is called precise (crisp) if B*(O) = B*(O), otherwise it is imprecise, rough or 

approximated. 

 *( ) { / ( ) };B O o U U IND B O= ∈ ⊆  (2) 

*( ) { / ( ) 0}.B O o U U IND B O= ∈ ∩ ≠  

A discernibility matrix is defined in (3), whose elements are given in (4). 

 ( ) [ ( , )] ,   1, ( / ( ))D D nxnM B m i j i j card U IND B= ≥ ≤  (3) 

 ( , ) { ( , ) ( , )}D k i k j km i j a B f o a f o a= ∈ ≠  (4) 

A discernibility function is defined in (5), where the set formed by the minimum term of 

F(B) determines the reducts of B, which is defined as a set of minimum attributes necessary 

to maintain the same properties of an IS that utilizes all the original attributes of the system. 

There may be more than one reduct for the same set of attributes. For a large IS, the calculus 

of minimal reducts can consist a problem of complex computation, which rises with the 

amount of data of the process. Some approaches are utilized to deal with this kind of 
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problem in reduct processing, for example, through similarity relations (Huang et al., 2007). 

In information systems with data in numerical values, it usually is not necessary to calculate 

the reducts, because all the variables of the condition attributes are the reducts themselves. 

 )};,({)( jimBF D∨∧= )}.,({),( jimaajim DkkD ∈=  (5) 

To transform a reduct into a decision rule, the values of the conditional attributes from the 

object class from which the reduct was originated are added to the corresponding attributes, 

and then the rule is completed with the decision attributes. For a determined reduct, an 

example of decision rule is illustrated in (6). The use of the rough set theory enables 

systematically that the decision rules have consice informations concerning the original 

information system, adequately treating eventual redundant, uncertain, or imprecise 

information in the data. 

IF a1 =  f(o1,a1) AND...AND ak =  f(om,ak) THEN  
 d1 =  f(o1,d1) OR…OR di =  f(oi,di) (6) 

2.1 Example 1 

As examples of the concepts expressed in this section and the following examples consider 

Table 2 below, where U = {o1, o2, o3, o4} and B = {a1, a2}. For this information system, we have 

U / IND(B) = {{o1}, {o2}, {o3}, {o4}}. The discenibility matrix is illustrated in Table 3. The 

resulting discernibility function is ( ) ( )2 1 1 2 1 2 1 2 1 2( )  a a a a a a a a a aF B = ∧ ∧ ∨ ∧ ∨ ∧ ∧ = ∧ . 

Thus, the reduct obtained is R = {a1, a2}. Therefore, the resulting decision rules are the 

expressions given in (7). 

 
 a1 a2 d 

o1 b b ǅ1 

o2 b c ǅ2 

o3 c b ǅ3 

o4 c c ǅ4 

Table 2. Data referring to Example 1. 

 
 o1 o2 o3 o4 

o1 -    

o2 a2 -   

o3 a1 a1,a2 -  

o4 a1,a2 a1 a2 - 

Table 3. Discernibility matrix referring to Example 1. 

IF a1 =  b AND a2 =  b THEN d =  ǅ1; 
IF a1 =  b AND a2 =  c THEN d =  ǅ2; 
IF a1 =  c AND a2 =  b THEN d =  ǅ3; 

 IF a1 =  c AND a2 =  c THEN d =  ǅ4. (7) 
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3. Methodology 

For a more adequate representation of the numerical applications, the illustrated form in 

Table 4 will be adopted for the information systems employed in this paper. The condition 

attributes are xi and their data are xN(k). The decision attribute is y and their values are y(k). 

 

x1 x2 x3 ... xN y

x1(1) x2(1) x3(1) ... xN(1) y(1) 

x1(2) x2(2) x3(2) ... xN(2) y(2) 

... ... ... ... ... ... 

x1(k) x2(k) x3(k) ... xN(k) y(k) 

... ... ... ... ... ... 

x1(m) x2(m) x3(m) ... xN(m) y(m) 

... ... ... ... ... ... 

x1(v) x2(v) x3(v) ... xN(v) y(v) 

Table 4. Numerical Tabular Representation of an IS. 

Sentences (8) derive from the IS in question. For example, for x1 = x1(k), x2 = x2(k), x3 = x3(k), and 

xN = xN(k) we have y = y(m)  expressed by sk. And for x1 = x1(m), x2 = x2(m), x3 = x3(m),, and           

xN = xN(m)  we have  y = y(m)  defined by sm.  

s1: IF x1 = x1(1) AND x2 = x2(1) AND… AND xN = xN(1)  THEN y = y(1) 

s2: IF x1 = x1(2) AND x2 = x2(2) AND… AND xN = xN(2)  THEN y = y(2) 
sk: IF x1 = x1(k) AND x2 = x2(k) AND… AND xN = xN(k)   THEN y = y(k) 
sm: IF x1 =x1(m) AND x2 = x2(m) AND…AND xN= xN(m)   THEN y = y(m) 

 sv: IF x1 = x1(v)  AND x2 = x1(v) AND…AND xN = xN(v)   THEN y = y(v)  (8) 

For numeric values in ranges defined in the table, that is, x1(k) ≤ x1 ≤ x1(m), x2(k) ≤ x2 ≤ x2(m),         
x3(k) ≤ x3 ≤ x3(m) and xN(k) ≤ xN ≤ xN(m), the sentences sk and sm defined in (8) may be redefined 
by generic rule (9), or through the simplified form (10), where ǂ(g) = [x1(k), x1(m)], ǃ(g) = [x2(k), 
x2(m)], Ǆ(g) = [xN(k), xN(m)] and ǅ(g) = [y(k), y(m)], considering that y(k) < y(m).  

rg: IF x1(k) ≤ x1 ≤ x1(m) AND x2(k) ≤ x2 ≤ x2(m) AND … AND xN(k) ≤ xN ≤ xN(m) THEN 

 min{y(k),…, y(m)} ≤  y ≤  max{y(k),…, y(m)}  (9) 

 rg: IF x1 = ǂ(g) AND x2 = ǃ(g) AND…AND xN =  Ǆ(g) THEN  y = ǅ(g)  (10) 

To estimate numerical values in ranges of the data obtained in the rules, formula (11) will be 
used for numerical interpolations (Pinheiro, et al., 2010). 

