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1. Introduction 

Pain is essential for our wellbeing as it warns us from possible injuries. After injury, pain 
sensations around injured tissue lead to protective behavior and so indirectly contribute to a 
faster healing process. Physiological pain is usually acute or subchronic, it progressively 
diminishes in the process of healing and responds to conventionally used analgesics. 
However, injury to the somatosensory system may give rise to ongoing pain that persists 
beyond the healing process of the original injury and is refractory to analgesics. Such pain is 
termed neuropathic. Neuropathic pain negatively influences quality of life of patients and 
often interferes with the rehabilitation strategies after nerve injury. Pharmacological 
treatment or surgical intervention provide only short term alleviation, since adverse effects 
such as drug tolerance and addictions, motor deficit and worsening pain may emerge over 
time. Therefore there is a need to identify novel, more effective long term therapies. Cell 
transplantation and gene therapy present target-oriented therapies minimizing side effects 
of medication due their local action. Therefore they are promising way to manage chronic 
neuropathic pain. 

2. Anatomy of pain 

Stimuli coming from our environment are perceived by peripheral receptors. Each receptor 
is highly specialized to recognize specific range of mechanical, thermal and chemical stimuli 
and their intensity. Receptors transform stimuli into a membrane depolarization of primary 
sensory neurons and the information is propagated by afferent fibers as a train of action 
potentials to the spinal cord. Depolarization of primary afferent fibers terminations in the 
spinal cord induce release of neurotransmitters that influence excitability of second order 
neurons and the information is transferred to the supraspinal centers. Noxious sensations 
were originally explained as an intensity-dependent activation of primary afferent fibers 
encoding non-noxious stimuli. The existence of specific receptors activated only by the 
noxious stimuli was first suggested by Sherington in 1906 (Sherington, 1906, as cited in 
(McMahon & Koltzenburg, 2005)) and later validated by Perl (1967) (Burges & Perl, 1967, as 
cited in (McMahon & Koltzenburg, 2005)).  

Primary afferent fibers are classified into several groups based on their myelin ensheatment, 
size and the conduction velocity. Large, myelinated and rapid conducting A┙/┚ are 
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activated by non-noxious mechanical stimuli, A fibers mediates thermal and noxious 
sensations. Small, unmyelinated, slow conducting C fibers are primarily nociceptive. 

Nociceptors as specialized receptors of noxious stimuli are free nerve endings of C and A 

fibers. However, low threshold mechanoreceptors A are suggested to play a role in the 
development of chronic pain. The neuronal bodies of the primary afferent fibers are located 
in dorsal root ganglia (DRGs). Morphologically they are divided into three groups: large 
diameter and medium diameter myelinated cells, and small diameter unmyelinated cells 

presumptive to A, A and A/C fibers respectively. Small and medium diameter cells are 
classified as nociceptors and therefore have been extensively studied in pain research. These 
cells can be subdivided into two broad classes based on their neurochemical properties; 
peptidergic neurons contain neuropeptides as substance P and calcitonin gene-related 
peptide and express receptors for nerve growth factor. Nonpeptidergic are responsive to 
glial cell line-derived neurotrophic factors and have binding site for isolectin IB4 obtained 
from Bandeiraea simplicifolia. However, it is not clear if such morphological differences 
correspond to different functional types, as for example heat activated capsaicin receptor is 
expressed in both peptidergic and nonpeptidergic neuronal classes (Guo et al., 1999; Michael 
& Priestley, 1999). Primary afferent fibers terminate in the various levels of dorsal horn. 
Termination reflects physiological property of a stimulus and its anatomical location. 
Superficial laminae are primary termination of the nociceptive primary afferents. However 
neurons in deeper laminae also play a role in the pain processing, especially during chronic 
pain states.  

3. Mechanisms of neuropathic pain 

Neuropathic pain presents a paradox outcome of the injury to the somatosensory nervous 
system, as one could expect reduction of sensations coming from the denervated area. 
However, there are substantial qualitative changes in the processing of nociceptive 
information after nerve injury that lead to a persistent pain. The prevalence of neuropathic 
pain is around 5-8 % in the general population (Daousi et al., 2004) and with insufficient 
pharmacological treatment it represents a serious medical problem. There is a wide range of 
injuries and diseases causing neuropathic pain, such as diabetic neuropathy, surgical 
lesions, multiple sclerosis, spinal cord injury and a stroke. This diversity of clinical 
conditions related to the neuropathic pain makes it difficult to identify a common 
mechanism. Moreover, neuropathic pain does not necessarily develop in every patient even 
when the etiology is very similar, and symptoms within the same etiology may vary 
substantially between patients.  

The major hallmark of neuropathic pain is presence of mechanical and cold hyperalgesia 
and allodynia. Heat hyperalgesia is reported in fewer cases. Mechanical allodynia as a touch 
evoked pain is the major reason for suffering of neuropathic pain patients. This pain 
accompanies inflammatory and neuropathic conditions. There are evidences that under both 
conditions this extreme sensitivity is not elicited by nociceptors but by myelinated low 

threshold A mechanoreceptors, that normally encode non-painful stimuli. The ability of A 
fibers to evoke painful sensations is caused by profound alterations of central pain 
processing (Klede et al., 2003; Koppert et al., 2001). The other disturbances in sensitivity to 

mechanical stimuli are caused by an excitation of A fibers (pin-prick hyperalgesia) (Ziegler 
et al., 1999) or the expansion of the receptive field of nociceptors (blunt pressure 
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hyperalgesia) (Reeh et al., 1987). Hypersensitivity to cold is prominent after traumatic nerve 
injuries (Wahren & Torebjork, 1992). The mechanisms of cold hyperalgesia involve changes 
in the peripheral and central processing of thermal stimuli. A mechanism of heat hyperalgesia 
is assumed to involve sensitized unmyelinated nociceptors. 

