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1. Introduction 

Since the introduction of the matched spatial filter (MSF) (VanderLugt, 1964), many 
different types of filters for pattern recognition based on correlation have been proposed.  
One of the reasons of such growing interest to design effective methods of pattern 
recognition stems from the need to deal with more complex images in various applications 
of automated image processing and from the need to process large images in real time. For 
some of the more critical applications, optical or hybrid optodigital techniques allow faster 
processing of images. This is why our approach in this area is based on correlation filters, 
which possess good mathematical fundamentals and can be effectively implemented 
digitally or optodigitally (Moreno et al., 1998).  
In pattern recognition two essentially different types of tasks are distinguished: detection of 
a target and estimation of its exact position. When correlation filters are used, these 
problems can be solved in two steps. First, the detection is carried out by searching 
correlation peaks in the filter output, and then coordinates of these peaks are taken as 
position estimations. The quality of both procedures is limited by the presence of noise in an 
observed scene. The detection capabilities of correlation filters can be quantitatively 
expressed in terms of probability of detection errors (false alarms), signal-to-noise ratio, 
discrimination capability, peak-to-output energy ratio, etc. (Vijaya Kumar & Hassebrook, 
1990). Some of the measures can be essentially improved using an adaptive approach to the 
filter design. According to this concept, we are interested in a filter with good performance 
characteristics for a given observed scene, i.e., with a fixed set of patterns or a fixed 
background to be rejected, rather than in a filter with average performance parameters over 
an ensemble of images. After the detection task has been solved we still faced with small 
errors of target position estimations due to distortion of the object by noise. The coordinate 
estimations lie in the vicinity of their actual values. So the target location can be 
characterized only by means of the variance of measurement errors along coordinates 
(Kober & Campos, 1996). 
One of the most important performance criteria in pattern recognition is the discrimination 
capability (DC), or how well a filter detects and discriminates different classes of objects. A 
correlation filter with a minimum probability of anomalous detection errors (false alarms) 
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referred to as the optimal filter (OF) was suggested (Yaroslavsky, 1993). An important 
feature of the OF is its scene-adaptivity in applications to pattern recognition or target 
detection because its frequency response takes into account the power spectrum of wrong 
objects in the observed scene or the background to be rejected. The disadvantage of the OF 
in optical implementation is its extremely low light efficiency. A filter with maximum light 
efficiency is the phase-only filter (POF) (Horner & Gianino, 1984). The drawback of the POF 
is its poor discrimination capability for a low-contrast target embedded into a complicated 
background scene. An approximation of the OF by means of phase-only filters with a 
quantization was made (Kober et al., 1994). There, the approximate filters with high light 
efficiency and discrimination capability close to that of the OF were suggested. When the 
object to be recognized is in the presence of disjoint background noise, the design of the 
optimal filter was also obtained (Javidi & Wang, 1994).  
It is commonly known that the MSF is very sensitive to small distortions of the object caused 
by variations in scale, rotation, or point of view. One of the first attempts to overcome the 
problem of distortion in pattern recognition was the introduction of synthetic discriminant 
functions (SDFs), (Hester & Casasent, 1980; Casasent, 1984). The SDF filters use a set of 
training images to synthesize a template that yields a prespecified central correlation output 
in the response to training images. The main shortcoming of the SDF filters is appearance of 
sidelobes owing to the lack of control over the whole correlation plane. As a result, the SDF 
filters often possess a low discrimination capability. A partial solution of this problem was 
suggested (Mahalanobis et al., 1987). They proposed to control over the whole correlation 
plane by producing sharp correlation peaks for easy detection of the target as well as by 
minimizing the average correlation energy to suppress the presence of extraneous 
correlation peaks. However, these filters are not tolerant to input noise. They perform 
control over false alarms by an indirect way, and, finally, they are more sensitive to 
interclass variations than other composite filters (Billet & Singher, 2002). 
This chapter treats the problems of real-time pattern recognition exploiting adaptive 
distortion-invariant correlation filters (González-Fraga et al., 2006; Diaz-Ramirez et al., 2006; 
Kober et al., 2006). The distinctive feature of the proposed methods is the use of an adaptive 
approach to the filters design. Specifically, we shall look at two problems: detection of 
known objects possessing small geometric distortions and corrupted with additive sensor’s 
noise, and implementation of the designed filters in an optodigital setup.  
The first problem is to decide on presence or absence of a distorted object. New adaptive 
composite filters for reliable recognition of the object in a cluttered background are 
presented. The information about an object to be recognized, false objects, and a known 
background to be rejected is utilized in iterative training procedure to design a correlation 
filter with a given value of discrimination capability. The synthesis of the adaptive filters 
also takes into account additive sensor’s noise by training with a noise realization. 
Therefore, the filters may possess a good robustness to the noise.  
The second problem concerns real-time implementation of the adaptive correlation filters. 
For some of the more critical applications, optical or hybrid optodigital techniques allow 
faster processing of images. The advantage of optical systems over computers lies in 
inherent ability of optical systems to process data in a parallel way. For instance the classical 
optical correlator allows to perform fully parallel matched filtering over an input scene 
containing multiple patterns. Recent progress in optical spatial light modulators gives new 
opportunities for creation of optodigital systems. Such modulators can be addressed 
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electronically that allows rapidly and flexibly change the object or the filter for real-time 
applications. We implemented the adaptive filters in a hybrid system using the joint 
transform correlator scheme. The hybrid system additionally takes into account real 
characteristics of used optoelectronics devices. Computer simulation and experimental 
results are provided and disscussed.  