 
( ) ( ) ( )

( ) ( ) ( )
, ( ) ( )

1, 1

( ) ( )
( , , )

( )

m k kN
i i k n n

n n i k m m k
n N n n n

y y x x
y x x y y

N x x
=
= =

− −
= = +

−
  (11) 

3.1 Example 2 

In order to illustrate the concepts of this section and of those to follow, Table 5 will illustrate 
a simple example defined by the function y = x1 + x2 with x1 and x2 є [0, 1]. This table is the 
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same as Table 2 from Example 1. The IS associated has two condition attributes (x1 and x2) of 
numerical values. Consequently, the reduct is defined by {x1, x2}, resulting in the same 
decision rules as those in (7), which can be written as (10), as proposed in the methodology 
presented in this section, and resulting in (12). 

 

x1 x2 y

0 0 0 

0 1 1 

1 0 1 

1 1 2 

Table 5. Data referring to Example 2. 

 r1: IF x1 = [0, 1] AND x2 = [0, 1] THEN y = [0, 2]  (12) 

Intermediate values in the data range [0, 1] of the general rule in question can be estimated 
by (13), constituting a specific case of (11) for n = 2.  

 
( ) ( )( ) ( )

( ) 1 21 2
( ) ( ) ( ) ( )
1 1 2 2

( ) ( ) ( )
( )

2 ( ) ( )

k km k
k

m k m k

y y x x x x
y y

x x x x

− − −
= + +

− −
 (13) 

3.2 Fuzzy models 

With the information of decision rules in form (12), it is simple to obtain the parameters of a 
corresponding fuzzy model. For modeling in linguistic (Mamdani) rules (14), two membership 
functions (Fig. 1), triangular and equally spaced, can be defined in the interval [0, 1] for the 
input variables (x1 and x2), and another three functions (Fig. 2) defined in interval [0, 2] for the 
output variable (y). Therefore, the resulting fuzzy rules are expressed by (15). 

 rn: IF x1 = An AND x2 = Bn THEN y = Cn  (14) 

 

Fig. 1. Membership Functions. 

 

Fig. 2. Membership Functions. 
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r1: IF x1 =  A AND x2 =  A THEN y =  C1; 
r2: IF x1 =  A AND x2 =  B THEN y =  C2; 
r3: IF x1 =  B AND x2 =  A THEN y =  C2; 

 r4: IF x1 =  B AND x2 =  B  THEN y =  C3. (15) 

For modeling with functional (Takagi-Sugeno) rules (16), the membership functions can be 
the same as those in Figure 1 for the input variables. For the polynomial function coefficients 
of the information from the output variable, the same one can be calculated by (13), 
resulting in the rules expressed by (17). As an example of the calculation of the polynomial 
coefficient functions, using the decision rule in the form (12) with x1(k) = 0, x1(m) = 1, x2(k) = 0, 
x2(m) = 1, y(k) = 0 and y(m) = 2, where using (13) we have y = ((2 – 0)/2)((x1 – 0)/(1 – 0) + (x2 – 
0)/(1 – 0)) = x1 + x2 which defines the coefficients of (16). Other examples of fuzzy models 
obtained with this methodology are illustrated in Pinheiro et al., 2010. 

 rn: IF x1 = An AND x2 = Bn THEN yn = c0n+ c1nx1 + c2nx2  (16) 

r1: IF x1 =  A AND x2 =  A THEN y1 = x1 + x2; 
r2: IF x1 =  A AND x2 =  B THEN y2 = x1 + x2; 
r3: IF x1 =  B AND x2 =  A THEN y3 = x1 + x2; 

 r4: IF x1 =  B AND x2 =  B  THEN y4 = x1 + x2.  (17) 

3.3 Rough models 

Another simpler modeling option, called rough modeling, directly concerns the 
representation given in (12), where the data can be interpolated by (13). The advantage of 
this modeling in relation to the fuzzy models is that it does not require numerical 
fuzzification and defuzzification procedures, which can be advantageous in real-time 
applications in control systems, for example. The advantage of fuzzy models is its greater 
ability to function approximation, which is usually related to the possible intersections 
between the membership functions of associated fuzzy sets.  

In order to illustrate the rough model, we have (12) where x1(k) = 0, x1(m) = 1, x2(k) = 0, x2(m) = 1, 

y(k) = 0 and y(m) = 2. For specific values of variables x1 = 0.25 and x2 = 0.5, the corresponding 

value of y is desired to be estimated. By using expression (13) comes y = 0+(2–0)/2((0.25–

0)/(1–0)+(0.5–0)/(1–0)) = 0.75, which consists of the same numerical value given by the 

original function of Example 2, where y is exactly given by x1 + x2. 

3.4 Example 3 

With the purpose of illustrating situations where data applications have fractional values, 
Table 6 illustrates an example defined by the nonlinear function y = sin(x1), with x1 є [0, π/2]. 