3.1 Peripheral changes in neuropathic pain 

The mechanisms underlying neuropathic pain involve complex pathophysiological changes 
in the processing of sensory signals. Changes in the neuronal excitability, discharges 
generated along the nerve fiber, changes in the gene expression and up- or down-regulation 
of neurotransmitter release, all those contribute to the prolonged hypersensitivity after 
nerve injury. A brief characteristic of these changes and their impact on the chronic pain 
development are outlined below. 

3.1.1 Ectopic discharges 

When the axon loses the connection with the target tissue after traumatic nerve injury or a 
disease, retrograde transport of vital growth factors (such as fibroblast growth factor and 
nerve growth factor) to the cell body is disrupted. While in neonates this leads to the death 
of sensory neurons, in adults a disruption of neurotrophic support causes changes in the 
neurochemical and electrical properties of sensory neurons. The most important 
consequence of this phenotypic switch is the development of spontaneous discharges. 
Spontaneous discharges are generated not at the usual place, i.e. at the termination of 
primary afferent fibers in the dorsal horn, but rather in the injured area-in the stump of 
injured nerve, in the corresponding sensory neurons in DRG and the neighboring intact 
afferents. Stump is formed at the proximal end of transected axon. It gives rise to fine 
sprouting fibers in the process of regeneration. These sprouts may elongate and reach the 
target tissue or, in the case of blocked growth (such as after limb amputation), the sprouts 
form end-bulb neuroma. The presence of spontaneous discharges arising from the neuroma 
was reported in 1974 by Wall and Gutnic (Wall & Gutnick, 1974, as cited in (McMahon & 
Koltzenburg, 2005)) in the model of sciatic nerve axotomy and later it was confirmed in 
other forms of nerve injury, including diabetic polyneuropathy (Dobretsov et al., 2001) and 
viral infection (Kress & Fickenscher, 2001). 

Ectopic discharges may arise not only from axotomized fibers but also from partially injured 
nerves. The local inflammation and demyelination after nerve injury has been shown to 
contribute to spontaneous firing in the spared nerve fibers after incomplete axotomy 
(Kajander & Bennett, 1992; Tal & Eliav, 1996). Other sources of firing are intact axons in 
close proximity of the injured ones. In the experiments where spinal nerve L5 was 
transected, ectopic discharges have been recorded from uninjured L4 nerve. These uninjured 
axons are exposed to a soup of inflammatory mediators such as cytokines and growth 
factors released by degenerating axon and surrounding tissue. Although there is no direct 
evidence that such firing elicit hypersensitivity in the area innervated by uninjured axons, 
their increased excitability may contribute to the development of central sensitization (Ali et 
al., 1999; Wu et al., 2001). The sensory neurons in the DRG affected by the nerve injury are 
another source of ectopic activity, especially if the injury is proximal to dorsal root ganglia 
(Liu et al., 2000) such as during intervertebrae disc herniation. Clinical studies showed that 
ectopic discharges are correlated with the manifestation of spontaneous pain states and that 
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both are transiently reduced by drugs that eliminate discharges (Campero et al., 1998; 
Orstavik et al., 2003). The ectopic firing also causes a neurogenic inflammation seen in 
patients with complex regional pain syndrome. The antidromic propagation of a signal in a 
nerve fiber during ectopic firing causes stimulation of peripheral nerve endings and 
subsequent release of neurotransmitter such as SP and calcitonin gene-related peptide. Their 
vasodilatation activity causes swelling and redness of the innervated tissue, characteristic 
for causalgia (McMahon & Koltzenburg, 2005).  

3.1.2 Relationship of ectopic discharges to hypersensitivity 

When the intensity of peripheral stimulus reaches a certain threshold, peripheral receptors 
respond with discharges and the signal is propagated to the central nervous system (CNS). 
In the presence of ectopic activity, discharges are elicited by subthreshold stimulus in the 
process of peripheral sensitization. Moreover, discharges may persist beyond the end of the 
stimulation. The afterdischarges are generated due to self-sustained activity of ectopic sites 
and act as signal amplifiers. The subthreshold stimulus can therefore elicit greater-than-
normal response.  

Peripheral nerves with ectopic sites are hypersensitive to wide range of mechanical, thermal 
and chemical stimuli. Gentle mechanical pressure or brushing may evoke ongoing firing in 
the injured nerve. When the spot with ectopic activity develop close to tendons or joints, 
movements and weight bearing may trigger an ongoing pain accompanying various 
muscoskeletal disorders. Cold allodynia, a common symptom in neuropathy, is related to 
increased ectopic discharges in unmyelinated C fibers after cold stimulation. 
Electrophysiological and immunohistochemical studies demonstrated that it could be 
caused by an altered expression of thermoresponsive vanilloid receptors (Caterina et al., 
1997). Chemical stimuli that depolarize sensory neurons may also excite ectopic discharges. 
Inflammatory and regeneration processes following nerve injury are mediated by cytokines, 
peptides, neurotrophins and all of these substances have been shown to contribute to 
development of ectopic discharges. Moreover, local metabolic changes at the site of injury 
such as tissue ischemia and elevated blood glucose also contribute to the generation of 
ectopic discharges (Devor et al., 1992; Levy et al., 2000; Noda et al., 1997; Rivera et al., 2000). 

The electrophysiological recordings from DRG cells have shown that afterdischarges are 
present in a form of oscillation, when the burst of responses is followed by 
hyperpolarization. During this period the activity is suppressed and can not be elicited by 
another stimulation. The hyperpolarization may be caused by the activation of potassium 
channels (Amir & Devor, 1997). The clinical manifestation of this phenomenon is probably 
the refractory period during paroxysms in trigeminal neuralgia or pain relief by 
transcutaneous electrical nerve stimulation (Rappaport & Devor, 1994). 