2. Adaptive Digital Systems  

2.1. Conventional correlation filters  

Consider the problem of detecting the presence and location of a known distorted target in 
an observed scene using the correlation operation. The correlation can be effectively 
implemented in a computer with the help of the fast Fourier transform. When the 
correlation output is obtained then coordinates of the correlation peaks can be taken as 
position estimations of a target. 
A basic correlation filter is the MSF whose impulse response is the flipped version of a 
reference object. This filter is optimal with respect to the signal-to-noise ratio at the filter 
output when an input signal is on presence of additive white noise. A drawback of the MSF 
in optical implementation is its low light efficiency. A filter with maximum light efficiency is 
the POF. The transfer function of a basic POF (Horner & Gianino, 1984) is given by 
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where T(u,v), t(u,v) are the Fourier transform and the phase distribution of the target, 
respectively. The asterisk denotes complex conjugate. 
The transfer function the OF can be approximated in the Fourier domain as  
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where S(u,v) is the Fourier transform of the input scene (Yaroslavsky, 1993).  
The performance of conventional correlation filters degrades rapidly with image distortions. 
An attractive approach to distortion-invariant pattern recognition is based on SDF filters. 
These filters (called composite filters) use a set of training images (patterns), which are 
sufficiently descriptive and representative for expected distortions. A basic SDF filter is a 
linear combination of MSFs for different patterns (Casasent, 1984). The coefficients of the 
linear combination are chosen to satisfy a set of constraints on the filter output. Two 
different recognition problems can be solved with the composite filters.  

Intraclass Recognition Problem 
Let {ti(x,y); i=1,2,…,N} be a set of (linearly independent) training images each with d pixels. 
The SDF filter function h(x,y) in the spatial domain can be expressed as a linear combination 
of a set of reference images, i.e., 

1

( , ) ( , )

N

i i

i

h x y a t x y

=

= , (3) 
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where {ai; i=1,2,…,N} are weighting coefficients, and they are chosen to satisfy the following 
conditions: 

i it h q⊗ = . (4) 

Here the symbol ⊗  denotes the correlation, and {qi; i=1,2,…,N} are prespecified values in 

the correlation output at the origin for each training image.  
Let R denote a matrix with N columns and d rows (number of pixels in each training image), 
where its ith column is given by the vector version of ti(x,y). Let a and u represent column 
vectors of {ai} and {qi}, respectively. We can rewrite Eqs. (3) and (4) in matrix-vector notation 
as follows: 

=h Ra , (5) 

+
=q R h , (6) 

where superscript + means conjugate transpose.  