The condition attribute (x1) has fractional values that will be quantized in this example in 

three equally-spaced intervals: ǂ(1) = [0.0000, 0.5236]; ǂ(2) = [0.5236, 1.0472]; ǂ(3) = [1.0472, 

1.5708]. Therefore, the decision rules are expressed by (18). 

r1: IF x1 = ǂ(1) THEN y = y(a) OR y = y(b) OR y = y(c); 
r2: IF x1 = ǂ(2) THEN y = y(c) OR y = y(d) OR y = y(e); 

 r3: IF x1 = ǂ(3) THEN y = y(e) OR y = y(f) OR y = y(g). (18)  
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x1 y 

0.0000 y(a) = 0.0000 

0.2618 y(b) = 0.2588 

0.5236 y(c) = 0.5000 

0.7854 y(d) = 0.7071 

1.0472 y(e) = 0.8660 

1.3090 y(f) = 0.9659 

1.5708 y(g) = 1.0000 

Table 6. Data of Example 3. 

Using the proposed form (10), the rough model (19) can be written, where ǅ(1) = [0.0000, 
0.5000], ǅ(2) = [0.5000, 0.8660] and ǅ(3) = [0.8660, 1.0000]. 

r1: IF x1 = [0.0000, 0.5236] THEN y = [0.0000, 0.5000]; 
 r2: IF x1 = [0.5236, 1.0472] THEN y = [0.5000, 0.8660]; 

 r3: IF x1 = [1.0472, 1.5708] THEN y = [0.8660, 1.0000].  (19) 

To estimate the intermediate values of this model, the linear interpolation formula (20) can 
be used, which is the specific case of (11) for n = 1.  

 y = y(k) + (y(m) – y(k))(x1 – x1(k))/(x1(m) – x1(k))  (20) 

For instance, for x1 = 0.3927 we have y = 0 + (0.5 - 0)(0.3927 - 0)/(0.5236 - 0) = 0.375, and for      
x1 = 1.1781, we have y = 0.866 + (1 – 0.866)(1.1781 – 1.0472)/(1.5708 - 1.0472) = 0.8995. The 
average error value in relation to the original function is about 2.3%. A greater degree of 
quantization relative to the data from the example often leads to better precision in the 
interpolations, but with an increase in the number of modeling rules.  

If eventually more than one rule results in estimated values (for example, for data at the ends 
of the condition attributes), the resulting value is given by the arithmetic average of the same.  

3.5 Software 

There are free access computational tools developed specifically for the processing of rough 
sets, such as RSL (Rough Sets Library), Rough Enough, CI (Column Importance facility), 
Rosetta, etc. These tools allow the processing of data of generic information systems, 
providing decision rules in a format similar to (6), for example. Data with fractional numeric 
values can be properly quantized through some established techniques. The reducts that 
determine the decision rules can be manually selected or determined by some known 
methods from the data processing of the IS used.  

The methodology proposed in this paper allows the use of decision rules derived from 
processing of information system, aimed at building fuzzy models or rough models in order 
to design rule-based controllers.  

4. Rule-based controllers 

Figure 3 illustrates the typical structure of a ruled-based controller with PI action 
(Proportional plus Integral). The variable “e“ represents the input error information of the 
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controller, variable “u“ symbolizes the output of the same, and “T“ denotes the sample time. 
Equation (21) expresses the discrete mathematical model of a PI controller with the 
respective proportional (Kp) and integral (Ki) gains. Many articles show the computational 
accomplishments of rule-based controllers, especially those that employ fuzzy logic. The 
actions of the fuzzy controllers can be PI, PD (proportional plus derivative), PID or 
Lead/Lad (Pinheiro & Gomide, 2000), depending on the context of their applications. The 
gains (proportional, integral, etc.) of fuzzy controllers are generally represented by scale 
factors that multiply the membership functions of the same, or are already fully 
incorporated in the expressions of their membership functions. Many control problems can 
be solved using a PI-controller (Astrom & Wittenmark, 1990) due to their applicability and 
easy tuning. 

 

 
 

Fig. 3. Typical structure of a rule-based controller with PI action. 

 

1 2

( ) ( ) ( ) ;

( );      ( ) .

p i

p i

y u t K e t K e t T

x K e t x K e t T

= = +

= =




  (21)     

4.1 Example 4 

With relation to Figure 3, if the rules are the same as those exemplified in items 3.2 and 3.3 

(where the simple data of Example 2 was used), Figure 4 shows the response (u) of the 

respective fuzzy controllers (linguistic and functional) or of the rough controllers for a step 

change in the error (e). The sample time (T) used was one tenth of a second. The points on 

the graph illustrate the discrete values resulting from the rule-based controllers (being 

practically identical to each other). And for the purpose of exemplification, the solid line 

represents the response of a conventional controller continuous in time with unit gains 

(proportional and integral). Comparing the results, it is possible to note that the design of 

the rule-based controllers was well fit. 

The next section of this article will deal with more complex problems and practical contexts. 

Application examples like those of control systems with adaptive gains, active suspension 

systems, and speed regulator and current control for electric motors will be shown.  

Questions regarding stability analysis resulting from the application of rough controllers 

can be performed by harmonic balance techniques, for example, in the same way that these 

techniques are used in stability analysis of fuzzy controls (Pinheiro & Gomide, 1997; Rezek 

et al., 2010). 

e    e.T u = y

x1
 

         

Rules 
x2
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Fig. 4. Responses of rule-based controllers (for a step change in the error). 

5. Application examples 

This section provides some examples of applications of the methodology proposed to 
synthesize rule-based controllers, whose objective is to accomplish control loops appropriate 
for systems with nonlinear behavior, etc. 

