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1. Introduction 

Digital communications through underwater acoustic (UWA) channels differ from those in 
other media, such as radio channels, due to the high temporal and spatial variability of the 
acoustic channel which make the available bandwidth of the channel limited and dependent 
on both range and frequency. In order to overcome disadvantage factors and maximize 
performance to conduct real-time information understanding, underwater acoustic 
communications require the higher degree of information extraction and development from 
all kinds of onboard acoustic sensors and processing systems. A higher performance 
communication technology is needed in order to focus high-performance data processing on 
the problems and tasks faced by human operators and decision-makers. In order to 
establiseh reliable data commnication on the severely band-limited underwater acoustic 
channels, bandwidth-efficient modulation techniques (i.e. coherent communications) should 
be employed to overcome the inter-symbol interference (ISI) caused by channel multi-path 
propagation. The effective approach to eliminate the ISI caused by multipath propagation is 
that adaptive decision feedback equalizer (ADFE) integrates with spatial diversity. That is 
multi-channel adaptive decision feedback equalizer, which is applied in (Kilfoyle & 
Baggeroer, 2000; Stojanovic, 1996, 2005; Zhao et al., 2008) represents a more general 
approach to spatial and temporal signal processing. 

However, Single technique, such as equalizer, is difficult to obtain satisfied data transmission 
because of the complexity of UWA channel, especially in shallow water channel. In recent 
years, more and more attention has been paid to Turbo codes, including parallel concatenated 
convolutional code (PCCC) (Berrou et al., 1993) and serially concatenated convolutional code 
(SCCC) (Benedetto & Montorsi, 1996), because of its near-capacity gains. The range of 
applications of Turbo codes has expanded to many areas of communications. Trellis-Coded 
Modulation (TCM) (Ungerboeck, 1982) is a kind of design option combining coding with 
modulation. It can provide over 3 dB coding gain without bandwidth expansion. Especially, it 
is interesting to combine PCCC or SCCC with TCM in order to improve the transmission 
spectral efficiency (i.e. parallel concatenated trellis codes modulation (PCTCM) (Benedetto et 
al., 1996; Chung & Lou, 2000; Legoff et al., 1994; Yang & Ge, 2005) and serial concatenated 
trellis codes modulation (SCTCM)) (Benedetto et,al., 1997; Divsalar & Pollara, 1997; Ho, 1997; 
Shohon et al., 2003) in order to improve the transmission spectral efficiency.  
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Therefore, iterative equalization and decoding (IED) based on equalizer and deocoding  has 
been developed to obtain higher performance data transmission. Turbo equalizer (Berthet, 
2000; Koetter et al., 2004) treats the channel encoder and channel itself as a serial 
concatenated system that can be decoded in an iterative scheme. A drawback of this 
iterative receiver is that the complexity of the turbo equalizer is orders of magnitude greater 
than the decision feedback equalizer (DFE). The turbo equalizer complexity grows 
exponentially with channel memory length. It isn’t suit for the underwater acoustic channel 
with long delay spreads. In the structure of iterative euqalization and decoding, equalizer 
can use ADFE (Choi, 2008; Noorbakhsh et al., 2003) or equalizer based on channel 
estimation (Flanagan & Fagan, 2007; Otnes & Tuchler, 2004; Tuchler et al., 2002). For 
underwater acoustic channel with severely mutipath propagation and large time delay, 
adptive channel tracking can get better performance than channel estimation using 
trainning sequence or pilot symbols.   

Comparing PCTCM, SCTCM has the following advantages: (1) It can further reduce the 

error floor of PCTCM to obtain lower BER (Soleymani & Gao, 2002). (2) It has more flexible 

coding structure than PCTCM. In this chapter, SCTCM technique is adopted to increase 

bandwidth efficiency. Furthurmore, a rate R=1 recursive convolutional is adopted as inner 

encoder of SCTCM encode to get higher performance SCTCM scheme. Therefore, iterative 

equalization and decoding, based on multi-channel adaptive decision feedback equalizer 

with variant step tracking factor and decoder of SCTCM, is formed to aid weight update of 

equalizer utilizing decoding gain provided by decoder of SCTCM such that the performance 

of equalizer is enhanced. And then, the performance of communication system is improved 

greatly through iteration calculation between equalizer and decoder. 