By substituting Eq. (5) into Eq. (6) we obtain 

+
=q (R R)a . (7) 

The (i,j)th element of the matrix Q=(R+R) is the value at the origin of the cross-correlation 

between the training images ti(x,y) and tj(x,y). If the matrix Q is nonsingular, the solution of 
the equation system is given by 

+ −
=

1a (R R) q , (8) 

and the filter vector is 

SDF
+ −

=
1

h R(R R) q . (9) 

The SDF filters with equal output correlation peaks can be used for intraclass distortion-
invariant pattern recognition, i.e., detection of distorted patterns belonging to the true-class 
of objects. This can be done by setting all elements of q to unity, i.e., 

[1 1 ... 1]T=q . (10) 

Multiclass Recognition Problem 
Assume that there are distorted versions of a reference object and various classes of objects 
to be rejected. For simplicity, we consider two-class recognition problem. Thus, we design a 
correlation filter to recognize training images from one class (called true class) and to reject 
training images from another class (called false class). Suppose that there are M training 
images from the false class {pi(x,y); i=1,2,…,M}. According to the SDF approach, the 
composite image h(x,y) is a linear combination of all training images {t1(x,y),…, 
tN(x,y),p1(x,y),…, pM(x,y)}. The both intraclass recognition and interclass discrimination  
problems can be solved by means of SDF filters. We can set the filter output {qi=1; 
i=1,2,…,N} for the true class objects and {qi=0, i=N+1,N+2,…,N+M} for the false class objects, 
i.e., 

[1 1 ... 1 0 0 ... 0]T=q . (11) 
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Using the filter given in Eq. (9), we expect that the central correlation peak will be close to 
unity for the true class objects and it will be close to zero for the false class objects. 
Obviously, the preceding approach can be easily extended to any number of classes to be 
discriminated. Note that this simple procedure is the lack of control over the full correlation 
output because we are able to control only the correlation output at the location of cross-
correlation peaks. Therefore, other sidelobes (false peaks) may appear everywhere on the 
correlation plane. To reduce the sidelobes, a composite correlation filter (called MACE filter) 
with a sharp correlation peak at the output was proposed (Mahalanobis et al., 1987). The 
MACE filter is synthesized in the frequency domain as follows: 

MACE
− + − −

=
1 1 1

H D P(P D P) q , (12) 

where D is a diagonal matrix, P is a matrix with N columns and d rows, where its ith
column is given by the vector version of Ti(u,v) (Fourier transform of ti(x,y)). The entries 
along the diagonal are obtained by averaging the power spectrum of each image (|Ti(u,v)|2;
i=1,2,…,N) and then scanning the average from left to right, and from top to bottom. 

2.2. Design of Adaptive Correlation Filters 

To achieve good recognition of the target it is necessary to reduce correlation function levels 
at all false peaks except at the origin of the correlation plane, where the constraint on the 
peak value must be met. For a given object to be recognized, false objects, and a background 
to be rejected, it can be done with the help of an iterative algorithm. At each iteration, the 
algorithm suppresses the highest sidelobe peak and therefore monotonically increases the 
value of discrimination capability until a prespecified value will be reached. The 
discrimination capability is formally defined as ability of a filter to distinguish a target 
among other different objects. If a target is embedded into a background that contains false 
objects, then the DC can be expressed as follows: 

2

2

)0,0(

)0,0(
1

T

B

C

C
DC −= , (13) 

where CB is the maximum in the correlation plane over the background area to be rejected, 
and CT is the maximum in the correlation plane over the area of target position. The area of 
target position is determined in the close vicinity of the actual target location. The 
background area is complementary to the area of target position. Negative values of the DC 
indicate that a tested filter fails to recognize the target. 
We are interested in a correlation filter that identifies a target with a high discrimination 
capability in cluttered and noisy input scenes. Actually in this case, conventional correlation 
filters yield a poor performance (Javidi & Wang, 1992). With the help of adaptive composite 
filters, a given value of the DC can be achieved. The algorithm of the filter design requires 
knowledge of the background image. Thus, we are looking for the target with unknown 
location in the known input scene background. The background can be described either 
stochastically, for instance, it can be considered as a realization of a stochastic process, or 
deterministically, which can be a picture. The background can also contain false objects with 
unknown locations. The first step is to carry out correlation between the background and a 
basic SDF filter, which is initially trained only with the target. Next, the maximum of the 