5.1 Example 5 

This example includes a speed control loop of a system that operates in low rotations, which 
requires a controller with characteristics of adaptive gains due to the nonlinear effects of the 
controlled process. The block diagram illustrated in Figure 5 represents the controlled process 
with a transfer function (22) and two nonlinearities. The second nonlinearity, indicated by 
block (b), defines a dead-zone effect related to gear gaps of the system. The transfer function 
P(s), shapes an electric motor that drives the system. The poles of the same are related to the 
electrical part associated with resistance and inductance of the motor. The mechanical part is 
related to moments of inertia and friction of the machine with its mechanical charge. The 
nominal values of the parameters are: K = 2.55; c0 = 0.73; c1 = 1.74;   d0 = 0.73. The saturation 
levels are ±12, the range of the dead-zone is ±1. Figure 6 illustrates a typical control loop to 
regulate the speed of the process, which works within a specific rotation range. 

 

Fig. 5. Non-linear process 
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Fig. 6. Control Loop. 

Figure 7 shows the responses of the control loop in question for a conventional PI controller 
with gains Kp = 12 and Ki = 1. The same were adjusted to meet the specifications of overshoot 
around 20%  and settling time around seven seconds for a reference value or set point (sp) at 
2.8 [rd/s]. The response values were normalized (c/sp) and are related to the following 
reference values sp = [1.5; 2; 2.8]. Due to the nonlinear characteristics of the plant, the dynamic 
responses of the control loop change according to the set-point values. Alterations in the 
control gains in function with the intensity of the error in the control loop, maintain the system 
dynamic within the desired specifications. The mapping of these gains by artificial neural 
networks or by fuzzy logic for example, allows for the accomplishment of controllers with 
characteristics of adaptive gains. Table 7 illustrates some suitable gain values in function with 
the intensity (x1) of the error (e) of the control loop and its integral (x2), in order to properly 
compensate the process. The mapping (or scheduling) of the gains can be defined as u = y = 
Kp(x1)x1 + Ki(x2)x2. Figure 8 illustrates the values of this mapping, where the data relative to the 
information on the input variables are at the top part of the figure, with x1 in black and x2 in 
gray. The output information (u) of the controller is found below the graphic. 
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Fig. 7. Responses relative to Example 5 for a classic controller. 

The information in Figure 8 represent the table of the information system of the problem in 
question, where it is desired to design a rule-based controller that incorporates the scaling 
gains, aiming for an effective compensation of the controlled process. This paper will 
employ the Rosetta (Øhrn & Komorowski, 1997), a software for processing of data related to 
information systems in general .  This is  a  simple use freely accessed tool 
(http://www.idi.ntnu.no/~aleks/rosetta/). The following procedures were performed in  

sp +
e

 

  Controller 
u  

 Plant 
c

-
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x1 Kp x2 Ki 

0.00 20.0 0.00 1.40 
0.08 20.0 0.07 1.40 
0.16 11.5 0.15 1.00 
0.31 6.37 0.30 1.00 
0.74 3.23 0.72 1.00 
1.19 2.35 1.17 0.89 
1.62 2.02 1.60 0.76 
2.00 2.00 1.99 0.75 
2.50 2.00 2.48 0.75 
3.01 2.00 3.00 0.75 

Table 7. Adaptive gains in function of the error and its integral. 
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Fig. 8. Mapping of the gains. 

the tool: Import IS; Discretization → Equal frequency binning; → Intervals = 5; Reduction → 
Exhaustive calculation; Rule generator. The decision rules (the first three and the last two) that 
resulted from processing the data done by the software are shown below (23). The “*” 
symbol denotes the inferior and superior values of the data of the IS correspondent, that in 
this example are -2.6759 and 2.8149 for x1 and -3.5027 and 2.7042 for x2.  

x1(0.6875,*) AND x2(0.2942,0.8800) => y(4.0889) OR y(4.2937) ... OR y(2.5230) …OR y(3.4186) 
x1(0.6875,*) AND x2(-0.2123,0.2942) => y(2.4749) OR y(3.6601) OR y(5.4837) ... OR y(1.8793) 
x1(0.1744,0.6875) AND x2(-0.9279,-0.2123) => y(1.7301) OR … OR y(2.0570) OR y(1.2289) … 
       …                                                             …                                                          … 
x1(0.1744,0.6875) AND x2(0.2942,0.8800)) => y(2.8625) OR y(3.0640) OR … OR y(2.2344) …  
x1(*,-0.8340) AND x2(0.2942, 0.8800) => y(-2.4899) OR y(-1.8370) OR … OR y(-3.2713)…   (23) 