3.1.3 Peripheral sensitization 

3.1.3.1 Sodium channels 

The ability of the injured nerve to generate discharges at various sites may arise from 
changed expression and trafficking of voltage dependent sodium channels. Nine types of 
voltage-gated sodium channels have been recognized so far in mammals. They are present 
throughout the nervous system with the most abundant expression in DRG neurons. They 
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are expressed differently during the development when for example NaV1.3 is present only 
during embryonic stages. Several studies suggest that the ectopic discharges are evoked by 
an altered expression and distribution of sodium channels. Experimental axotomy in adult 
animals reduces the level of RNA of NaV1.6, NaV1.7, NaV1.8 and NaV1.9 but upregulates 
Nav1.3 which is normally not expressed by adult DRGs. Based on the whole-cell patch-
clamp recordings it is suggested that NaV1.3 may be a key player in neuropathic pain and 
the neurons expressing this channel may exhibit reduced threshold or a high firing 
frequency (Dib-Hajj et al., 2009; Dib-Hajj et al., 2007). There are also changes in the 
redistribution of sodium channels, particularly of NaV1.8, increased immunoreactivity of 
which was observed at the site of nerve injury. This translocation may contribute to the 
generation of ectopic discharges (Black et al., 2008; Wood et al., 2004). Recent clinical data 
demonstrated the link between mutation of human Nav1.7 gene and serious neuropathic 
disorders, like insensitivity to pain or erythermalgia (Dib-Hajj et al., 2007; Drenth & 
Waxman, 2007).  

3.1.3.2 Transient receptor potential channels 

Transient receptor potential (TRP) channels is a group of cation channels involved in 
sensory signaling that undergo changes after nerve injury and during inflammation. The 
most profound changes have been observed in the expression of capsaicin-activated channel 
TRPV1 after nerve injury. Sciatic nerve section or spinal nerve ligation cause reduced 
expression of TRPV1 in all damaged DRG neurons while its increase has been observed in 
the spared undamaged DRG neurons (Baron, 2000; Caterina, 2007, 2008). The involvement 
of TRPV1 in the development of heat hyperalgesia was demonstrated in experiments where 
TRPV1 knockout mice did not develop heat hyperalgesia after inflammation. On the other 
hand, no changes in the level of heat hyperalgesia were observed in knockout mice 
compared to wild types after nerve injury. These observations point to different molecular 
mechanisms of heat hyperalgesia during inflammatory and neuropathic pain. The 
antinociceptive effect of TRPV1 antagonist further supports the idea of crucial role of TRPV1 
in the development of neuropathic pain (Baron, 2000; Hudson et al., 2001; Staaf et al., 2009).  

3.1.3.3 Cytokines 

Among inflammatory mediators that could contribute to the peripheral sensitization, 

cytokines IL-1 and TNF have drawn the most attention. The increased expression of both 
in the DRGs is closely correlated with the reduced mechanical and thermal withdrawal 
threshold in animals (Schafers et al., 2003; Sorkin & Doom, 2000). Clinical studies showed 

that patients with mechanical allodynia have higher levels of serum soluble TNF receptor. 

Injection of TNF or IL-1 receptor antagonists reduced pain-related behavior in 
experimental animals (Cunha et al., 2000; Sommer & Kress, 2004). 

3.2 Central changes in neuropathic pain 

The resistance of neuropathic pain to pharmacotherapy suggests that the changes in the pain 
processing take place also in the central nervous system. In fact, electrophysiological studies 
showed an increased activity of dorsal horn neurons after peripheral nerve injury (Chapman 
et al., 1998; Laird & Bennett, 1993; Palecek et al., 1992). However, no correlation was found 
between responses of the dorsal horn neurons to heat stimuli and the presence of heat 
hyperalgesia (Laird & Bennett, 1993; Palecek et al., 1992). Also the threshold of dorsal horn 
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neurons to mechanical stimulation was unchanged after peripheral nerve injury. On the 
other hand, innocuous stimuli evoked activity in the majority of wide dynamic range 
neurons and the afterdischarges were more prominent in nerve injured animals (Palecek et 
al., 1992). The underlying mechanisms for increased activity of dorsal horn neurons after 
peripheral nerve injury are related to the enhanced release of excitatory amino acids and the 
attenuation of inhibitory signaling.  

3.2.1 Disinhibition 

The sensory input into the spinal cord is under regulation of inhibitory circuitry maintained 
by sensory afferents, spinal interneurons and descending inhibition. This regulatory 
circuitry is disrupted after peripheral nerve injury that leads to misinterpretation of 
peripheral inputs that could underlie chronic pain development. The main inhibitory 

neurotransmitters in central nervous system are -aminobutyric acid (GABA) and glycin. 
The importance of GABA signaling for normal pain processing has been shown in 
experiments where the blockade of spinal GABAergic neurotransmission by intrathecal 
antagonists produced hypersensitivity to innocuous tactile stimuli (Gwak et al., 2006; Hao et 
al., 1994; Malan et al., 2002) and where transgenic mice lacking specific subunits of GABA 
receptors developed hyperalgesia and allodynia (Schuler et al., 2001; Ugarte et al., 2000). The 
hyperexcitability of dorsal horn neurons in neuropathic pain has been explained by a 
disruption of inhibitory tone in the spinal cord. In fact, a reduction of GABA and GABA-
synthesizing enzyme GAD has been reported after spinal cord injury and peripheral nerve 
injury. Also the electrophysiological recordings showed reduced spinal inhibitory tone in 
the injured animals (Castro-Lopes et al., 1993; Eaton et al., 1998; Gwak et al., 2006; Ibuki et 
al., 1997; Moore et al., 2002). There still a debate about what is the direct cause of reduced 
GABA production in the dorsal horn. Histological examinations showed a presence of 
apoptotic cells in the dorsal horn after constriction injury. It was suggested that they are 
GABAergic inhibitory interneurons; however, detailed stereological investigation doubted 
this possibility. The study also showed there is no significant loss of GABAergic or 
glycinergic neurons in animals with neuropathic pain and that the proportion of GABA 
immunoreactive neurons was similar to control animals without nerve injury (Polgar et al., 
2004; Polgar et al., 2003). However, although dysfunction of spinal inhibition seems to be a 
major factor in persistent pain syndromes, pharmacological targeting of the GABAergic 
system has not shown satisfactory outcomes. This is in part likely due to the widespread 
distribution and actions of GABA throughout the CNS.  

