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Cuautitlán Izcalli, Edo. de Méx. 
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1. Introduction 

The past two decades have appeared techniques for simulation of hydrodynamic systems 
(Mc Namara & Zanneti, 1998; Higuera & Jiménez, 1989; Qian et al., 1992; Doolen, 1990; 
Benzi et al., 1992), magnetohidrodynamics (Chen, 1991), multiphase and multicomponent 
fluids (Shan & Chen, 1993), included suspensions (Ladd, 1994) and emulsions (Boghosian et 
al., 1996), flows chemically reactive (Chen et al., 1995) and multicomponent flows through 
porous media (Landaeta, 1997), only for mention some. This techniques, don’t based on 
directly in the discreet state of hydrodynamic equations, don’t ether tally with the 
microscopic level of molecular dynamic. These techniques have been named techniques of 
mesoscopic simulations. In general, these discreet techniques involve collisions of 
“particles” which retain mass, momentum and some cases energy and consistently, give 
place a hydrodynamic macroscopic behavior. These methods are known like Cellular 
Automaton and Lattice Boltzmann. 

The Lattice Boltzmann Method (LBM), including the method Cellular Automaton (AC), 
present a powerful alternative to standard approaches known like “of up toward down” 
and “of down toward up”. The first approximation study a continuous description of 
macroscopic phenomenon given for a partial differential equation (an example of this, is the 
Navier-Stokes equation used for flow of incompressible fluids); some numerical techniques 
like finite difference and the finite element, they are used for the transformation of 
continuous description to discreet it permits solve numerically equations in the computer. 

The second approximations study a microscopic description of the particles, through 
molecular dynamic’s equations. Here the position and speed of each atom or molecule in the 
system are calculated with the solution of the Newton’s movement equations. 

Between the two approximations, are the LBM and the AC, which are considered 
mesoscopic approaches that was mentioned previously (Wolf-Gladrow, 2000). 

With regard to the LBM, this has his origin en the AC, the first effort for simulate systems of 
flow of fluids was made in 1973 by Hardy, Pomeau and de Pazzis (HPP) (Hardy et al, 1973), 
whom showed the model into and this is named with their initials “HPP”. In this model, all 
particles have mass unit and speed; the particles are limited to travel in directions 
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
ie , i = 1,...,4  of the square lattice. A boolean variable is used to indicate the presence or 

absence of the fluid’s particle in each place of lattice in one direction given. A rule of 
exclusion is applied, is for it, that a particle only permits travel in each direction lengthwise 
of link for stage. When diverse particles arrive in some e at same place, these collisions in 
accordance with collision’s rules pre established in the model, the collision is conduct for the 
conservation of mass and momentum. If this collision isn’t presenting, then the particles will 
continue their travel in straight line. The model HPP is absolutely stable, but present 
absence of isotropy in some tensorials terms involved in Navier-Stokes equation. In the 
same way, the results of the model don’t recuperate the Navier-Stokes equation (NSE) at 
microscopic level. This insufficiency is due to inappropriate grade of rotational symmetry of 
the square lattice (Hardy et al, 1973). In 1986, Frisch, Hasslancher and Pomeau (Frisch et al, 
1986) developed that NSE can be recuperated using a hexagonal lattice. Their model is 
known like FHP model. This model is similar to HPP, only those particles with unitary mass 
and speed they move in the vertex of discreet hexagonal lattice. A Boolean variable is used 
to indicate the presence or absence of a particle this direction. The particles are updated in 
each time step, when happen a collision or are flowing to a neighbouring site, depend of the 
case. The collisions of the particles are determined for a pre inscription the collision’s rules 
that contain all possible state of collisions. This model presents two problems; the presence 
of statistic noise and the incapacity for simulate fluids in three dimensions. 

With regard to the LBM, it has its basis in concepts of the kinetics of gases theory. Is method 
has been employed for simulate many physical phenomenon with the use of discrete lattice, 
the Boltzmann equation and computational tools. For example in dynamic of fluids, the 
Navier-Stokes equations can’t solve directly, but if when recover like consequence. The 
problem is obtaining the function of particle’s distribution, ( )


if x, t  and starting from these 

obtains observable variables like viscosity, fallen pressure and Reynolds number. In general, 
the methods of lattice Boltzmann consist in two operations; the first is denoting the advance 
of particles at the neighbouring site of the lattice. The second operation, is for simulate 
particle’s collisions. An important advantage is that this method is fully parallel and local; 
too is simple made the programming. In this can incorporate boundary conditions and 
complexes geometries (Chen et al, 1994).  

2. Basis of kinetics theory and Boltzmann equation 

Fort the solution of complex problems of dynamics of fluids, exist traditionally two kinds of 
points of view: the first is macroscopic, which is considered continuous, with an approach of 
differential equations in partial derivatives, for example of Navier-Stokes equations used for 
flow of incompressible fluids and numerical techniques for its solution. The second point of 
view is microscopic it has its basis in kinetics theory of gases and statistical mechanics. 

With regard to the kinetics theory of gases, this mentions that a gas contain many particles 
in interaction α (the order is 1023), the physical state is describing by their positions 

{ }α α αα
1 2 3r = r ,r ,r their speeds { }α α αα

1 2 3v = v ,v ,v during the time t. The micro state is given by the 
complete set { }α α 

r ,v and each particle can be describing through its trajectory in the space of 
6-dimensional by complete extension αr and αv , it is named phase space (Struchtrup, 2005). 
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This chapter will shortly explain the basics of the Boltzmann equation, the derivation of the 
Lattice Boltzmann equation and the connection to the Navier-Stokes equations. 