Vision Systems - Segmentation and Pattern Recognition 520

filter output is set as the origin, and around the origin we form a new object to be rejected 
from the background. This object has the region of support equals to that of the target. The 
created object is added to the false class of objects. Now, two-class recognition problem 
described in Section 2.1 is utilized to design a new SDF filter; that is, the true class contains 
only the target and the false class consists of the false class objects. The described iterative 
procedure is repeated till a given value of the DC is obtained. Finally, note that if other 
objects to be rejected are known, they can be directly included into the false class and used 
for the design of adaptive SDF (ASDF) filter. A block-diagram of the procedure is shown in 
Fig. 1.  
The proposed algorithm consists of the following steps: 

1. Design ASDF filter as a conventional SDF filter trained only with the target. 
2. Carry out correlation between the background and the ASDF filter. 
3. Calculate the DC using Eg. (13). 
4. If the value of the DC is greater or equal to the desired value, then the filter design 

procedure is finished, else go to the next step.  
5. Create a new object to be rejected from the background. The origin of the object is 

at the highest sidelobe position in the correlation plane. The object is included into 
the false class of objects.  

6. Design a new ASDF filter utilizing two-class recognition problem. The true class 
contains only the target and the false class consists of the false class objects. Go to 
step 2. 

Correlation process. 

Calculation of DC.

Adaptive SDF filter

design (ASDF)

Input

Target

Make training image

from background

DC >= desired

DC ?
no

Exit

Input

Background

Fig. 1. Block-diagram of the iterative algorithm to design the adaptive SDF filter. 

At each iteration, the algorithm chooses among all sidelobes such a peak to be suppressed in 
next step to ensure a monotonically increasing behavior of the DC versus the iteration index 
during the filter design. As a result of the procedure, the adaptive composite filter is 
synthesized. The performance of the filter in recognition process is expected to be close to 
that of in the synthesis process. Extensive computer simulations showed that for 
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complicated input scenes with real and stochastic cluttered backgrounds the number of 
iterations needed to achieve the value of the DC higher than 0.9 is about 10. 

2.3. Computer Simulations 

In this section, computer simulation results obtained with adaptive SDF filters are 
presented. The results are compared with those of the POF, the OF, and the MACE filters. 
The target is the airplane shown in Fig. 2(a).  

                

(a)     (b) 
Fig. 2. Test images: (a) target, (b) real background. 

The size of all images used in the experiments is 256×256 pixels. The signal range is 0 to 255. 
The mean value and the standard deviation over the target area are 130 and 42, respectively. 
The size of the target is about 69×26 pixels. In the first experiment, we use a real spatially 
inhomogeneous background shown in Fig. 2(b). The mean value and the standard deviation 
of the background are 104 and 40, respectively.  
Figure 3 shows the performance of the adaptive filter in the filter design process in terms of 
the DC versus the iteration index.  
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Fig. 3. Performance of the adaptive SDF filter in the design process. 

After the first iteration the value of the DC is negative. After 20 iterations, the obtained 
ASDF filter yields DC=0.982. This means that a high level of control over the correlation 
plane for an input scene constructed from the background and the target can be achieved. 
Next, we test the recognition performance with various correlation filters when the target is 
imbedded into the background at arbitrary coordinates. We carried out 30 statistical trails of 
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the experiment for different positions of the target. With 95% confidence the performance of 
the ASDF, the POF, and the OF with respect to the DC are given in line 1 of Table 1.  

 POF OF ASDF 

Scene without false target 0.35±0.22 0.66±0.10 0.95±0.01 

Scene with false target 0.27±0.22 0.60±0.12 0.95±0.01 

Table 1. Performance of correlation filters in terms of DC. 

It can be seen that the proposed adaptive filter yields the best performance in terms of 
discrimination capability.  
Next, we place a false object into the input scene, as it is shown in Fig. 4 (a). The 
performance of the correlation filters are given in line 2 of Table 1. One can observe that the 
ASDF filter yields the best performance with respect to the DC. Figure 4(b) shows the 
intensity distribution of the correlation plane obtained with the ASDF filter.  