The structure of this chapter is as follows. Firstly an overview of the channel and system 
model is provided in Section 2. More specifically, the channel model based on sound speed 
profile (SSP) measured in the lake and Bellhop method and the system description are 
discussed in Sections 2.1 and 2.2, respectively. And then, the introduction of the proposed 
iterative equalization and decoding is presented in Section 3. More specifically, the 
structures of iterative equalization and decoding are discussed in Section 3.1. The proposed 
iterative equalization and decoding process is detailed in Section 3.2, commencing with a 
discussion of the multichannel adaptive equalizer structure in Section 3.2.1, followed by a 
description of the SCTCM decoding algorithm in Section 3.2.2, the method of the soft 
symbol estimation in Section 3.2.3. Our simulation results are provided in Section 4, while 
Section 5 concludes our findings. 

2. Channel and system models 

We begin with the channel model under consideration and then discuss the description for 
communication systems. 

2.1 Underwater acoustic channel model 

We adopt real measured data, sound speed profile (SSP), and a finite-element ray (FER) 
tracing method (Bellhop) (Porter & Liu, 1994) to model the underwater acoustic multipath 
propagation. Additionally we model the multipath components as fading due to acoustic 
propagation loss. 
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A given multipath arrival l  is characterized by its magnitude gain l and delay l . These 

quantities are dependent on the ray length ll , which in turn is a function of the given 

propagation range R . The path magnitude gain is given by 

 
 
l

l

ll





  (1) 

where, l  is the amount of loss due to reflection at the bottom and surface. The acoustic 

propagation loss, represented by  ll   

     ll

l l cl l a f      (2) 

where,  is constant, cf is the carrier frequency and absorption coefficient (in db/km) given 

by Thorp’s formula 
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The path delay is given by 

 
,

,1

l i
l

l ii

l
t

v
  (4) 

where, ,l iv is the sound speed of the ith  water layer according to SSP. Thus, the overall 

channel impulse response is given by 

    
1

L

l l
l

h t A t 


   (5) 

where, L is the multipath number, lA  and l  are the amplitude and relative delay of the lth 

multipath arrival respectively. minl lt t   , mint is the minimus delay among the all path 

delays. 

In the simulation section (Section 4), the SSP, measured on the lake (shown in Fig. 1), is 

adopted to model the multipath propagation. The SSP denotes the sound speed is changed 

with water depth.  

Additionally, Doppler frequency df  is considered in the channel model. It is given by 

 cosr
d c l

v
f f

c
  (6) 

Where, c  donotes underwater sound speed, rv is the relative speed between tranmiter and 

receiver, l  is the arrival angle for the lth arrival ray. 
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Fig. 1. Sound speed profile (SSP) 

2.2 System description 

The structure of transmitter is shown in Fig.2.  

0R iR

nd nc nu nx

TCM

 

Fig. 2. The structure of transmitter 

In comparison with high performance PCTCM scheme (Robertson & Woerz, 1998), the 
method in (Divsalar et al., 2000), with lower complexity, is adopted to design SCTCM, 

which can achieves  / 1km k  / /bit s Hz , using a rate 0 / 1R k k   convolutional encoder 

with maximum free hamming distance as the outer code. An interleaver permutes the 

output of the outer code. The interleaved data enters a rate / 1iR m m   recursive 

convolutional inner encoder. The m output bits are then mapped to one symbol belonging to 

a 2m  level modulation. In our system, the data symbol is QPSK modulated ( 2m  ), i.e. 
2 2