By using the methodology proposed, the rules above can be written as (24), whose 
parameter values are x1(a) = -2.6759; x1(b) = -0.834; x1(c) = -0.2338; x1(d) = 0.1744; x1(e) = 0.6875; 
x1(f) = 2.8149;  x2(a) = -3.5027; x2(b) = -0.9279; x2(c) = -0.2123; x2(d) = 0.2942; x2(e) = 0.88;               
x2(f) = 2.7042. 
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r1: IF x1 = [x1(e), x1(f)] AND x2 = [x2(d), x2(e)] THEN y = [2.5230, 4.2937]; 
r2: IF x1 = [x1(e), x1(f)] AND x2 = [x2(c), x2(d)] THEN y = [1.8793, 5.4837]; 
r3: IF x1 = [x1(d), x1(e)] AND x2 = [x2(b), x2(c)] THEN y = [1.2289, 2.0570]; 
r4: IF x1 = [x1(b), x1(c)] AND x2 = [x2(a), x2(b)] THEN y = [-3.4899, -2.8470]; 
r5: IF x1 = [x1(a), x1(b)] ANDx2 = [x2(c), x2(d)] THEN y = [-6.5810, -1.9420]; 
r6: IF x1 = [x1(b), x1(c)] AND x2 = [x2(e), x2(f)] THEN y = [-1.2319, -0.4610]; 
r7: IF x1 = [x1(a), x1(b)] AND x2 = [x2(e), x2(f)] THEN y = [-2.7080, 1.1847]; 
r8: IF x1 = [x1(c), x1(d)] AND x2 = [x2(d), x2(e)] THEN y = [-1.8116, 2.4170]; 
r9: IF x1 = [x1(b), x1(c)] AND x2 = [x2(c), x2(d)] THEN y = [-2.4210, -1.62330]; 
r10:IF x1 = [x1(a), x1(b)] AND x2 = [x2(b), x2(c)] THEN y = [-4.2604, -2.4360]; 
r11:IF x1 = [x1(c), x1(d)] AND x2 = [x2(e), x2(f)] THEN y = [-1.2340, 2.2624]; 
r12:IF x1 = [x1(c), x1(d)] AND x2 = [x2(b), x2(c)] THEN y = [-3.0277, 1.6000]; 
r13:IF x1 = [x1(c), x1(d)] AND x2 = [x2(a), x2(b)] THEN y = [-4.4430, 4.1896]; 
r14:IF x1 = [x1(b), x1(c)] AND x2 = [x2(b), x2(c)] THEN y = [-3.2030, -2.0760]. 
r15:IF x1 = [x1(e), x1(f)] AND x2 = [x2(b), x2(c)] THEN y = [1.1753, 6.4760]; 
r16:IF x1 = [x1(b), x1(c)] AND x2 = [x2(d), x2(e)] THEN y = [-1.8250, -1.0780]; 
r17:IF x1 = [x1(e), x1(f)] AND x2 = [x2(a), x2(b)] THEN y = [0.6120, 2.7360]; 
r18:IF x1 = [x1(c), x1(d)] AND x2 = [x2(c), x2(d)] THEN y = [-2.0980, 2.1297]; 
r19:IF x1 = [x1(d), x1(e)] AND x2 = [x2(c), x2(d)] THEN y = [1.7996, 2.4580]; 
r20:IF x1 = [x1(d), x1(e)] AND x2 = [x2(e), x2(f)] THEN y = [2.9106, 3.6160]; 
r21:IF x1 = [x1(a), x1(b)] AND x2 = [x2(a), x2(b)] THEN y = [-5.4544, -3.0290]; 
r22:IF x1 = [x1(e), x1(f)] AND x2 = [x2(e), x2(f)] THEN y = [2.8684, 5.6692]; 
r23:IF x1 = [x1(d), x1(e)] AND x2 = [x2(a), x2(b ] THEN y = [0.6848, 1.2190]; 
r24:IF x1 = [x1(d), x1(e)] AND x2 = [x2(d), x2(e)] THEN y = [2.2344, 3.0640]; 
r25:IF x1 = [x1(a), x1(b)] AND x2 = [x2(d), x2(e)] THEN y = [-3.2713, -1.8400].  

(24) 

 

Figure 9 has the normalized responses of the control loop now using the rough controller 
designed by the rules (24). The responses tend to maintain the specified characteristics of 
overshoot and settling time for different set-point values, different from the conventional PI 
controller responses (whose responses are shown in Fig. 7). This shows that the rule-based 
controller incorporated the relationships (nonlinear) of the gains from Table 7 in function of 
the error and its integration. The performance of the controller has adaptive actions 
according to the intensity of the error information of the control loop.  

The rules for a corresponding functional fuzzy controller are obtained by the form 
described in item 3.2 from the rules (24).  The resulting coefficients of the polynomial 
functions of the fuzzy model in form (16) are: c01 = 1.79; c11 = 0.42; c21 = 1.51; c02 = 2.05;    
c12 = 0.85; c22 = 3.56; c03 = 1.62; c13 = 0.81; c23 = 0.58; c04 = -2.60; c14 = 0.54; c24 = 0.12; c05 = -
2.24; c15 = 1.26; c25 = 4.58; c06 = -0.88; c16 = 0.64; c26 = 0.21; c07 = -0.82; c17 = 1.06; c27 = 1.07; c08 
= -1.66; c18 = 5.18; c28 = 3.61; c09 = -1.70; c19 = 0.66; c29 = 0.79; c010 = -1.75; c110 = 0.49; c210 = 
1.27; c011 = -1.08; c111 = 4.28;      c211 = 0.96; c012 = 1.30; c112 = 5.67; c212 = 3.23; c013 = 3.90; c113 = 
10.57; c213 = 1.67; c014 = 3.89;    c114 = 4.40; c214 = 3.69; c015 = 3.75; c115 = 1.24; c215 = 3.70; c016 = 
-1.49; c116 = 0.62; c216 = 0.64;     c017 = 1.71; c117 = 0.50; c217 = 0.41; c018 = 0.00; c118 = 5.18; c218 = 
4.17; c019 = 1.82; c119 = 0.64;             c219 = 0.65; c020 = 2.62; c120 = 0.69;  c220 = 0.19; c021 = -2.04; 
c121 = 0.66; c221 = 0.47; c022 = 1.74;    c122 = 0.66; c222 = 0.77; c023 = 0.96; c123 = 0.52; c223 = 0.10; 
c024 = 1.88; c124 = 0.81; c224 = 0.71;      c025 = -2.59; c125 = 0.39; c225 = 1.22. The modal values for 
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the Gaussian membership functions are obtain by the arithmetic average of the parameter 
values of the antecedents of the rough rules (24), in other words: m1ab = (x1(a) + x1(b))/2 = -
1.755; m1bc = (x1(b) + x1(c))/2 = -0.5339;     m1cd = (x1(c) + x1(d))/2 = -0.0297; m1de = (x1(d) + 
x1(e))/2 = 0.431; m1ef = (x1(e) + x1(f))/2 = 1.7512; m2ab = (x2(a) + x2(b))/2 = -2.2153; m2bc = (x2(b) + 
x2(c))/2 = -0.5701; m2cd = (x2(c) + x2(d))/2 = 0.041; m2de = (x2(d) + x2(e))/2 = 0.5871; m2ef  = (x2(e) 
+ x2(f))/2 = 1.7921. The dispersion values of the membership functions (0.8 in this 
example) are chosen in order for the intersection of the same to remain in a membership 
degree around 0.5. The results obtained with the corresponding fuzzy controller are very 
similar to the responses illustrated in Figure 9. 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