2.1 Boltzmann equation 

A fluid can consider like a continuous medium when the fluid is dense, this meaning that 
the particles are behind the other particles and there isn’t space between they, in this case 
the fundamental equations that conduct the fluid’s evolution are of kind Navier-Stokes 
(NE). One form of determinate if the continuous medium is acceptable, is through of 
Knudsen’s number ( )λKn= l , which is defining like the relation between the free mean 
trajectory λ (mean distance that a molecule travels through before collisions with other 
molecule) and the characteristic length l; the model continuous medium is acceptable for a 
rank of ≤ ≤0.01 Kn 1 . In other words the Knudsen’s number should be less that unit, in this 
form the continuous hypothesis will be valid. 

In other way in the real fluid, the particles have strong and continuous interactions. In a gas 
named rarefied, the particles move during many time like free particles, except when 
collisions occurs of binary body. 

When the Knudsen’s number is in the rate of ≥Kn 0.01 , the fluid could be considered like 
flow of rarefied gas. 

The LBM has its basis in the approximation of a fluid like rarefied gas (or diluted gas) of 
particles. The rarefied gas can be describing by Boltzmann equation that was derivative the 
first time in 1872 by Ludwig Boltzmann (Duderstadt & Martin, 1979; Schwabl, 2002; 
Chapman & Cowling, 1970). The NS equations can derive of Boltzmann equation in a limit. 

The Boltzmann equation is 

 

α  
     

Rate of change of f Change due to Change of f due 
with respect to time    change in velocity        to the body force F

which influences the
   velocity

f f fv F
t r vα α

α α

∂ ∂ ∂
+ +

∂ ∂ ∂
              
             

( )

Collision of 
 molecules

 of the molecule

fΩ=  (1) 

Any solution about Boltzmann equation needs an expression for collision term Ω(f). The 
complexity of it, carry the search of simple models of collision processes, it will permit to 
make easy the mathematical analysis. Perhaps collision model more known was suggested 
simultaneously by Bhatnagar, Gross and Krook (Bhatnagar et al., 1954) and it is known like 
BGK: 

 ( ) ( ) ( )υ  
  

Ω ≈
 

eq
BGK

f f v -f r,v,t  (2) 

Where υ is an adjusted parameter and ( )eqf r,v,t
 

is the local thermodynamic equilibrium of 
distribution. This simplification is called the “single-time-relaxation” approximation, already 
that the absence of space dependence, is implicating that ( ) ( )eqf t f v→


 the exponential 

manner in time like ( )exp vt− . This model keeps important properties of collision term in 
Boltzmann equation. For example, satisfies theorem H and obeys the laws of mass, 
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momentum and energy conservation (for this reason, it keeps the structure of 
hydrodynamic equations), it keeps the collision invariants 

The collision term with the model BGK is writing the following form 

 ( )
τ

Ω
eq

BGK f
f - f

=  (3) 

Without knowing the form of Ω(f) there are however several properties which can be 
deduced. If the collision is to conserve mass, momentum and energy it is required that 

 ( )
2

1

v f dv

v

0.
 
 

Ω 
  

=
 

 (4) 

The terms i , i 0,..., 4ψ = where v v v   and  v2
0 1 1 2 2 3 3 41, , ,ψ ψ ψ ψ ψ= = = = =  are frequently called 

the elementary collision invariants since ( )i 0f dvψ =Ω


 

Any linear combination of the ψi terms is also a collision invariant. 

The ordinary kinetics theory of neuter gas, the Boltzmann equation is considered with 
collision term for binary collisions and is despised the body’s force Fα. This simplified 
Boltzmann equations is an integro - differential non lineal equation, and its solution is very 
complicated for solve practical problems of fluids. However, Boltzmann equation is used in 
two important aspects of dynamic fluids. First the fundamental mechanic fluids equation of 
point of view microscopic can be derivate of Boltzmann equation. By a first approximation 
could obtain the Navier-Stokes equations starting from Boltzmann equation. The second the 
Boltzmann equation can bring information about transport coefficient, like viscosity, 
diffusion and thermal conductivity coefficients (Pai, 1981; Maxwell, 1997). 

2.2 Equilibrium distribution function and theorem H 

The equation (1) with the collision term described for binary collisions, it isn’t lineal, is for 
that reason that the solution is very difficult. Nevertheless, exists a solution for Boltzmann 
equation, it isn’t trivial and is very important and is known like distribution function 
Maxwellian. For this case the Boltzmann equation presents a non reversible behavior and 
distribution function lays to distribution Maxwellian, this represent the situation of an 
uniform gas in stationary state. 

For derivate the distribution fuction Maxwellian, supposes the absence of external forces Fα 
and uniform gas, the distribution function is ( )f r,v, t

 
independent of space coordinates r


, i.e, 

( )f f v, t=


. Whereas these conditions, Boltzmann equation (1) with binary collision term is 

 ( ) 0ff ' ff ' g b  dbdv'.
f 2
t

π −
∂

=
∂   (5) 

Where takes on that particle is spherical and symmetrical, for that reason the integral with 
regard to the angle ε can be evaluated immediately.  
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The function H is 

 H f lnf dv.= ⋅ ⋅


 (6) 

Equation (6) can differentiate with regard to time ( )H t 1 ln f f tdv 
  ∂ ∂ = + ∂ ∂


, in this form 

replaces f
t

∂
∂ of equation (5) for obtains  

 ( )0 ' lg b
H 2 ff ' ff nf 1 dbdv'dv.
t

π  
 
 

∂
= − +

∂ 
 

 (7) 

If considers inverse collisions, it means particles with speed v
 and v'

 collided and moved 
outside with speeds v

 and v'
 . The result of these collisions will be 

 ( )0 ' lg b
H 2 ff ' ff nf' 1 dbdv'dv.
t

π  
 
 

∂
= − +

∂ 
 

 (8) 

If dvdv' dvdv'=
   

; addend the equations (7) y (8), and changing the 

variables v v↔
 

and v' v'↔
 

obtains and divided by four obtains 

 02 ff ' ff '
H g b ff ' ff' ln dbdv'dv.
t

π    
     

∂
= −

∂ 
 

 (9) 