2 2nx     with probability 1
4 . Before data symbol, the pilot symbol is transmitted to 

probe the channel impulse response (CIR). The LFM signal is used in our system. The frame 
structure is shown in Fig.3. 
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pilot trainning inf   o symbol

 

Fig. 3. Data frame structure  

In receiver, Spatial diversity is achieved via multiple receiver arrays. The received signal at 

the kth  array is given by 

        j2 1

1

l c

L
f t

k l l
l

r t A x t e n t
 


    (7) 

where, cosrv
l lc

   is the Doppler frequency factor for lth  multipah propagation,  n t  is 

assumed to be a white Gaussian process with zero mean and variance 2
n . 

After demodulation by multiplying the local carrier frequency and Doppler frequency 

compensation, the received baseband signal at the kth  array is given by 

      j

1

k

L

k l l
l

y t A x t e n t


    (8) 

where, k  is the remain phase distoration. 

And then, the iterative equalization and decoding (IED) is performed on the received 

multichannel baseband signals. The concrete IED algorithm will be presented in the next 

section. 

3. Iterative equalization and decoding (IED) 

In this section, we first present the structures of iterative equalization and decoding and 

analyze the merits and drawbacks of different structures in Section 3.1. And then, the 

proposed iterative receiver is detailed in Section 3.2. 

3.1 The structures of iterative equalization and decoding 

Since the underwater acoustic ISI channel can be treated as a convolutional encoder with 

rate 1, it is possible to treat the channel encoder and channel itself as a serial concatenated 

system that can be decoded in an iterative scheme such as the turbo equalizer structure that 

is illustrated in Fig.5. The motivation for the study of this receiver algorithm is to improve 

equalizer performance beyond that attainable by the optimum parameters decision feedback 

equalizer which also employs the all-training sequence. 

The turbo equalizer consists of two soft input soft output (SISO) modules for the channel 

equalizer and the decoder that are arranged in a serial fashion. A drawback of this receiver 

algorithm is that the complexity of the turbo equalizer is orders of magnitude greater than 

the DFE. The turbo equalizer complexity grows exponentially with channel memory length, 

modulation level, and spatial diversity combining. It should be noted that traditionally the 

turbo equalizer has been used for known channels with reasonable ISI. It still needs to be 
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demonstrated that this type of receiver can be used with modification to track the time-

varying underwater channel and provide performance that exceeds the performance of the 

DFE using known training sequence throughout the entire data packet. 

 ˆ
ku  ky1



 

Fig. 4. Turbo equalizer 

The second structure is hard iterative (shown in Fig.5.) 

ˆ{ }
k
d

{ }
k
d



1
 ˆ

ku ky

 
 
 

The hard values

of coded symbols

 

Fig. 5. Hard iteration  

In this structure, the decoded symbols or hard decisions from the decoder after a first pass 
through the receiver system are then re-encoded to be used as the new training sequence to 
be used over the entire received data packet. Therefore, in the second pass or iteration, 
decision directed equalization after the short initial training sequence is not employed. 
Subsequent passes or iterations through the data in this fashion can be made. However 
diminishing improvements are obtained due to the hard decision nature of this algorithm. 
Feedback error propagation can still occur in this algorithm due to uncorrected errors at the 
output of the soft input hard output decoder. The desire for performance improvement by 
using SISO decoders as well as added information that the equalizer can provide to correct 
decoder errors provides the motivation for the soft iterative approach. 

An improved receiver algorithm as compared to the hard iterative approach would be to 
employ all the information regarding the received symbols to generate the new training 
sequence by combining soft values of the coded symbols out of the decoder and the soft 
information about the detected symbols provided by the decision directed mode of the 
equalizer. This is intent of the soft iterative manner. 
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In the soft iteration, the decision feedback equalizer is modified so that it can use soft a 

priori information from the decoder from previous iterations. In order to obtain soft a priori 

information as opposed to hard decisions, the decoder structure must now take the form of 

a SISO device. One such device is the Maximum A posteriori (MAP) decoder. The method in 

which the information streams from the decoder and equalizer are combined is crucial 

because log likelihood ratio (LLR) values are produced from the decoder feedback path. In 

this chapter, the soft iteration structure is adopted. 