N
o
rm

a
liz

e
d
 r

e
s
p
o
n
s
e
s
 (

ro
u
g
h
 c

o
n
tr

o
lle

r)

sp=1.5 

sp=2 

sp=2.8 

 

Fig. 9. Responses relative to Example 5 with rough controller. 

5.2 Example 6 

This example deals with an active suspension model used in automotive systems. Figure 10 

illustrates a typical system known as ¼ model. The spring and damper of the structure are 

represented by coefficients Kf and B, respectively. The parameter Ms corresponds to the 

sprung mass of the vehicle.  The Mr is the mass of the wheel and tire and Kp represents the 

elasticity of the same. dp, dr and ds are vertical displacement of the tire, wheel and body of the 

vehicle, respectively. The force Fa represents the action exerted by an active damper aiming 

the imposition of determined dynamic characteristics in the suspension. 

The system can be represented in state variables (25). Variable x1 represents the vertical 

displacement of the suspended mass, x2 represents the speed of the same, and its derivation 

is the corresponding acceleration. Variable x3 represents the vertical displacement of the 

wheel, x4 represents the speed of the same, and its derivation is the corresponding 

acceleration. Variable u1 expresses a disturbance in the suspension, like the vertical 

displacement of the tire. The magnitude of u2 represents the compensation force of the 

damper system. 
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Fig. 10. Model of Example 6. 

 

2

1 2 3 4 2

4

1 2 3 4 1 2

1

1
2

3

1
4

o

o
f fa a

S S S S S

o

o
f f p pa a

r r r r r r

x

K KB B
x x x x u

M M M M M

x

K K K KB B
x x x x u u

M M M M M M

x

x

x

x

=

= − − + + +

=

+
= + − − + −

 (25) 

There are some types of well-known strategies to control active suspension systems. 

Expression (26) defines a typical strategy. The magnitude of Fa corresponds to the force 

developed by the active damper in the system. The same depends on values Con and Coff 

defined for the coefficient of the damper system (obtained by controlled leaking of fluid of 

the damper by an electrically controlled valve) or by variations of magnetic characteristics of 

the fluid by a current-controlled induction), along with information of the absolute speed 

(Vabs) and relative speed (Vrel) of the process. Vabs is the absolute speed of the sprung mass 

and Vrel is the relative speed between the sprung mass and the mass of the wheel-tire set. 
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Some papers (Pinheiro et al., 2007; Dong, et al., 2010) show the application of fuzzy logic to 

control suspension systems. In the first reference cited, the fuzzy control rules were obtained 

by qualitative analyses of the logic expressed by (36). The results obtained with the use of 

fuzzy controller were better than those with the typical control. This explanation is that with 

the traditional algorithm, the command force of the system is only related to the two values 

(Con and Coff) of the coefficient of the damper selected by the logic. The compensation force 

for the fuzzy controller can vary in a wider operation range in function of the membership 

functions adopted. Figure 11 shows the values of the variables of the suspension system 

under various operating conditions. 

Now, the methodology proposed in this paper will be applied to generate a rule-based 

controller to control the suspension system in question. The data in Figure 11 constitutes the 

information system of the example, where x1 is related to Vabs, x2 with Vrel and y with Fa. 

Similar to the previous example, the IS in question was processed by Rosetta, and by using 

the proposed method the rules (27) were synthesized, where: x1(a)= -2.385; x1(b)= -0.681;   

x1(c)= -0.184; x1(d) = 0.383; x1(e)= 0.90; x1(f)= 2.731; x2(a)= -0.3153; x2(b)= -0.078; x2(c) = -0.008;      

x2(d) = 0.04; x2(e ) = 0.1; x2(f) = 0.368.     