Can notice those terms ( )' ' ln 0ff ff ff ' ff ' 
− 

 
≤  and the others terms in the integral of equation 

(9) are positives then 

 
H 0
t

∂
≤

∂
 (10) 

Previous expression is known like Boltzmann theorem H and indicates that H can never 
increase. How H can’t increase but whether lays out a limit, that situation is H t 0∂ ∂ = . It is 
possible if and only if, in equation (9), whether ( )ff ' ff '= . This condition is known like 
detailed balance and can be expressed like ( )ln f ln f ' ln f ln f '+ = +  

Therefore, whether eqf is an equilibrium distribution, then eqln f is an invariant of the collision 

and it could be eqln f ;   i 0,1,..., 4i i
i

α ψ
  

= = 
  

. Where iψ are invariant collisions (equation 4) 

and iα is a constant. It writes again like 

 
( )

( )

eqf m v v

where  m m m and m

2 2
' '

' ' 1 3
0 4 1 3' '

4 4

' ' ' ' '
0 0 1 1 2 2 3 3 4 4

1
2

ln ln ,

exp , , , 2 .

α α
α α

α α

α α α α α α α α α α

        
       

        
= − − + −

= = = = =

 (11) 

with ( ) ( )' ' ' '
4 1 2 3V v '  in which  ' , ,α α α α α α= − =

   it can write like 
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 eq '
0

2' 1mV4 2f e .
α

α
−

=  (12) 

The equation (12) is Maxwell distribution function for a gas and describes the equilibrium 
state of distribution function f. The constants can find if replace equation (12) whit 
conservation laws obtains the common form of Maxwell’s distribution function 

 
( )

3 22
eq

B B

m v umf exp .
m 2 k T 2k T
ρ

π

  
  
    

− −
=


 (13) 

The theorem H shows that any distribution function f lays out its equilibrium state eqf for 
long times. 

If a system is not uniform, it is not in thermodynamic equilibrium then can obey law of 
Maxwell’s speeds distribution. However, if “equilibrium absence” is not big, can considered 
like good approximation, all little volume (microscopic scale) is in equilibrium (considered 
like subsystem). This is for two reasons. First little portions of gas contain a big number of 
molecules. Second the necessary time for established the equilibrium in a little volume is 
brief in comparison with necessary time for that transport processes get equilibrium in little 
volume with rest of system (it is true when concentration, temperature, etc. gradients are not 
too much big). In consequence, can suppose that is local thermodynamic equilibrium so speed 
distribution in any volume element (macroscopic) of medium is Maxwellian, although 
density, temperature and macroscopic velocity change the position (Duderstadt & Martin, 
1979; Schwabl, 2002; Bhatnagar et al., 1954; Pai, 1981; Maxwell, 1997; Succi, 2001; Succi, 2002; 
Cercignani, 1975; Lebowitz & Montroll, 1983). 

2.3 From the Boltzmann equation to the lattice Boltzmann equation 

Lattice Boltzmann equation can be obtain through two ways, first is through of “cellular 
automaton” and second starting from Boltzmann equation, it was review previously, for 
carries out derivation of Boltzmann’s lattice equation is necessary the space time discretization. 
Immediately presents brief description of second way, it shows by pace series. 

The derivation begins when the Boltzmann equation with the model BGK is writing like 

 ( )
f 1f f g .
t

ξ
λ

∂
+ ⋅∇ = − −

∂


 (14) 

In the equation (14), ( )f f x, ,tξ≡
 is distribution function of only particle, ξ


is microscopic 

velocity, λ is the relaxation time due to collision, and g is the Boltzmann-Maxwellian 
distribution function (fM), is important mention that collision term has been transforming in 
accordance with equation (2). 

Hydrodynamic properties of fluid, density ρ, velocity u
 and temperature T, could be 

calculated starting from momentums function f. For quantify the fluid’s temperature, uses 
the energy density ρє (He & Luo, 1997).  

 ( )f x, ,t d ,ξ ξρ = 
 

 (15) 
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 ( )f x, ,t d ,u ξ ξ ξρ = 
 

   (16) 

 ( ) ( )1
2

u f x, ,t d .ξ ξ ξρε −= 
       (17) 

2.3.1 Time discretization 

Equation (14) it formulates in form of ordinary differential equation (ODE) 

 df 1 1f g,
dt λ λ

+ =  (18) 

Where
d

dt t
ξ

∂
≡ + ⋅ ∇

∂

 
is substantial derivative length wise of microscopic velocity ξ


. Equation 

(18) that mentioned is a lineal ODE of first order, which can be integrated over a time step of δt. 

Using the integral factor method is obtaining 

 
tt tt '

t t
0

1f x , ,t e e g x t', ,t t' dt' e f x, ,t
δδ δ

λ λλ
λ

ξδ ξ δ ξ ξ ξ− −    
    

    
+ + = + + +
      

 (19) 

Assuming that δt is small enough and g is smooth enough locally, and neglecting the terms 
of order of ( )2

tO δ or smaller in the Taylor expansion of the right hand side of the equation 
(19) we obtain 

 
t t

1f x , ,t f x, ,t f x, ,t g x, ,t
τ

ξδ ξ δ ξ ξ ξ
        
 = −                

+ + − −
         (20)  

In the equation (20) 
t

λτ δ≡ is the dimensionaless relaxation time; this equation is very 
similar to lattice Boltzmann equation. For obtaining the equation is necessary the space 
velocities discretization, too equilibrium function g it could be consistent with Navier-Stokes 
equations. The equation (20) is the evolution of distribution function f with discreet time (He 
& Luo, 1997; Maxwell, 1997). 