3.2 Soft iterative equalization and decoding (IED) 

The structure of the proposed IED with phase compensation is shown in Fig.6. 

 

Fig. 6. The proposed IED 

As shown in Fig.6, the received signal at each array elements is T/2 fractional sampled. The 

digital phase lock loop (DPLL) is adopted to correct phase distortion. Then, the feedforward 

and feedback filters are applied to obtain the estimation of transmitted symbol. In the IED 

scheme, the multichannel adaptive decision feedback qualizaer with phase compensation 

and decoder of SCTCM exchange soft information in an iterative manner. Specifically, at the 

output of the equalizer, the likelihood ratio (LLR) calculator computes soft information of 

coded bits based on the symbol estimation  d̂ n . This soft information is delivered to the 

maximum a posteriori (MAP) decoder of SCTCM. In addition to providing the decoded 

output, the decoder also computes soft information on the coded bits, which is converted to 

soft estimates of the symbols. These soft symbol estimates are used to aid the operation of 

the equalizer and its adaptive weight update algorithm. 

3.2.1 Mutichannel adaptive equalization 

The received signal will carry out equalization proccessing (including carrier phase 
compensation) after demodulation. The main task of multichannel adaptive decision 

feedback qualizaer is eliminate inter-symbol interference (ISI) caused by multipath 
propagation.  

According to minimum mean square error (MMSE) scheme, an error signal is used to 

update receiver parameters. The error signal  e n of adaptive update algorithm as follows 
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      ˆe n d n d n   (9) 
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

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 (10) 

Where,       Tw =[a  -b ]n n n  denotes overall equalizer coefficient vector, 

     u [x  d ]Tn n n  denotes composite input vector, *
0 1a [ ]H k k

k Na a    denotes the 

coefficients vector of feedforward filter, *
1b [ ]H

Mb b   denotes the coefficients vector of 

feedback filter, N and M denote the feedforward and feedback filter taps respectively, * 

denotes complex conjugate, H denotes transpose conjugate, T denotes transpose. 

     d 1
T

n d n d n M    
    denotes the vector of M previously detected symbols stored in 

the feedback filter,  p n  represents the output of the linear part of the equalizer, it can be 

written as 

      j

1 1

k

K K
H
k k k

k k

p n a v n e p n

 
    (11) 

As shown in Fig.6., the baseband signals firstly perform carrier phase compensation. Using 
DPLL technology (Proakis, 2003), we can obtain carrier phase compensation as follows 

        
1 21

1

ˆ
n

k k f k f k
m

n n K n K m   


     (12) 

Where,         *1 Imk k kn p n p n e n       ,
1f

K and 
2f

K are constants, 
2 1f fK K . 

A fast self-optimized LMS (FOLMS) algorithm (Bragard & Jourdain, 1990) is used to update 

the equalizer vector  w n . But in (Bragard & Jourdain, 1990), the formulations are 

conducted based on the single channel line equalizer (LE). In this chapter, we extent it to 

multi-channel decision feedback equalizer and consider the effect of carrier phase 

compensation. It can be deducted by the composite input data  u n  and the error 

signal  e n . So, we can rewrite the FOLMS algorithm as follows 

          *1n n n n e n  w w x  (13) 

          H *1 Ren n n n e n        G x  (14) 

      Hg n n n x G  (15) 

      * /'x n e n n  (16) 
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      'n x n g n    (17) 

          1n n n n n   G G x  (18) 

Where,  n  is the step-size factor for controlling the convergence ratio of the equalizer, 

which can adaptively update,  g n  is temporary variant for updating  n ,   is constant. 

Re( ) denotes the real part of data. 