3.2.2 Enhanced release of excitatory neurotransmitters 

There are ample of evidences showing that an activation of glutamate NMDA receptors is 

involved in the development of neuropathic pain. Recordings from spinal slide preparations 

of animals with peripheral nerve injury showed enhanced NMDA receptor current, 

suggesting increased release of glutamate after stimulation (Isaev et al., 2000). The amount 

of glutamate released from primary afferent fibers into a dorsal horn is controlled by 

glutamate transporters. Their downregulation after nerve injury contribute to the excess of 

glutamate in the spinal cord, overactivation of glutamate receptors and hyperexcitability of 

neurons. Although initial response after nerve injury presents upregulation of glutamate 

transporters, their expression is reduced later on (Sung et al., 2003).  
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The upregulation of dynorphin in the spinal cord after nerve injury has been reported in rats 

and mice (Gardell et al., 2004; Malan et al., 2000). A strain of mouse that does not develop 

the signs of neuropathic pain does not show increased level of dynorphin, therefore this 

protein is a suitable marker associated with nerve injury-induced pain (Gardell et al., 2004). 

Dynorphin may increase a release of excitatory neurotransmitters from primary afferent 

fibers as suggested from studies showing that release of calcitonin gene-related peptide, 

substance P and excitatory amino acids into dorsal horn is potentiated by dynorphin 

(Arcaya et al., 1999; Gardell et al., 2003; Koetzner et al., 2004). Also, the pharmacological 

inhibition of dynorphin abolished the development of mechanical and thermal 

hypersensitivity in rats and mice after nerve injury; genetic knockout of dynorphin led to 

only transient hypersensitivity after nerve injury (Gardell et al., 2004). Those studies point to 

the important role of spinal dynorphin in the persistent pain.  

3.2.3 Reorganization 

Several studies suggested that the nerve injury cause an anatomical reorganization in the 

spinal dorsal horn allowing the signal from non-nociceptive A fibers to reach and activate 

nociceptive neurons (Woolf et al., 1992). This idea was based on the observation of positive 

labeling of superficial dorsal horn laminae with retrograde tracer choleratoxin B (CTB) after 

nerve injury. This tracer, when injected into peripheral nerve, is uptaken by myelinated 

neurons expressing GM1 receptor and transported into the spinal cord. CTB labeling in the 

spinal cord thus identify termination of myelinated fibers. In the normal animals, labeling is 

found in the deeper dorsal horn laminae. Its presence in the superficial area in the vicinity of 

nociceptive neurons was explained by sprouting of A fibers from deeper laminae. The non-

nociceptive input signaled by A fibers may thus excite nociceptive neurons and underlie 

development of mechanical allodynia. However, subsequent studies showed that there is a 

phenotypic switch in DRG neurons after axotomy as the expression of GM1 receptors was 

found also on the unmyelinated nociceptive DRG neurons. Therefore, CTB is transported by 

both myelinated and unmyelinated afferents which explains its appearance in upper dorsal 

horn laminae, termination of unmyelinated fibers (Bao et al., 2002; Shehab et al., 2003). 

Although the structural reorganization does not seems to be a case for abnormal A signal 

processing, electrophysiological experiments showed the increased A input into the dorsal 

horn.  

3.2.4 Ascending projections-the role of A fibers 

The role of A fibers in development of tactile allodynia is further supported by evidences 

showing that injection of sodium channel blocker lidocain into the supraspinal termination 

of Ab fibers- nucleus gracilis - block tactile allodynia. An interesting finding in this study 

was that thermal allodynia was not changed by this treatment (Ossipov et al., 2002; Sun et 

al., 2001). The expression of neuropeptide Y in DRG neurons after peripheral or spinal nerve 

injury seems to be related to the activity of A fibers. This protein is not present in DRGs 

during physiological conditions. After nerve injury its expression is found in DRGs and 

spinal cord in the area of termination of A fibers (Wakisaka et al., 1991). Neuropeptide Y is 

also upregulated in the ipsilateral nucleus gracilis after nerve injury (Ossipov et al., 2002). It 

has been shown that its presence originates from the DRG since neither dorsal rhizotomy 
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nor lesion of the dorsal column blocked its appearance in nucleus gracilis. The significance 

of this supraspinal center for the development of pain was demonstrated in experiments 

where injection of neuropeptide Y into nucleus gracilis evoked tactile allodynia. 

Interestingly, thermal sensitivity was not changed. The findings of these studies indicate 

that the tactile hypersensitivity is mediated by A input through upregulation of 

neuropeptide Y in the DRGs and that the development of tactile hypersensitivity can be 

modulated from supraspinal areas. Also the modulation of tactile hypersensitivity without 

affecting thermal sensitivity points out to a different processing of mechanical and thermal 

nociceptive input.  