        

 (a)   (b) 
Fig. 4. (a)  Test scene, (b) correlation intensity plane obtained with the ASDF filter. 

Now we investigate tolerance of the correlation filters to small geometric image distortions. 
Several methods have been proposed to improve pattern recognition in the presence of such 
distortions. These methods can be broadly classified into two groups. The first class 
concerns formally with 2-D scaling and rotation distortions. Such methods include space-
variant transforms and circular harmonic functions (Arsenault & Hsu, 1983). The second 
class of filters uses training images that are sufficiently descriptive and representative of the 
expected distortions. The proposed method is based on the second approach. In our 
experiments, geometric distortion by means of rotation is investigated. Distorted versions of 
the target shown in Fig. 2(a) are used. The step and the range of object rotation are 1 deg and 
[0, 30], respectively. The ASDF filter is designed with seven versions of the object rotated by 
0, 5, 10, 15, 20, and 25 degrees and the background scene shown in Fig. 2(b). After 30 
iterations, the obtained ASDF filter yields DC=0.92. The test scene with three targets rotated 
by 4, 14, and 20 degrees is shown in Fig. 5(a). Figure 5(b) shows the intensity distribution of 
the correlation plane obtained with the ASDF filter. 
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 (a)         (b) 
Fig. 5. (a)  Test scene, (b) correlation intensity plane obtained with the ASDF filter. 

The performance of the ASDF and MACE filters is given in Figs. 6 and 7, respectively. The 
MACE filter was synthesized with the same objects as the ASDF filter. Note that the 
conventional SDF filter fails to detect the rotated target in the cluttered background. 
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Fig. 6.  Tolerance of the ASDF filter to rotation.   
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Fig. 7.  Tolerance of the MACE filter to rotation.   

We can see that the proposed filter possesses much better tolerance to rotation than the 
MACE filter. The ASDF filter adapts well by training to rotations of the target. Obviously, 
the preceding approach can be easily extended to any small geometric distortion of a target.  
Finally we test robustness of correlation filters to additive sensor’s noise that is always 
present in input scenes. The test scene shown in Fig. 5 (a) is used. The scene is corrupted by 
additive zero-mean white Gaussian noise while the standard deviation of additive noise is 
varied. Figure 8(a) shows the input scene corrupted by additive zero-mean white Gaussian 
noise with the standard deviation of 40. Figure 8(b) shows the intensity distribution of the 
correlation plane obtained with the ASDF filter.  

         

 (a)     (b) 
Fig. 8. (a)  Input scene corrupted by zero-mean additive white noise with a standard 
deviation of 40, (b) correlation intensity plane obtained with the ASDF filter. 
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The tolerance of correlation filters to additive noise in terms of the DC is presented in Fig. 9.  
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Fig. 9.  Tolerance of correlation filters to additive white noise.   

Since the synthesis of the ASDF filter takes into account additive noise by training with a 
noise realization, the filter provides a good robustness to the noise. In contrast, the 
performance of the MACE filter deteriorates quickly when signal noise fluctuation increases. 

3. Adaptive Hybrid Optodigital Systems 

Real-time pattern recognition systems based on correlation were vastly investigated in the 
last decades. This is because correlation filters can be implemented optically or by using 
hybrid (optodigital) systems exploiting the parallelism inherent in optical systems. These 
systems are able to carry out the recognition process at a high rate. Hybrid systems with the 
use of liquid crystal displays (LCDs) as spatial light modulators (SLMs) are flexible. 
Optodigital systems for real-time pattern recognition can be implemented on the basis of 
two principal architectures: 4f correlator (4FC) (VanderLugt, 1964) and joint transform 
correlator (JTC) (Weaver & Goodman, 1966). The advantage of the JTC compared to the 4FC 
is that the former is less sensitive to misalignments of an optical setup such as scale, 
horizontal, vertical, and azimuthal differences between the input and frequency planes. The 
SDF filters for distortion invariant pattern recognition were originally introduced on the 
basis of the 4FC. Many efforts were made to find an effective implementation of SDF filters 
with the JTC. In this chapter we describe an iterative algorithm to design adaptive 
correlation filters for the JTC architecture. The proposed algorithm takes into account 
calibration lookup tables of all optoelectronic devices used in real experiments.   