r1: IF x1(e) ≤ x1 ≤ x1(f) AND x2(e) ≤ x2 ≤ x2(f) THEN -3.709 ≤ y ≤ 1.562 
r2: IF x1(e) ≤ x1 ≤ x1(f) AND x2(d )≤ x2 ≤ x2(e) THEN -3.593 ≤ y ≤ 1.379 
r3: IF x1(c) ≤ x1 ≤ x1(d) AND x2(d) ≤ x2 ≤ x2(e) THEN 0.621 ≤ y ≤ 0.226 
r4: IF x1(e) ≤ x1 ≤ x1(f) AND x2(b) ≤ x2 ≤ x2(c) THEN -2.385 ≤ y ≤ -1.23 
r5: IF x1(e) ≤x1 ≤ x1(f) AND x2(c) ≤ x2 ≤ x2(d) THEN -2.279 ≤ y ≤ -1.218 
r6: IF x1(d) ≤ x1 ≤ x1(e) AND x2(c) ≤ x2 ≤ x2(d) THEN -1.092 ≤ y ≤ -0.597 
r7: IF x1(a) ≤ x1 ≤ x1(b) AND x2(a) ≤ x2 ≤ x2(b) THEN 1.513 ≤ y ≤ 3.387 
r8: IF x1(e) ≤ x1 ≤ x1(f) AND x2(a) ≤ x2 ≤ x2(b) THEN -2.251 ≤ y ≤ -1.128 
r9: IF x1(a) ≤ x1 ≤ x1(b) AND x2(d) ≤ x2 ≤ x2(e) THEN 0.967 ≤ y ≤ 3.443 
r10:IF x1(d) ≤ x1 ≤ x1(e) AND x2(b )≤ x2 ≤ x2(c) THEN -0.513 ≤ y ≤ -1.062 
r11:IF x1(a) ≤ x1 ≤ x1(b) AND x2(c) ≤ x2 ≤ x2(d)  THEN 0.923 ≤ y ≤ 3.174 
r12:IF x1(c) ≤ x1 ≤ x1(d) AND x2(a) ≤ x2 ≤ x2(b) THEN -0.437 ≤ y ≤ -0.074 
r13:IF x1(b) ≤ x1 ≤ x1(c) AND x2(a) ≤ x2 ≤ x2(b) THEN 0.783 ≤ y ≤ 1.547 
r14:IF x1(c) ≤ x1 ≤ x1(d) AND x2(c) ≤ x2 ≤ x2(d) THEN -0.555  ≤ y ≤ 0.188 
r15:IF x1(d) ≤ x1 ≤ x1(e) AND x2(a) ≤ x2 ≤ x2(b)  THEN -1.088 ≤ y ≤ -0.580 
r16:IF x1(c) ≤ x1 ≤ x1(d) AND x2(e) ≤ x2 ≤ x2(f) THEN -1.048 ≤ y ≤0.116 
r17:IF x1(d) ≤ x1 ≤ x1(e) AND x2(d ≤ x2 ≤ x2(e) THEN -1.361 ≤ y ≤ -0.773 
r18:IF x1(b) ≤ x1 ≤ x1(c) AND x2(d) ≤ x2 ≤ x2(e) THEN 0.282 ≤ y ≤ 0.800 
r19:IF x1(d) ≤ x1 ≤ x1(e) AND x2(c) ≤ x2 ≤ x2(d) THEN 0.300 ≤ y ≤ 0.810 
r20:IF x1(c) ≤ x1 ≤ x1(d) AND x2(b) ≤ x2 ≤ x2(c) THEN -0.384 ≤ y ≤ 0.300 
r21:IF x1(a) ≤ x1 ≤ x1(b) AND x2(e) ≤ x2 ≤ x2(f) THEN 0.854 ≤ y ≤ 2.688 
r22:IF x1(d) ≤ x1 ≤ x1(e) AND x2(e) ≤ x2 ≤ x2(f) THEN -2.169 ≤ y ≤ -0.992 
r23:IF x1(b) ≤ x1 ≤ x1(c) AND x2(e) ≤ x2 ≤ x2(f) THEN 0.235 ≤ y ≤ 0.848 
r24:IF x1(a) ≤ x1 ≤ x1(b) AND x2(b) ≤ x2 ≤ x2(c) THEN 1.073 ≤ y ≤ 2.998 
r25:IF x1(b) ≤ x1 ≤ x1(c) AND x2(b) ≤ x2 ≤ x2(c) THEN 0.408 ≤ y≤ 0.991 

(27) 

 

A suspension model with the parameters Ms = 400 [Kg], Mr = 50 [Kg], Ba = 500 [Ns/m], Kf = 

20000 [N/m], Kp=250000 [N/m], using a classical control with Coff = 500 [Ns/m], Con = 1400 

[Ns/m], and applying the strategy defined by rules (27), in Figure 12 we have responses of  
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Fig. 11. Values of the variables of the suspension system under various operating conditions. 

the acceleration of the sprung mass of the process for a sudden dislocation of 0.05 meters in 

the tire of the system. The results obtained indicate a better response (smaller acceleration) 

of the system using a rule-based controller in relation to the classical strategy. Therefore, just 

as in the fuzzy controller cited, the compensation force commanded by the rough controller 

can vary in wider operation ranges, since the rules incorporate the various operating 

conditions of the system (Fig. 11) in its generation procedure. 

5.3 Example 7 

This example shows a real application of control loops in cascade for speed regulation and 
current control in a drive system with a DC motor. Figure 13 shows a block diagram of the 
process in question. The motor is activated by a driver (chopper), which uses power 
transistor. Electronic circuits generate firing pulses to command the chopper and are 
controlled by a computer that performs the control algorithms of the system, in other words,  
two regulation loops in cascaded (Fig. 14) for the variables speed and current. Hall sensors 
provide information on the stator current (Ia) of the motor and the rotation (W) of the same, 
whose information are acquired by a data acquisition system coupled with the control 
computer. A synchronous machine operating as a generator feeds a set of electrical resistors 
switched by relays, and this set works as variable loads for the DC motor. This system has 
nonlinearities, mainly due to saturation of the driver used (amplifier and chopper) and the 
nonlinear characteristics of the series excitation motor. Real results of the tests performed in 
this system will be shown. The results are derived from experiments that use conventional 
controllers with PI actions to regulate the speed and current of the system, and rough 
control algorithms also with proportional and integral actions for the same purposes. 
Discrete representations equal to (28) were used for the realizations of the control 
algorithms, where variable “e“ represents the control loop error (of the speed and of the 
current), “u“ symbolizes the output variable of the controller in question, and “a1, b0 and b1“ 
are the parameters for the classic PI controllers. 
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Fig. 12. Responses of the suspension system with classic and rough controls. 