3.2.5 Descending modulation 

The spinal processing of nociceptive information is influenced by a descending input that 

could facilitate or inhibit propagation of the nociceptive signal. The rostral ventromedial 

medulla (RVM) and periaqueductal gray are the most important sources of the descending 

control. The electrical stimulation of RVM may elicit both the facilitation or inhibition of 

nociceptive reflexes and can enhance or inhibit responses of WDR neurons to noxious 

stimuli (Walker et al., 1999).The facilitatory input from these structures is believed to be 

critical for the maintenance of neuropathic pain. Spinal transection or hemisection has been 

shown to abolish development of neuropathic pain signs after peripheral nerve injury 

(Kauppila et al., 1998) and the lesion of the major pathways connecting RMV to spinal cord, 

dorsolateral funiculus, also abolished development of neuropathic pain (Burgess et al., 

2002). Electrophysiological experiments demonstrated that specific population of RVM cells 

expressing -opioid receptor are directly related to the descending facilitatory input 

(Heinricher & Neubert, 2004). The selective ablation of these cells prevented the 

development of neuropathic pain (Burgess et al., 2002; Porreca et al., 2001).  

3.2.6 The integration of ascending and descending modulation 

The integration of ascending and descending modulation of nociception in the spinal cord 

was shown in a series of experiments targeting dorsal horn projection neurons. Using 

ribosome inhibitor protein saporin conjugated with substance P, a specific population of 

dorsal horn neurons expressing substance P receptor NK1 was eliminated (Nichols et al., 

1999; Suzuki et al., 2002). This procedure led to a reduction of tactile and thermal 

hypersensitivity in rats after peripheral nerve injury or inflammation, suggesting the 

essential role of those neurons in the development of neuropathic pain. Further experiment 

revealed that the ablation of NK1 receptor neurons reduced hyperexcitability of wide 

dynamic range neurons in deeper dorsal horn laminae to mechanical and thermal 

stimulation (Suzuki et al., 2002). Since the wide dynamic range neurons receive the 

facilitatory input from RVM by the action of serotonin, a relationship between NK1 neurons 

and serotonergic pathway was studied. Using serotonin receptor antagonist onadsetron, an 

effect similar to SP-saporin treatment on wide dynamic range neurons responses was 

observed (Suzuki et al., 2002). These results demonstrate that the peripheral nerve injury 

causes an activation of descending facilitatory pathway by signals from ascending fibers 

arising (at least partially) from NK1 neurons in dorsal horn. The integration of ascending 

and descending nociceptive signaling contribute to neuropathic pain.  
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4. Animal models of neuropathic pain 

Animal models of acute pain where responses to various mechanical, thermal or electrical 
stimulations are evaluated provide a good source of our knowledge about basic mechanisms 
of pain. These models are widely use for the development of analgesic drugs as they 
provide a reliable outcome comparable to clinical states. However, chronic pain following 
peripheral or central nerve injury present more difficult task as the drugs successfully used 
in an acute pain are usually inefficient for neuropathic pain. Our recent knowledge on the 
mechanisms of neuropathic pain is based on animal models partially mimic some of the 
clinically observed symptoms of neuropathic pain. The most used models in neuropathic 
pain research involve injury of the sciatic nerve and specific forms of spinal cord injury. The 
advantage of sciatic nerve in pain research is based on its anatomical location allowing easy 
access without extensive surgery and the fact that its branches innervate hind limbs 
accessible for sensory testing.  

4.1 Sciatic nerve axotomy 

One of the first chronic pain model based on the injury of the sciatic nerve is frank 
transection of the sciatic nerve (Wall et at., 1979 as cited in (McMahon & Koltzenburg, 
2005)). The painful sensations developed in the denervated area illustrate the paradox of 
neuropathic pain and mimic clinical state of phantom limb pain. The procedure consists of 
5mm section of sciatic and saphenous nerve. The complete anesthesia in the affected area is 
confirmed by the absence of flexion reflex after strong pinch. The various degree of 
autotomy behavior develops within 5 weeks post injury. The model was further 
characterized by variations of nerve injuries, when either saphenous or sciatic nerve was 
transected alone or at different time points and the degree of autotomy behavior was 
evaluated. The variations in behavioral outcome between different strains of rats and mice 
were also studied. These experiments showed that sciatic nerve injury alone is sufficient to 
evoke autotomy behavior and that degree of autotomy varies considerably between 
different strains of rats and mice. This model showed to be a useful tool to predict clinical 
efficacy of drugs to relieve phantom limb pain. Drugs such as sodium channel blockers, 
tricyclic antidepressant and anticonvulsant, which successfully reduced autotomy, also 
reduced phantom limb pain in patients (Chabal et al., 1989). It also provides a good tool to 
study electrophysiological changes after nerve transaction, formation of neuroma and 
development of ectopic discharges. However, since the limb is denervated, one cannot 
assess pain related behavior, as the animal lack proper motoric function in the affected paw. 
Therefore there is a controversy about how much this model and autotomy behavior is 
related to possible pain sensation. Another arguments point to strain variability of autotomy 
and provide evidences, that such behavior may be modulated by environment. To address 
these problems, other models of neuropathic pain were developed based on the various 
degree of sciatic nerve injury. 

4.2 Partial ligation 

Ligation of 1/3 to 1/2 of the sciatic nerve is used to mimic causalgia symptoms after nerve 
trauma (Seltzer et al., 1990; Shir & Seltzer, 1990). Rats display no autotomy and develop the 
signs of spontaneous pain, tactile, mechanical and thermal hyperesthesia. Pain-related 
behavior is sympathetically maintained as it is abolished after sympathectomy. The 
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disadvantage of the model is variability of the degree of nerve injury between animals, 
resulting in different ratio of injured versus uninjured fibers and random distribution of 
their termination in the spinal cord.  