2.3.2 Approximation of equilibrium distribution 

A point of view very import, is the obtaining of equilibrium distribution function, it was 
mentioned before, of this depends obtaining appropriately the Navier-Stokes equations. 
Maxwell’s distribution that is employing like equilibrium distribution g for unitary particle 
mass and “D” dimensions is 

 ( )
( )

2

D
2

,

u
g u exp

2RT2 RT

ξρ

π

    
  − 
 
  

−
=

 
   (21) 

It could be expressed the following form 

 ( )
( )

2 2

D
2

u
u ug exp exp .

2RT RT 2RT2 RT

ρ ξ ξ

π

   
      
   

⋅
= − −


   

  (22) 
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The function “g” expands through of Taylor series in u
  until third order and is necessary 

eliminate these  

 ( )
( ) ( )

2

2
2

D 2
2

0,u
2RT2 RT

uu ug exp 1 .
RT 2RT2 RT

ξ

π

ξρ ξ
      + − 
 
 
 

 
− 
 

⋅⋅= +




   
 (23) 

For little velocities (or little Match numbers), this is an exact approximation. 

If ( ) ( )eqg f0,u =


, obtains the following equation, it will be using like local equilibrium 

distribution in nest derivatives (He & Luo, 1997; Maxwell, 1997; Wilke, 2003). 

 ( )

( ) ( )

2

2
2

eq
D 2

2 2RT2 RT

u u uf exp 1 .
RT 2RT2 RT

ξ

π

ξ ξρ
            + − 
 
 
 

 
− 
 

⋅ ⋅
= × +

    
 (24) 

2.3.3 Discretization of the velocities 

For discretization of the velocities, it will be - ∞ a +∞ in both directions “x” and “y” for 
specific case in two-dimensional model (D2Q9), it will unroll in this part of chapter. The 
particle momentums of distribution function are very important, because of this depends 
the consistence of (N-S) equations. in the same way, the isotropy is keeping during the 
discretization, it is an important property in the symmetry of NE equations, of this form, 
lattice will be invariant for problem rotations. 

Is important mention that an isothermic model is only necessary first momentum. These can 
be describing by the equation (24) two dimensions like 

 

( ) ( )

( )
( )

( )

2
eq

D
2

2

2

2

2RT2 RT
I f d exp

u u u                          1 d .
RT 2RT2 RT

ξ
ψ ξ ψ ξ

π

ρ
ξ

ξ ξ
ξ

             − 
 
 
 

 
− 
 

= =

⋅ ⋅
× + +

 
 

      (25) 

The integral of equation (25) has the next form ( )2xe dxψ ξ−


, where ( )ψ ξ


is the momentum 

function, it contains powers of velocities components. For recuperate model D2Q9 for 

square lattice is using the system of Cartesian coordinates and ( )ψ ξ


is 

 ( ) m n
m ,n x y ,ξψ ξ ξ=


 (26) 

in previous equation, xξ y yξ are components of “x” and “y” of velocity ξ


. The integration of 
equation (25) using these values gives us the following equation for the equilibrium 
distribution function for two dimensional, 9- velocity LBE model: 
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( ) ( )

2
2

eq

2 4 2

3 e u 9 e u 3uf w 1 .
c 2c 2c
α α

α α ρ
  
 
  

⋅ ⋅
= + + −

    
 (27) 

The wα  are 0 1,2 ,3,4

4 1w ; w ;
9 9

= =  5 ,6 ,7 ,8

1w .
36

=  and microscopic velocities 

( )

( ) ( )

( )

T

0

T T

1,2 ,3,4 1,2 2 ,1 3 ,2 2 ,3

T

5,6 ,7 ,8

e 0,0 ,

e , , , 1,0 c, 0, 1 c,

e 1, 1 c.

ζ ζ ζ ζ

=

= = ± ±

= ± ±





 

Here is c 3RT= where c is the sound speed of the model (ThÄurey, 2003).  

2.4 From lattice Boltzmann equation to the Navier-stokes equation  

The popular problems of kinetics theory is the derivation of hydrodynamic equations, in 
certain conditions, solution of ( )

 
f r, v, t  transport equation is similar the form that can relate 

directly to continuous or hydrodynamic description. In certain conditions the transport 
process is like hydrodynamic limit. In 1911 David Hilbert was who proposed the existence 
Boltzmann equations solutions (named normal solutions), and these are determinate by 
initial values of hydrodynamic variables it return to collision invariant (mass, momentum 
and kinetics energy), Sydney Chapman and David Enskog in 1917 were whose unrolled a 
systematic process for derivate the hydrodynamic equations (and their corrections of 
superior order) for these variables.  

In spite of have been proposed many approximated solutions to Boltzmann equation 
(including the Grad’s method of 13 moments, expansions of generalized polynomial, 
bimodal distributions functions), however the Chapman-Enskog is the most popular outline 
for generalize hydrodynamic equations starting from kinetics equations kind Boltzmann 
(James & William, 1979; Cercignani, 1988). 

2.4.1 Chapman-Enskog expansion 

For show that ERB can use for describing the fluid’s behavior, NS equations are derivate by 
process are named Chapman-Enskog’s expansion or multi-scale analysis. It depends of 
Knudsen’s number it was mentioned at the first part of this chapter; it is the relation between 
the free mean trajectory and the characteristic length. 

For derivation of NS’s equation, the Boltzmann equation divides in different scales for space 
and time variables. It has his basis in the expansion of parameterε , it is necessary for using 
the Knudsen’s number. In general the expansion is truncating after second order terms. The 
following representation is for temporal variables 

 2
0 1t t tε ε= +    (28) 

Time t represents local relaxation that is very quickly in fluid for collisions. The diffusion 
processes are time scale t1. In this only space expansion is considerate, it is represented in 
the next first order expansion. 
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1x xε=

 
 (29) 

The advection and diffusion are considered similar in space scale “x1”. While, the 
representation of differential operator is similar  

 2  ;     .
x x t t tα α

ε ε ε
∂ ∂ ∂ ∂ ∂

= = +
∂ ∂ ∂ ∂ ∂

 (30) 

For consistent expansion, is necessary the second order term in space. Momentum equations 
of f are expanded directly an addition the next form 

 n n

n=0

ε ff = .
∞

   (31) 

The dependence of time f is on account of variables ρ, u and T. 