 )1()1()()( 11 −+−+= tuatebtebtu o  (28) 

 

Fig. 13. Block diagram of the system in reference to Example 7. 

 

Fig. 14. Control Loops of Example 7 
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Figure 15 illustrates data from the practical tests with the conventional controllers, where 

the values of the current error and of the output command are normalized in p.u. The 

parameters are a1 = 1, b0 = 0.5074, b1= -0.406, and the sample time is 0.01 [s]. The variables    

x1 = e(t), x2 = e(t−1), x3 = u(t−1) and y = u(t)  will be used to generate the rules of a rough 

controller for the current loop. 

Rosetta was used with the following procedures performed in the tool: Import IS; 

Discretization → Equal frequency binning → Intervals = 3; Reduction → Manual Reducer; Rule 

generator. The rules obtained are shown below, the first three and the last two. 

r1: x1 = [0.3283,  1.0000] AND x2 = [-0.3368, 0.3283] AND x3 = [-0.0628, 0.3362] 
                                                                                                  THEN y = [0.1261, 0.9346]; 
r2: x1 = [-0.3434, 0.3283] AND x2 = [0.3283, 1.0000] AND  x3 = [0.3362, 1.0000]  
                                                                                                  THEN y = [-0.0640, 0.8150]; 
r3: x1 = [-0.3434, 0.3283]  AND x2 = [-0.3368, 0.3283] AND x3 = [-0.0628, 0.3362] 
                                                                                                  THEN y = [-0.2517, 0.4416]; 
   …                                                           …                                                                … 
r26:  x1 = [0.3283,  1.0000] AND  x2 = [-1.0000, -0.3283]  AND x3 = [0.3362, 1.0000]   
                                                                                                   THEN y = [0.7209, 1.2189]; 
r27:  x1 = [-1.0000, -0.3434] AND x2 = [-1.0000, -0.3283] AND x3 = [0.3362, 1.0000]    
                                                                                                   THEN y = [0.1696, 0.3973].         (29) 
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Fig. 15. Values of the variables for the system under various operating conditions. 

Now that the rough controller has information on three inputs, numerical values in ranges 
of the data obtained in the rules can be interpolated by means of (11) with n = 3. The 
acquisition of rules for the rough controller in the speed loop is performed similarly as 
described for the current loop. Figure 16 shows the real result of a test performed on the 
described system. The responses of the speed regulation and of the current became better 
with rough controllers than with classic controllers, as much in the starting of the motor as 
in the load alterations of the same. There are smaller peaks in the current and speed, both in 
speed variations (such increasing the input reference in the starting of the motor, for 
example), and in load variation (in this case a reduction that occurred between 7 and 8 
seconds in the test). The explanation for these characteristics is due to the fact that the rule-
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based controllers incorporate the various operating conditions of the system, generating 
rules to compensate suitably the nonlinearities of the system. 

 

Fig. 16. Real responses of the system with classic and rough controllers. 

6. Conclusion 

This paper has presented a new approach to design rule-based controllers using concepts 

about rough sets. The proposed methodology allows obtaining rule parameters in a 

systematic form and with simple computations, as much for fuzzy controllers as for rough 

controllers. Example 1 illustrates some basic concepts about rough sets. Using a simple 

linear function is shown in Example 2 how to apply the approach proposed in this chapter 

in the modeling of rule-based models. Example 3 shows how a rough model can estimate 

the values associated with a basic nonlinear function. The results obtained in Example 4 

show the same values for a fuzzy model and a rough model, when the approach involves a 

linear function. In this example the linear function was associated with the function of a 

proportional-integral controller. These results can also be confronted with those obtained in 

the work referenced in Pinheiro et al., 2010. In Example 5 a practical context of adaptive 

gains is synthesized through a rough controller in the control of a nonlinear system. 

Example 6 deals with an active suspension model used in automotive systems. The 

methodology proposed in this paper was applied to generate a rule-based controller to 

control the suspension system in question. The results can be confronted with those 

obtained in the works referenced in Pinheiro et al., 2007 and Dong et al., 2010. The dynamic 

responses obtained were similar to the works mentioned. An experimental application was 

shown in Example 7, an example of control loops in cascade for speed regulation and 

current control in a drive system with a DC motor. Two rough controllers were synthesized 

to regulate the speed and current in the system. The results can be compared with those 

obtained in the work referenced in Rezek et al.,  2010. The dynamic responses obtained were 

similar to the work mentioned, where was used two fuzzy controllers for the same 

purposes. The results obtained in this work indicate that the methodology proposed is 

adequate for applications in real control systems. The impact of the rough controllers in 

relation to the fuzzy controllers is that it does not require fuzzification and defuzzification 

procedures, which can be advantageous in real-time applications for control systems. The 

application of LMI (linear matrix inequalities) techniques and Lyapunov functions will also 

be investigated to design rough controllers and to analyze the stability in control loops, the 

same way that these methods are applied in control systems that use functional fuzzy 
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controllers (Wang et al., 1996; Tseng & Chen, 2009). Future papers will address issues with 

rough controllers aiming at applications in control systems with multiple inputs and 

multiple outputs (MIMO). 
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