4.3 Chronic constriction injury 

Chronic constriction injury present another model of sciatic nerve injury, where four loose 
ligatures are placed around the nerve, causing swelling and constriction of nerve at the site 
of ligation (Bennett & Xie, 1988). Within 1 day post injury the constriction caused by edema 
reduces diameter of sciatic nerve up to 75%. Histological examination and electron 

microscopy showed massive reduction of myelinated A and A fibers and lesser reduction 

of A (Munger et al., 1992). Electrophysiological experiments indicate almost 90% loss of 
myelinated and 30% unmyelinated fibers 3 days post injury additional loss within 14 days 
(Coggeshall et al., 1993) (Kajander & Bennett, 1992). Due to injury to motor fibers, animals 
walk with a limb with ventroflexed toes. Injury of the sensory fibers results in the 
development of neuropathic pain symptoms such as thermal and mechanical hyperesthesia. 
Animals display guarding behavior, avoiding placing weight on the injured paw. There is 
also an overgrowing of the claws due to reduced grooming. The pain related behavior 
usually persists up to 2 months. Hypersensitivity to heat is presented in the reduced paw 
withdrawal latency to the radiant heat. A light tactile stimulation elicits paw withdrawal 
and expression of nociceptive marker protein c-Fos in dorsal horn (Catheline et al., 1999). 
Animals also develop cold allodynia demonstrated by exaggerated reaction to the 
application of acetone. The pain related behavior observed in this model resemble the 
clinical state of causalgia. Moreover, overgrowing of claws observed in these animals is 
suggested to be similar to unwillingness of patients to trim their nails as it painful. Animals 
also display a signs of spontaneous pain by their abnormal posture, guarding behavior and 
accidental flinches. Although the development of hypersensitivity was attributed to the loss 

large myelinated A mechanosensitive fibers (Munger et al., 1992), animals did not display 

robust pain related behavior 2 months post injury in spite of lingering loss of A fibers. 

Hypersensitivity is probably mediated by sensitized A and C fibers. The ectopic discharges 
in myelinated fibers are presented proximal to the injury and those may be responsible for 
the spontaneous and evoked pain-related behavior observed in this model. The 
disadvantage of this model is again the various degree of nerve injury. Although the 
variability is lower that in partial ligation model, it is difficult to provide the same degree of 
constriction in each animal. 

4.4 Spinal nerve ligation 

The model of spinal nerve ligation overcomes the issues of the previous models where it is 
not possible to control the amount of injured fibers. The model was developed by 
Kim&Chung in 1992 (Kim & Chung, 1992). In this models only spinal L5 and L6 branches of 
the sciatic nerve are ligated, so the corresponding DRGs and spinal cord segments reflects 
changes related to nerve injury. Uninjured L4 branch and its DRG help to identify how the 
nerve injury influences surrounding uninjured nerves. After injury rats show a mild limp 
with slightly everted paw. The development of pain-related behavior is observed 1-2 days 
post injury as tactile and thermal allodynia (Chaplan et al., 1994; Ossipov et al., 1999). Those 
signs persisted up to 10 weeks. Cold allodynia is less pronounced. Electrophysiological 
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studies showed an increased number of neurons responding to light mechanical, thermal or 
cold stimuli although the threshold of response was similar to control animals (Chapman et 
al., 1998). The experiment where dorsal rhizotomy was performed on attempt to block 
signals from an injured and uninjured nerve to reach the spinal cord showed that the 
spontaneous pain may be mediated through injured fibers while the evoked pain requires 
input from uninjured fibers (Sheen & Chung, 1993; Yoon et al., 1996). 

4.5 Spared nerve injury 

In spared nerve injury model peripheral branches of the sciatic nerve are ligated and 

transected (Decosterd & Woolf, 2000). Peroneal and common tibial branch are injured while 

sural branch is left intact. Such injury caused tactile thermal and cold allodynia persisting 

over 9 weeks. The signs of neuropathic pain are most prominent at the areas of the hind paw 

innervated by an uninjured sural nerve. The design of this model allows studying changes 

in uninjured nerve fibers sharing the common nerve trunk with injured ones and compared 

it with uninjured fibers in saphenous nerve innervating basically the same area like the 

injured nerve branches. 

4.6 Other models of peripheral nerve injury  

Other models of peripheral nerve inujry include immune or toxin-mediated demyelination 

that simulates demyelinating neuropathy (Wallace et al., 2003). Vincristine, paclitaxel and 

cisplatin have been used in animal models to mimic polyneuropathy caused by tumor 

chemotherapy (Peltier & Russell, 2002). Streptozocin-induced damage to pancreatic insulin-

producing cells in rats provides an experimental model of diabetic neuropathy (Rondon et 

al., 2010). 

4.7 Spinal cord injury 

Neuropathic pain may also develop as a consequence of spinal cord injury (SCI). Although 

the loss of function is the primary concern of SCI patient, the presence of pain negatively 

influences the rehabilitation strategies and reduces the quality of life of SCI patients. The 

prevalence of SCI pain is about 70-80% (Ravenscroft et al., 1999). Neuropathic pain after SCI 

is difficult to treat as there are several locations in the neuraxis this pain may arise from; 

there may be increased activity of neurons around the site of the injury, in the nerve or in 

the brain. The SCI-induced neuropathic pain is classified as at- level, or below-level pain 

with an incidence of about 30-40% (Siddall et al., 2003). Below-level pain is usually 

described as severe pain and may develop months or years after initial injury. In the case of 

at-level pain, the pain probably arises from the spinal cord above the injury site. Spinal local 

anesthetics blockade above the level of SCI produce temporary pain relief in SCI patient 

while the same procedure is ineffective in patient with spinal canal obstruction where 

sensory blockade can not be produce above SCI level (Loubser & Clearman, 1993). The 

presence of spinal generator of abnormal neuronal activity underlying SCI neuropathic pain 

was demonstrated in electrophysiological experiments using animal models of SCI where 

spontaneous activity of the above- level neurons was found after spinal cord transection 

(Loeser & Ward, 1967). Following this initial study, a number of SCI pain models have been 

developed, based on mechanical injury such as transection (Christensen et al., 1996; Levitt & 
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Heybach, 1981; Vierck & Light, 1999), contusion (Hulsebosch et al., 2000; Lindsey et al., 2000; 

Siddall et al., 1995), irradiation (Xu et al., 1992) and excitotoxicity (Yezierski & Park, 1993). 