The NS equation can be recovered starting from analysis of lattice Boltzmann equation  

 ( ) ( ) ( ) ( )( )eq
i i i i i

1f x+ e ,t+ 1 - f x,t = - f x,t - f x,t .
τ

      (32) 

Expanding Equation (32) in both space and time up to second order yields 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
2 2 0 1 2 2

t0 t1 i t0 t1 i i i i

0 1 2 2 eq
i i i i

1

1
e e f f f

2

f f f f .                                                       

α α

τ

ε ε ε ε ε ε

ε ε

    ∂ + ∂ + + ∂ + ∂ + + +     

+ + −

=

−

  (33) 

The three scales from O (ε0) to O (ε2) can be distinguished in Equation (33), and are handled 
separately. In the following, subsequent expansions of the conservation equations will be 
performed. Giving as result the continuity equation to ε0, 

 ( )
0

u 0.t α αρρ∂ + ∂ =  (34) 

To ε1, equation (33) Eule’r equation. Where ( ) 2p c .1 3 ρ=  

 ( )t u u u p.α β α β αρ ρ∂ + ∂ = −∂  (35)  

For the hydrodynamics of a liquid with viscosity “ε2”, obtaining 

 
( ) ( )t0

21 1

3 2

1 1 2- c
2 3

In the above equation   is the kinematic viscosity

u u u - p ρ u u .

- c

β β α β α α β β ατρ ρ

υ τ

 
 
 

 
 
 

∂ + ∂ = ∂ + ∂ +∂

=

  (36) 

 2
t

1
Eq. Navier-Stokes.u u u p uα β β α α α

ρ
ρ υ∴∂ + ∂ = − ∂ + ∇ .      (37) 

(He & Luo, 1997; ThÄurey, 2003). 
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3. The model 

The Lattice Boltzmann Method (LBM), its simple form consist of discreet net (lattice), each 
place (node) is represented by unique distribution equation, which is defined by particle’s 
velocity and is limited a discrete group of allowed velocities.  During each discrete time step of 
the simulation, particles move, or hop, to the nearest lattice site along their direction of motion, 
where they “collide” with other particles that arrive at the same site. The outcome of the 
collision is determined by solving the kinetic (Boltzmann) equation for the new particle-
distribution function at that site and the particle distribution function is updated (Chen & 
Doolen, 1998; Wilke, 2003). Specifically, particle distribution function in each site ( )f x, ti

 , it is 
defined like a probability of find a particle with direction velocity ei

 . Each value of the index i 
specifies one of the allowed directions of motion (Chen et al., 1994; ThÄurey, 2003). 

For this work we use D2Q9 and periodic boundary conditions in the inflow and outflow 
plane and non-slip boundary (bounce-back) conditions on the walls and the porous matrix. 
Bounce-back conditions were used whenever the fluid hit a node of the porous matrix. Our 
porous media is represented by blocks that are projections in the plane of actual three 
dimensional geometries Stability is improved by considering the porous matrix as made out 
of these blocks and makes the code less noisy as well. To initialize the lattice, a constant 
body force (F) is used and acts during the simulations, which physically corresponds to a 
constant pressure gradient. In this work we focus only on externally applied pressure; 
namely we deal with pressure-driven flows. 

Fluid flow in porous media is modeled here by using a modification of the Lattice 
Bhatnagar-Gross-Krook (LBGK) technique (eq. 32).  

Fluid density and velocity are calculated as follows:
b b

i i i
i 0 i 0

  f    ;  fρ ρ
= =

= = ⋅ u e . The method 

used in this work involves a modification of the LBGK, where instead of constant viscosity, 
the effective viscosity is used directly as a rate-dependent relaxation time parameter 
avoiding the calculation of the matrix elements for ijΩ (Boek et al., 2003; Ahronov & 

Rothman, 1993; Rakotomala et al., 1996). τ  Is the relaxation time provided by the kinematic 
fluid viscosity. 

 

n 1

xdv1
3k

2 dy
τ

−
 

= +  
 

  (38) 

To test our algorithm, simulations were run for fluids in a rigid pipe with n = 0.33, 0.56, 1.0, 
2.0 and k = 0.001, 0.005, 0.5, 10.0 respectively, in a 200 × 200 lattice. The steady-state velocity 
profiles were reached after 30,000 times step. Dimensionless velocity profiles from the LBM 
and analytical solutions are shown in Figure 1. Our numerical results and analytical 
solutions are within a 0.9% error (the maximum value being for n>1).  

Next step in our model is the simulation of the fluid flow in porous materials (or packed 
beds). These materials have a portion of space occupied by heterogeneous or multiphase 
matter.  
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Velocity profiles 
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Fig. 1. LBGK velocity profiles and Analytical Navier Stokes velocity profiles in a rigid pipe. 

In studying flows through porous media, we extend the LBM so as to study arbitrary and 
random approaches. Even at a first glance, many porous media, particularly the natural 
ones, show that the distribution of pores is random (Christakos & Hristopulos, 1997), so 
randomness is a really important factor to describe natural and man-made porous materials; 
they usually possess formidably complicated architecture. In modeling, reasonable 
idealizations have to be assumed (Dullien, 1992; Gibson and Ashby, 1988; Telega and 
Bielski, 2003). 