3.1. Joint Transform Correlators 

The JTC introduced in 1966 by Weaver and Goodman is shown in Fig. 10.  
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Fig. 10. Block diagram of the classical JTC. 

The input plane (joint image) ( , )f x y  is composed by the scene image ( , )s x y  alongside the 

reference image ( , )t x y  separated by a distance ∆  each from origin. The joint image 

(displayed in LCD1, see Fig. 10) can be written as 

( , ) ( , ) ( , )f x y s x y t x y= + ∆ + − ∆ ,  (14) 

and its Fourier transform (generated by L1) 

( , ) ( , )exp( ) ( , )exp( )F u S u i T u iν ν ν ν ν= ∆ + − ∆ . (15) 

The joint power spectrum (captured with CCD camera 1) is given by  

2 2 2

* *

( , ) ( , ) ( , ) ( , )

( , ) ( , )exp( 2 ) ( , ) ( , )exp( 2 ).

E u F u S u T u

S u T u i T u S u i

ν ν ν ν

ν ν ν ν ν ν

= = +

+ ∆ + − ∆

 (16) 

Applying the inverse Fourier transform to Eq. (16) (by action of L4) we obtain 

( , ) ( , ) ( , ) ( , ) ( , )

( , 2 ) ( , 2 ) ( , 2 ) ( , 2 )

e x y s x y s x y t x y t x y

s x y t x y s x y t x y

= ⊗ + ⊗

+ + ∆ ⊗ + ∆ + − ∆ ⊗ − ∆
. (17) 

We can see that the autocorrelations of the scene and target images mainly contribute at the 
origin, whereas the cross-correlation terms, which are the terms of interest, are placed at the 

distances 2± ∆ . A drawback of the classical JTC is its low tolerance to geometrical distortions 
of objects and to noise when objects are embedded in a nonstationary background noise. 

Assumes that the input image ( , )f x y  contains the input objects ( , )s x y  (desired and 

nondesired) and the non-overlapping background ( , )b x y :

( , ) ( , ) ( , ) ( , ),f x y s x y b x y t x y= + ∆ + + ∆ + − ∆  (18) 

where

0 0( , ) ( , ) ( , ),b x y w x x y y b x y= − −  (19) 

and 0 0( , )x y  are unknown coordinates of the target in the input scene; 0 0( , )w x x y y− −  is a 

binary function defined as 
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0 0

0, within the object area
( , )

1, otherwise
w x x y y− − = . (20) 

The joint power spectrum is given by 

22 2 2

* * *

* * *

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) exp( 2 )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) exp( 2 ).

F u S u T u B u

T u S u T u B u S u B u i

T u S u T u B u S u B u i

ν ν ν ν

ν ν ν ν ν ν ν

ν ν ν ν ν ν ν

= + +

+ + + ∆

+ + + − ∆

 (21) 

Note that the joint power spectrum contains the Fourier transforms with phase the factors of 

exp( 2 )i ν± ∆  corresponding to the cross-correlation terms between the target and the input 

objects, the target and the background, and the input objects and the background. The later 
correlation term severely affects the DC. 
To improve the correlation performance of the JTC, several partial solutions were proposed: 
the nonlinear JTC (Javidi, 1989) and the fringe-adjusted JTC (Alam & Karim, 1993). In the 
former a nonlinear element-wise transformation of the joint power spectrum is carried out 
before applying the inverse Fourier transform. In the latter the joint power spectrum is 
multiplied by the frequency response of a real-valued filter before applying the inverse 
Fourier transform. These two approaches yield a better performance compared to that of the 
classical JTC in terms of correlation peak intensity, correlation width, and discrimination 
capability. 