3.2.2 Decoding of SCTCM 

In order to simplify the decoding algorithm of SCTCM, the symbol decoding of SCTCM is 
transformed into bit decoding through calculating the LLR of coded bits. The position of 
LLR calculator is shown in Fig.6. The calculation is detailed as follows. 

For MPSK, the corresponding 2logm M coded bits are mapped to an M-ary signal. The 

probability  1|i kp b y  of ith coded bit of kth received symbol can be calculated as 

 

     
 
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k b b b
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p b y
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p y b b b p b b b
p y

  
 

      
  
 

 (19) 

Let the probabilities  1ip b  and  0ip b   of coded bit ib are the same. Therefore: 

        1 1 2

1
1, ,..., 1

2
i m m m

p b b b p b p b p b      (20) 

So, (19) can be simplified as 

  
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

   (21) 

The probability  0|i kp b y of ith coded bit of kth received symbol can be calculated as 

  
 

 
1 2

1

1
0| | 0, ,...,

2
m

i k k i mm
b b bk

p b y p y b b b
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

   (22) 

The LLR value of ith coded bit of kth received symbol is 

 
 
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


  
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 

 



  (23) 

From the received signal k k ky d n  ,and from the noise distribution it follows that 

 |k kp y d is given by 

www.intechopen.com



 
Underwater Acoustics 

 

130 

  
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|

2

k k

k k

y d
p y d





 
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So, the (23) can be calculated as 
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where,  1 2, , , Md d d   denotes the finite alphabet used for MPSK signals, 1i  and 

0iB  denote the sets of all possible symbol values, in which the ith coded bit is 1 and 0 

respectively. 

We can simplify symbol decoding into bit decoding using Eq.(25). The probability 

distributions of the output sequences  O
kP u  and  O

kP c  can be calculated as follows: 

    
 

     1
:

O S I I E
k u k k k k

e u e u
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                (26) 

    
 

     1
:
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

                (27) 

where, uB  and cB  are normalization constants as 

   1O
u k

u

B P u   (28) 

   1O
c k

c

B P c   (29) 

The forward recursion  k  and backward recursion  k   are given by 

    
 

   1

:

 ,  1,2,...,
E

S I I
k k k k

e s e s

s s e P u e P c e k n  


            (30) 

    
 

   1 1 1

:

 ,   1,...,0
S

S I I
k k k k

e s e s

s s e P u e P c e k n    


             (31) 

The  k   computation will be initialized as 

   0
0

1,

0,

s S
s

other



 


 (32) 

If the trellis is terminated to a known state NS , then the  k   computation will be initialized 

as 
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  
1,

0,
N

n

s S
s

other



 


 (33) 

Otherwise 

   1 /   ,  n ss M s    (34) 

In this chapter, log-map algorithm (Soleymani & Gao, 2002) is used to simplify calculation 

through transforming multiplication into addition. 

3.2.3 Soft symbol estimation 

As shown in Fig.6, the LLR values of coded bits, output from decoder of SCTCM, are used 

to implement symbol estimation. And then, these symbols are fed back to feedback filter of 

MC-ADFE to perform joint iterative scheme. So, the symbol estimation is key module to 

perform soft IED.  

There are two methods to estimate data symbol: hard estimation and soft estimation. 

Compare with hard estimation, soft estimation can void error symbols spread during the 

course of iterations. What's more, soft estimation can more sufficiently utilize decoding gain 

to update system performance. In this chapter, soft method is adopted to estimate data 

symbols. 

The soft symbol estimation can be obtained as follows: 

  
1

ˆ
m

k i
d i

d d p b
 

    (35) 

where,  1 2, , , Md d d   denotes the finite alphabet used for MPSK, ib denotes the ith 

coded bit, 1,2,i m  . 

The probability distributions  iP b of coded bits can be obtained from the corresponding 

LLR values  iL b . Therefore: 

  
 
 

1

i i

i
i

b L b
e

P b
L b

e





 (36) 

4. Simulation results 

In this section, we use simulation experiments to verify the performance of the proposed 

soft IED algorithm. The system parameters of computer simulation are shown in Table 1. 