Simple predictions concerning the flow of non-Newtonian fluids through porous media 
(Bird et al., 1960) have long been provided. Though Darcy’s law for the flow of Newtonian 
fluids through a porous medium agrees with a model of parallel tubes, analogous behavior 
is not obvious for non-Newtonian fluids. This model does not take into account the 
tortuosity of the flow path among others; an additional nonlinearity in this case. As a first 
step, by assuming that a porous medium can be viewed as a collection of parallel pipes, the 
relation between flux and force for a non Newtonian fluid can be approached by 

 
1

ndP
 q C

dx
 

=  
 

  (39) 

where q is the volumetric rate of flow per unit area. C is a proportionality constant, function 
of the consistency index k, the porosity ε and the effective permeability K. For n = 1, 
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equation (39) reduces to Darcy’s law. In practically all cases, eq. (39) is valid as long as the 

generalized Reynolds number; ( )( ) ( ){ } ( )
2 nn nn 1

genRe 2 3 1 D v 8 k 3n 1 nρε ε ε ρ
− −  = − +    

 

does not exceed some value between 1 and 10. Here, Dρ  is a length dimension scale 

proposed by Collins (Geankoplis, 2000).  

Our LBM are such that all experiments performed in this work are in the range 

genRe 1< and can provide some output in the relative importance of the different 
parameters (for the fluid, and the geometrical structure) with statistical validation. We fully 
comply with the empirical macroscopic scale relation (39) obtained experimentally. 

Two different types of porous media are studied here: a) Arbitrarily generated porous media. In 
this case, the authors propose a set of porous media totally constructed by arbitrary choice, 
fulfilling the following important conditions. At first percolation is guaranteed. Secondly, 
well defined, interconnected channels are constructed and finally low tortuosity is provided.  

b) Randomly generated porous media. In this case, the medium is generated by means of a 
random configuration. The Box-Muller method for generating standard Gaussian pseudo-
random numbers is used to obtain the positions of the seeds in the solid matrix, 3 X 3 lattice 
sites nodes are defined as blocks around each seed; thus providing the porous matrix. This 
simplified geometry substitutes the projections on a plane of more complex and realistic 
cases (throats channels, chairs, cylinders, etc) improve stability and avoids noisy results. 

The core of the Box-Muller method is a transformation that takes as inputs random variables 
from one distribution and as outputs random variables in a new distribution function. It 
allows us to transform uniformly distributed random variables to a new set of random 
variables with a Gaussian distribution. We start with two independent random numbers, x1 
andx2, which come from a uniform distribution (in the range from 0 to 1). Then, apply the 

transformations ( )1 1 2y 2ln x cos 2 xπ= −  and ( )2 1 2y 2ln x sin 2 xπ= −  to get two new 

independent random numbers that have a Gaussian distribution with zero mean and a 
standard deviation of one. This method of generating random porous media produces 
similar pore space characterization that several natural media. 

Moreover, as it is well known for a Newtonian fluid that standard Darcy law can be used in 
order to obtain permeability. Namely 

 ( )dP K v dxµ=   (40) 

Here K is permeability and µ is the viscosity for a Newtonian fluid. In the case of a non-
Newtonian fluid with power law viscosity, we introduce the apparent viscosity (instead of 
the standard viscosity) which is given by the following equation. 

 ( )n 1
app x  k dv dyµ

−
=    (41) 

Thus, effective permeability for non-Newtonian fluids (with power-law viscosity) is 
calculated in this work as follows 
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 ( ) ( ) ( )n 1
app xK v dP dx k dv dy v dP dxµ

−
= =  (42) 

4. Local effective permeability 

We work with porosities 47.4%, 51.9%, 68.7% and 71.9%, randomly and arbitrarily 
generated, outputs of our experiments are presented (see figures 2-4). This is done for n=2, 
n=1, n=0.529 and different pressure gradients. Actually, if n=1, the permeability bands do 
not depend on the pressure gradients as expected in natural systems for porosities 50% or 
larger. In these Figures, the pore space characterization is shown at the upper left corner of 
the figure. Secondly, right below, the flow paths in each particular case are shown (from the 
numerical data, vuggy zones can be detected, among others). Finally, in the right part of 
each figure, the permeability bands produced by our LBM are introduced. Although 
qualitative in part, important contributions of our paper are the correlations of the band 
structures with different pressure gradients (F), fluid parameters (n, the index number), 
geometrical factors (porosity and tortuosity), and randomness. 

In Figure 5, we explore the role of different porosities and pressure gradients in arbitrarily 
generated porous media, for a non-Newtonian fluid (n=0.529). The progressive introduction 
of high permeability bands as a natural consequence of the geometry, fluid, and flow 
parameters shows interesting patterns, as can be observed. 

Uncertainty is well recognized as an important factor in natural porous media (in fact, it is 
well known that effective permeability is subject to greater uncertainty than porosity) and 
numerous studies have employed random methods to model Newtonian flow in 
subsurface porous media by assuming a given effective permeability probability density 
function.  

It is important to construct models that are able to closely mimic the heterogeneity of actual 
porous media and sufficiently efficient to allow simulation of flow and transport 
phenomena. To predict the network flow at core scale (for instance, in hydrocarbon 
reservoirs, packed beds and aquifers), we propose to construct the permeability probability 
distribution within our model. Our results are shown in Table 2 in this work. Although it is 
widely understood that the selection of a particular effective permeability probability 
density will markedly influence simulation results in applications, only a few studies (this 
paper, among others) describe the manner in which to construct these effective permeability 
probability density functions from mesoscale information. 

We correlate the effect of randomness, porosity, and fluid parameters with permeability 
fields and probability distributions predicted by our model, thus improving our 
understanding of heterogeneous media for applications to natural systems. Normally, at 
core scales for reservoirs and aquifers; among others, the unknown permeability 
distribution in the subsurface on all length scales is much needed for practical goals (Sitar et 
al., 1987; Cooke et al., 1995). 