Although the mechanism is different, the presence of SCI pain in these models is evident 

within couple of days and persists for several weeks to months. The electrophysiological 

recordings showed an increased background activity of spinal cord neurons, an increased 

responsiveness to peripheral stimuli and prolonged afterdischarges. The current explanation 

of such changes is based on the dysfunction of the inhibitory circuitry in the spinal cord, 

enhanced excitation of neurons through glutamate receptors and changes in the expression 

of sodium channels (Hains et al., 2003).  

The regeneration strategies after SCI may also be related to the development of neuropathic 

pain. There are evidences that fibers producing excitatory neurotransmitter calcitonin gene-

related peptide grow from the superficial lamine into deeper areas and that this 

reorganization is related to pain behavior (Christensen & Hulsebosch, 1997).  

The ongoing pain sensations have been reported in some SCI patients despite of extensive 

pharmacological and surgical treatments, including removing a part of the spinal cord. Such 

observations suggest the pain may arise from supraspinal structures. It is not clear which 

centers in brain may be involved in such pain, although there are some evidences towards 

electrophysiological and metabolic changes of thalamic neurons (Defrin et al., 2001). 

5. Pharmacotherapy of neuropathic pain 

The effective pharmacological treatment of neuropathic pain should target an underlying 

mechanism of given pain state. Although there are usually numerous changes in the 

processing of nociceptive input that cause neuropathic pain, the idea is to target the most 

dominant mechanisms to achieve a reduction of pain. Based on our current knowledges on 

the underlying mechanisms of neuropathic pain, treatments are being developed to reduce 

the release of pronociceptive neurotransmitters by opiates or calcium channel-binding 

drugs, to regulate glutamate signaling by inhibiting postsynaptic NMDA receptors, to 

potentiate inhibitory neurotransmitter by agonist administration, reuptake inhibitors or 

sodium channel blockers.  

Although the conventional analgesics showed to be ineffective in a relieving of NP 

symptoms, drugs originally developed to restore a balance in the level of neurotransmitter 

in CNS or to modulate transmembrane potential and excitability of neurons, have been 

successfully used to reduce some of the neuropathic pain symptoms. However, none of 

these drugs are able to produce long lasting pain relief. Moreover, their long term use is 

often negatively influenced by adverse side effects. Therefore there is still a need for better 

therapies. The currently used pharmacotherapy includes tricyclic antidepressants, 

anticonvulsants and opioids. 

One of the first group of drugs used in clinical trials for neuropathic pain were tricyclic 

antidepressants (Watson et al., 1982). They proved to be temporarily efficacious in various 

neuropathic pain conditions but with many side effects. Newer classes of antidepressant 

that alter serotonergic and noradrenergic signaling have better tolerability and widely used 

in NP treatment (Rowbotham et al., 2004; Sawynok & Reid, 2001). Sodium channel blockers 

such as anticonvulsant and local anesthetic drugs reduce the ectopic discharges originating 
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at the injury site. The high specificity of these drugs for sodium channels allows using them 

systematically without serious failure of normal sodium channel functioning necessary for 

impulse propagation in nervous system, although a potential cardiac toxicity is an obstacle 

for their wider use in NP treatment. Gabapentin, an anticonvulsant originally developed to 

interact with GABA receptors and to increase inhibitory tone when GABA signaling is 

impaired, have an analgesic effect in some form of neuropathic pain. Its action is not 

mediated via GABA receptors though; it is believed it acts through voltage- gated calcium 

channels (Taylor et al., 1998). Voltage-gated calcium channels (N and T family) regulate the 

influx of calcium into the cell upon proper stimulus. Increase in the intracellular calcium in 

the neuromuscular junctions cause the contraction of muscle and release of 

neurotransmitters from nerves. Expression of one of the N type of calcium channel family, 

1B, in the superficial laminae of the dorsal horn after the nerve injury and the correlation 

with the pain behavior point to their involvement in nociception (Cizkova et al., 2002). 

Calcium channels are therefore an attractive target for development of novel analgesic drugs 

(Perret & Luo, 2009). Opioid therapy proved to be effective in various form of neuropathic 

pain (Foley, 2003; Zochodne & Max, 2003). However, as with every drug used in chronic 

pain treatment, negative side effects such as cognitive impairment, sedation, tolerance and 

addiction are a limiting factor. 

6. Cell based therapy 

In search for novel approaches for neuropathic pain treatment, cell based therapy has 

potential to overcome issues of traditional pharmacotherapy. Transplantation, either 

intraspinal or intrathecal, of cells releasing analgesic substances provide targeted delivery of 

desired drug and thus reducing adverse side effects due to its widespread action after oral 

or systemic injection. Also, local delivery of drugs via indwelling catheters is often limited 

by possible infections, especially in chronic implantations.  

As one of the major factors in persistent pain syndromes is reduced GABAergic inhibitory 

control, delivery of GABA via cell based therapy has been extensively studied. Intraspinal 

grafting of GABAergic cells derived from fetal mouse striatum or fetal human telencephalon 

reduced tactile allodynia in L5/6 spinal nerve ligation model (Mukhida et al., 2007). 