The outer decoders of SCTCM adopt convolutional codes encoder with 4-state 1/2 code rate 

for QPSK modulation. In this paper, we integrate the multi-path fading and additive white 

Gaussian noise to simulate underwater acoustic channel. 

Based on the sound speed profile (SSP) measured in the lake and finite-element ray (FER) 
tracing method (Bellhop) (Porter & Liu, 1994), the channel impulse response is shown in 
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Fig.7. From the SSP (shown in Fig.1.), we know that the water with mixed gradient SSP is 
about 53m deep. The transmission distance is 2000m. 

 

Carrier frequency 10 KHz 

Symbol rate 5 Kbps 

Doppler 10 Hz 

Array elements 4 

Training symbols 200 sys 

 

Table 1. Simulation parameters 

4.1 Soft iterative performance of iterative equalization and decoding 

The system parameters of simulation are shown in Table 1. The channel impulse responses 

are shown in Fig.7. As shown in Fig.7, the multi-path propagation is very seriously. 
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Fig. 7. Channel impulse response (2000m) 

Fig.8 shows the BER curves of IED algorithm with soft iteration for QPSK modulation. As 

show in Fig.8, the iteration algorithm can sufficient utilize the decoding gain provided by 

decoder of SCTCM to enhance the equalizer performance such that the system performance 

is increased and the data transmission with lower BER can be obtained. 
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Fig. 8. Performance of the soft IED 

4.2 Dual model of iterative equalization and decoding 

The dual model IED is shown in Fig.9. There are two parts: (1) iterative equalization and 

decoding; (2) iterative decoding. As mentioned in Section 3, the mutichannel ADFE and 

decoder of SCTCM exchange soft information in an iterative manner in the IED scheme. So, 

we can perform decoding iteration before IED. And thus, the accuracy of symbol estimation 

is further improved such that the equalizer performance is improved greatly. 

 

Fig. 9. Dual model IED 

As shown in Table 2, in dual model IED, the soft symbols estimation, based on the coded 

bits output from decoder of SCTCM, are more accurated. And thus, the propagation errors 

can be futherly reduced. 

Equalizer

Symbol  estimation

IED

Inner

decoder

Outer

decoder

De-

interleaver

  decoder of SCTCM

Interleaver

Iterative 

decoding
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IED 
iteration 

0 1 2 

Decoder 
iteration 

0 1 0 1 0 1 

3 dB 0.2217 0.2072 0.1205 0.0824 0.0351 0.0185 

3.5 dB 0.1856 0.1582 0.0682 0.0326 0.0105 0.0042 

4 dB 0.1451 0.0987 0.0295 0.0123 0.0041 0.0024 

4.5 dB 0.0941 0.0358 0.0026 1e-4 0 0 

5 dB 0.0589 0.0097 4e-5 0 0 0 

5.5 dB 0.0282 0.0016 0 0 0 0 

6 dB 0.0141 3e-4 0 0 0 0 

Table 2. Performance of dual model IED 

5. Conclusions 

In this chapter, according to the characteristics of underwater acoustic channel, SCTCM 

technology with rate-1 inner code, is adopted to improve the bandwidth efficiency of 

underwater acoustic channel. Simultaneously, LLR calculation is introduced to simplify 

symbol decoder into bits decoder. The soft IED scheme with soft symbol estimation is 

proposed to overcome the multi-path fading of underwater acoustic channel and enhance 

the performance of equalizer through utilizing decoding gain provided by decoder and the 

information symbols with soft symbol estimation fed back to equalizer so that the 

performance of communication system is improved greatly. What’s more, the dual model 

IED scheme is proposed to obtain lower BER in order to meet the demands of higher system 

performance. The simulation results verify the proposed algorithm can obtain satisfied data 

transmission with the small iterations, especially the dual model IED. 
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