Normally, first step in estimating permeability from thin-sections of natural media is to 
convert representative digital images into binary images. These binary versions are used for 
porosity estimation and as conditional data for the stochastic pore-structure realizations. 
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Flow simulations are then conducted on each pore-structure realization. Our approach then 
provides the local effective permeability estimate for each bed type (see for instance Figures 
2 to 5). 

 
Fig. 2. Randomly generated porous media, porosity 47.4%, flow paths (left) and 
permeability bands in lattice units (right) for non-Newtonian fluids, n=0.529, n=2 and 
Newtonian fluids. Here F represents the pressure gradient. 

We perform experiments for non-Newtonian fluids and obtain permeability bands (see 
Figures 2-5) for the following power-law fluids A) n = 0.529, B) n = 1 and C) n = 2. This is 
done in the following cases: a) arbitrarily generated porous media and b) randomly 
generated porous media, porosities 47.4%, 51.9%, 68.7% and 71.9%, and a number of 
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pressure gradients, see Figures 2 to 5. Also arbitrarily generated porous media, flow paths, 
and the obtained permeability fields for a number of porosities, pressure gradients and 
n=0.529 are introduced in Figure 5. We then perform a null hypothesis analysis over the 
data by Kolmogorov-Smirnov contrast, obtaining the best fitting effective permeability 
distribution for each case, as shown in Table 2. Kolmogorov-Smirnov contrast (a non-
parametric null hypothesis analysis) is a technique where two data distributions are 
compared (the one to be tested and another one hypothetically true) and they are accepted 
to be statistically the same, provided the maximum distance between both is below a certain 
threshold. 

 

 
Fig. 3. Arbitrarily generated porous media, porosity 71.9%, flow paths (left) and 
permeability bands in lattice units (right) for non-Newtonian fluids, n=0.529, n=2 and 
Newtonian fluids. Here F represents the pressure gradient. 
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Fig. 4. Randomly generated porous media, porosity 71.9%, flow paths (left) and 
permeability bands in lattice units (right) for non-Newtonian fluids, n=0.529, n=2 and 
Newtonian fluids. Here F represents the pressure gradient. 
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Fig. 5. Arbitrarily generated porous media, flow paths and permeability bands in lattice 
units for non- Newtonian fluid (n=0.529) and different pressure gradients (F) are shown. We 
study porosities 64.8, 66.6%, 68.7%, 70.1%, 71.9%.  
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Fig. 5. (Continued) 
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Fig. 5. (Continued) 

 
 

 
 

Table 1. Best fitting permeability probability distributions for number of experiments.  
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Porosity (%) Average relative error (%)

10.18 n = 0.529
n = 1.0
n = 2.0

6.8359
0.0

1.3514

n Experimental

20.84 n = 0.529
n = 1.0
n = 2.0

30.82 n = 0.529
n = 1.0
n = 2.0

3.8167
0.0

1.3514

2.9907
0.0

1.0457

47.37 n = 0.529
n = 1.0
n = 2.0

2.3985
0.0

0.8065

51.91 n = 0.529
n = 1.0
n = 2.0

1.5123
0.0

1.0101

 
Table 2. Average relative error as a porosity function and the experimental value of n in our 
method. 

5. Conclusions 

The 2-D permeability variations considered in this work are applicable to real contaminated 
aquifers where the length and width of high-permeability inclusions are large relative to 
their height (or thickness). For example, fluvial deposits as ‘‘cut-and-fill’’ (e.g., scour pool 
and dissection elements) and accretionary (e.g., horizontally bedded gravel sheets) elements 
can have high length- and width-to-thickness ratios. The 2-D permeability variations 
considered in this work are not applicable to more complex contaminated aquifers, e.g., 
where high-permeability inclusions do not have large length- and width-to-thickness ratios, 
or where tortuous 3-D flows cause streamlines to twist.  

Effective permeability distributions have been used to study geological phenomena for 
petroleum technology, among others. In this paper, a study of how different geometrical 
features and rheological parameters affect local permeability of a porous medium has been 
conducted in order to enhance the knowledge of the local permeability distribution and its 
importance when developing global permeability models (Lundström et al.,2004; 
Lundström & Norlund, 2005). We conclude that randomness, porosity, and the power law 
index for non-Newtonian fluids play an important role in the local effective permeability 
distribution obtained for each experiment (Normal, Gamma, or any other). Our detailed 
results are presented for a range of porosity from 47.4% to 71.9% in this paper. We are able 
of using our approach for porosities as low as 10% , but then the average relative error on n  
(comparing the experimental with the value obtained by LBM) can reach a maximum of 
6.8% (for n=0.529). See Table 2. 
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We consider several heterogeneous porous media representations to illustrate flow 
performance; all of them are two-dimensional. A number of high-permeability inclusions 
within low-permeability zones are obtained from a variety of fluid characterizations (see 
Figures 2-5). The effect of porosity, randomness, fluid and flow parameters are correlated 
with permeability bands in a number of cases; original outputs shown in this paper. 

It is intriguing to see how Newtonian fluids always produce symmetrical bands and high 
permeability bands included into small permeability bands with several layers provided 
porosity is large. We can also remark that for n<1, bands of low permeability are more 
numerous than in the case of n>1. Some throats can be formed if we introduce randomness 
and high porosity, see Figure 4, in the case of n<1 and high pressure gradients. Additional 
anisotropy appears for small porosity, see Figures 2. 

Streamlines determined by numerical simulation are obtained and shown in Figures 2-5. 
From these, and our numerical results (rough input data to construct Figures 2-5), it is clear 
that flow is mainly parallel and uniformly distributed in the low-permeability zone. 
However, in the region containing the high-permeability inclusion there is very little flow in 
the low-permeability zone and almost all flow is focused in the high-permeability inclusion. 
In other cases, a number of high-permeability inclusions within a low-permeability zone are 
produced. In regions between high-permeability inclusions, most flow is uniformly 
distributed, see Figure 5. In regions containing high-permeability inclusions, most flow is 
focused in these inclusions and is parallel to the boundaries. From our numerical results and 
the path flows, vuggy zones can also be easily identified. 