Intrathecal or intraspinal injection of GABAergic cells derived from human teratocarcinoma 

cell line (hNT) has also showed positive effect in reducing spinal cord injury pain and 

spasticity in experimental models (Eaton et al., 2007; Marsala et al., 2004). Enhanced delivery 

of GABA via gene therapy approaches have shown promise in preclinical models, notably 

the administration of GAD65-expressing rAAV2 to sciatic nerve or DRG (Kim et al., 2009) 

and peripherally delivered HSV-based vectors engineered to produce either GAD65 or 

GAD67 in DRG (Hao et al., 2005) can reduce peripheral neuropathic or SCI pain. Previous 

findings in our laboratory have shown that the transplantation of neural progenitor cells 

expressing GABA into the dorsal horn of animals with excitotoxic spinal cord injury can 

reduce symptoms of spontaneous pain, and can reduce spinal hyperexcitability (wind-up) 

and hyperalgesia in animals with chronic constriction injury (Jergova et al., 2009; Lee et al., 

2001). To enhance the efficiency of GABAergic cell therapy, several approaches are 

investigated. Recent study demonstrated increased yield of GABAergic precursor cells 

under a low concentration of the fibroblast growth factor in a cell culture. Also, genetic 
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modification where specific transcriptional factor was blocked promoted GABAergic and 

reduced glial differentiation (Furmanski et al., 2009). 

7. Gene therapy 

The most promising approach in alleviating chronic pain may be the use of genetically 
modified cells releasing combination of molecules with distinct antinociceptive mechanisms. 
Research in our laboratory is focused on two potential candidates, serine-histogranin, 
targeting enhanced glutamatergic signaling and conotoxins targeting increased expression 
of calcium channels. 

7.1 Serine-histogranin 

[Ser1] histogranin (SHG) is synthetic analog of histogranin, peptide produced by adrenal 
glands, pituitary, brain and other tissues (Lemaire et al., 1993) with inhibitory properties at 
glutamate NMDA receptors (Shukla et al., 1995). Findings in our laboratory suggest that 
SHG can produce prolonged inhibition of spinal nociceptive responses to a variety of 
stimuli, and may interact at unique excitatory amino acid receptive sites in the spinal dorsal 
horn (Hentall et al., 2007). Intrathecal injection of SHG can block NMDA induced 
hyperalgesia and allodynia with no apparent adverse motor effects (Siegan & Sagen, 1995) 
in contrast to findings with another NMDA antagonists, MK-801 (Hama & Sagen, 2002; 
Hama et al., 2003). Recent results showed potentiation of antinociceptive effect of 
GABAergic transplant by intrathecally injected SHG in the model of peripheral nerve injury 
(Jergova et al., 2011b). 

Previous experience in our laboratory has demonstrated that neuronal progenitor cells 
readily express transgenes, and thus make an ideal vehicle for delivery of novel analgesic 
peptides(Gajavelli et al., 2008). An enhanced GABAergic precursor cells transfected by SHG 
cDNA were recently developed. After intraspinal transplantation they significantly reduced 
cold allodynia and mechanical hyperalgesia in models of spinal cord injury and peripheral 
nerve injury-induced pain (Jergova et al., 2011a). 

7.2 Conopeptides 

Conotoxins are neurotoxic peptides isolated from the venom of marine snail Conus with 

selective ion channel blocking activity. There are 5 different classes of conotoxins based on 

the channel or receptor they target: -conotoxin inhibit nicotinic acetylcholine receptors, -

conotoxin target voltage-dependent sodium channels, -conotoxin inhibits potassium 

channels, -conotoxin inhibits voltage-dependent sodium channels in muscles, -conotoxin 

inhibits N-type voltage-dependent calcium channels. The analgesic effect of -conotoxin 

MVIIA is 100 to 1000 times more potent that of morphine and its synthetic version 

ziconotide is used in clinical treatment of neuropathic pain (Malmberg & Yaksh, 1995; 

Olivera, 2006; Wallace et al., 2008). Another group of conopeptides- conantokins, with 

NMDA antagonist activity is also very interesting in pain research, as enhanced activity of 

NMDA receptors is hypothesized to contribute to onoing pain (Teichert et al., 2007). 

Clinical use of analgesic peptides is limited by poor CNS penetration and thus need to be 
delivered via intrathecal pumps. However, conopeptides are ideal candidates for 
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recombinant expression at target sites to spinal cord pain processing centers using cell or 
molecular based strategies. In our laboratory, the intrathecal administration of N-tpe 

calcium channel inhibitor -conotoxin MVIIA produced marked reduction of neuropathic 
pain symptoms in animals with compression SCI, a particularly difficult clinical target 
(Hama & Sagen, 2009). Another conopeptide with NMDA antagonist activity, ConG, was 
found to be very efficient in reducing allodynia in SCI model. When used in combination 
with conopeptide MVIIA, more robust analgesic effect was observed. Isobolographic 
analysis showed synergistic effect of these conopeptides, an important finding considering 
possible side effects in prolonged administration of drugs. Synergism allows using lower 
concentration of drugs to achieve analgesic effect comparable to separate administration of 
those drugs at higher concentration. In addition, combination of conopeptide with 
GABAergic cell grafts may be particularly potent, as combined intrathecal ziconotide and 
baclofen have been reported to improve neuropathic pain scores in a recent case report 
(Saulino et al., 2009). 

8. Conclusion 

The restoration of inhibitory function in the spinal dorsal horn by neural transplantation is a 
promising strategy for alleviating persistent pain following injury to the nervous system. 
The recent availability of stem cells that can be directed towards desired neuronal 
phenotypes and also can be genetically manipulated to produce additional potent 
therapeutic agents offers the opportunity for targeted pain management and improved 
outcomes of chronic pain therapies. 
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