The effective permeability data (input for our figures), represented by path flow, show that 
the "vuggy" features are always in the neighborhood of the walls distributed around a 
central "non-vuggy" zone. These results show particularly low effective permeability near 
the entrance and towards the end of the tunnel. It is clear that a zone of high effective 
permeability can be found towards the end of the tunnel, especially for Non-Newtonian 
fluids and low effective permeability near the tunnel walls. Similar studies for effective 
permeability maps, as functions of the distance from the tunnel wall and the distance from 
the entrance, for sandstone perforated with underbalance have already been reported 
(Karacan and Halleck, 2000). 

It is straightforward to see, from our experiments, that if n (fluid parameter, power law 
index) increases, the number of homogeneous effective permeability zones decreases; 
namely the local probability data take values in a smaller set of numbers. Besides, for 
Newtonian flows, the effective permeability field is always symmetric for large porosity, no 
matter the detailed structure of the porous media. For non-Newtonian fluids, this symmetry 
may be affected by an angle sweeping the horizontal axis, provided the porous medium is 
not randomly generated (here, symmetry in the local probability field is lost) and most flow 
is globally oriented at a clear angle to the horizontal direction.  

Pseudoplastic fluids in randomly generated porous media generate effective permeability 
fields, where zones of constant values are oddly shaped (bottle necks, among others, that 
can be considered scale up, equivalent to geometrical features, result of our mesoscale 
experiments), totally abnormal behavior can also be obtained for a different set of 
parameters. There seems to be a critical value for porosity to keep symmetric effective 
permeability fields. Our results can be used as models for materials with several zones 
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where different fine erosion and deposition processes occur and provides an original 
approach to learn from the effect of the fluid parameters (n, the power law index) in the 
flow, provided the remaining features are constant. 

Finally, in what follows, we learn how our LBM (mesoscale information) can be used, by the 
inter-relationship of geometrical factors, randomness and fluid parameters, to produce 
permeability (as probability laws) distributions in order to predict scaled up subsurface 
permeability bands.  

In our experiments, normal distribution for effective permeability is obtained mostly for 
randomly generated porous media provided the fluid is Newtonian or shear thinning, see 
Table 1. Eventhough this distribution is not expected for arbitrary generated porous media, 
it may appear provided the fluid is Newtonian. It should be remembered that the use of 
normal distribution can be theoretically justified in situations where a large number of 
effects act additively and independently together. The porous media, LBM and fluid factors 
used in these experiments can be a first approach to the effective permeability distribution 
of caffeine and testosterone solutions in silicone membrane (Khan et al., 2005).  

Provided porosity increases, our results show that for Newtonian and shear thickening 
fluids, regardless the way the porous matrix (randomly or not) was generated, the effective 
permeability distribution tends to be Weibull. It is possible to conclude that the experiments 
shown in Table 1 as Weibull effective permeability distributions are describing systems 
involving a weakest link and/or non-linear effects derived from the fluid viscosity. Statistics 
of the mechanical and failure properties on the grain scale are often assumed to follow the 
Weibull distribution; here, the significant influence of microcrack length statistics has been 
emphasized (Wong et al., 2006). A Weibull distribution can accurately describe 
experimentally determined time trends of the infiltration rate (Faybishenko et al., 2003). 

Infiltration experiments conducted on packs of rocks show that fluxes may stabilize into an 
exponential distribution (Tokunaga et al., 2005). Exponential distribution for effective 
permeability has also been reported in the analysis of heterogeneities in porous media 
(Savioli et al., 1996). In our simulation, the effective permeability distribution is exponential 
only for arbitrarily generated porous media and shear thinning fluids, no matter the 
porosity used in the simulation, see Table 1. They are fit to be used as models for petroleum 
processes. We believe that arbitrarily generated porous media may provide the 
deterministic background to obtain exponential effective permeability distributions since 
these are found in situations where certain events occur with a constant probability per unit 
distance. Clearly, for non-Newtonian fluids, non-linear effects are introduced; these are 
small if n tends to one. 

The gamma distribution has been used as a statistical representation of surface roughness 
for flow in unsaturated fractured porous media and tortuosity distributions in porous media 
(Or and Tuller, 2000; Lindquist et al., 1996). In our simulation, the effective permeability 
distribution is gamma for shear thickening fluids and rather low porosity, regardless the 
way the porous matrix was produced, see Table 1. So the gamma effective permeability 
distributions found in our experiments can be considered applicable to particle tracking. 
This process has been modeled as the sum of elementary steps with independent random 
variables in the sand.  
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In our experiments, the effective permeability distribution is Generalized Extreme Value 
distribution for arbitrarily generated porous media, porosity 71.87%, n=2. This seems to 
be a very particular case, probably coming from a strong non-linearity. This is the limited 
distribution of the maxima of a sequence of independent and identically distributed 
random variables. Extreme hydrometereological phenomena follow an extreme 
distribution (Gutiérrez-López et al., 2005). At constant potential, the maximum peak 
currents in different time intervals during a potensiostatic test follow extreme distribution 
(Zuo et al., 2000).  

Summarizing, this paper has presented a method to study scale up processes (mesoscale to 
core scale) of flow in porous media from geometry, fluid parameters, stochastic realization 
and LBM; namely, parameters such as tortuosity (arbitrarily generated porous media always 
have a clearly smaller tortuosity than randomly generated porous media), randomness in 
void space, geometrical distribution, porosity and consistency index of the non-Newtonian 
fluid, among others. This model is ready to predict as an output from thin small samples, 
effective permeability bands and the corresponding subsurface probability distributions 
scaled up for subsurface reservoirs, aquifers, etc. 
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