3.2. Adaptive Joint Transform Correlator 

We wish to design a JTC that ensures a high correlation peak corresponding to the target 
while suppressing possible false peaks. To achieve a good recognition of the target, it is 
necessary to reduce correlation function levels at all sidelobes except at the origin of the 
correlation plane, where the constraint on the peak value must be meet. For a given object to 
be recognized and for false objects and background to be rejected, an iterative algorithm is 
used. At each iteration, the algorithm suppresses the highest sidelobe peak and therefore 
monotonically increases the value of discrimination capability until a prespecified value is 
reached. With the help of adaptive SDF filters, a given value of the DC can be achieved.  
The first step is to carry out the joint transform correlation between the background and a 
basic SDF filter, which is initially trained only with the target. Next the intensity maximum 
of the filter output is set as the origin, and around the origin we form a new object to be 
rejected from the background. The created object is added to the false class of objects. Now a 
two-class recognition problem is utilized to design a new SDF filter; that is, the true class 
contains only the target and the false class consists of the false-class objects. The described 
iterative procedure is repeated until a given value of DC is obtained. Note that if other false-
objects are known, they can be directly included in the false class and used for the design of 
the adaptive filter. A block diagram of the procedure is shown in Fig. 11.  
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Fig. 11. Block diagram of the iterative algorithm for the design of the adaptive JTC. 

The proposed algorithm consists of the following steps: 
1. Create a basic SDF filter trained only with the target. 
2. Create the input image (see Eq. (14)) by composing the designed SDF filter and the 

image to be rejected (nondesired objects or a background). 
3. Carry out the joint transform correlation including calibration lookup tables of all 

optoelectronics devices such as a real SLM and a CCD camera. 
4. Calculate the DC using Eq. (13). 
5. If the value of the DC is greater or equal to the desired value, then the filter design 

procedure is finished; otherwise, go to the next step. 
6. Create a new object to be rejected from the background. The origin of the object is 

at the highest sidelobe position in the intensity correlation plane. The region of 
support of the new object is the union of the shapes of all objects involved in the 
process (desired and non-desired objects). The object is included in the false class of 
objects.

7. Design a new SDF filter utilizing the two-class recognition problem. The true class 
contains only the target and the false class consists of the false class objects. Go to 
step 2. 

3.3. Optodigital Implementation 

Twisted nematic LCDs are widely used for real-time pattern recognition. Their important 
characteristics are as follows: 

1. They are electrically controlled with standard video signals. 
2. They can operate as amplitude-only or phase-only modulators by changing the 

direction of the polarization vector of the incident light (Lu & Saleh, 1990). 
3. They operate at the speed of conventional television standards. 
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4. They can handle a dynamic range of [ ]0,255  for amplitude modulation and a 

phase range of [ ],π π−  for phase modulation. 

In general, the impulse response of SDF filters is a bipolar image. To introduce these kinds 
of images into spatial light modulators we use two methods.

First method is called bipolar decomposition method. Assume that ( , )h x y  is a bipolar 

impulse response: 

( , ) ( , ) ( , ),h x y h x y h x y+ −
= −  (22) 

where

( , ), ( , ) 0
( , )

0,

h x y h x y
h x y

otherwise

+ >
= , (23) 

and

( , ), ( , ) 0
( , )

0,

h x y h x y
h x y

otherwise

− ≤
= . (24) 

The intensity cross-correlation between ( , )s x y  and ( , )h x y  may be written as follows: 

2
2

2 2 2 2

( , ) ( , ) ( , ) ( , ) ( , )
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+ −

+ − + +

= = ⊗ ⊗

= ⊗ + ⊗ − ⊗ ⊗

 (25) 

It can be seen from Eq. (25), that with the help of decomposition and simple postprocessing, 
how to obtain the output of the JTC when the reference image has positive and negative 
values. Note that with the bipolar decomposition method two independent optical 
correlations are needed. 
The second method is referred to as constant addition method. The idea of the method is to 
transform the input composed bipolar image into an input composed nonnegative image. It 
can be easily done by adding a bias value to the input bipolar image. Next the joint 
transform correlation with the input composed nonnegative image is performed. Simple 
postprocessing is required to obtain the output of the JTC. Note that we need only one 
optical correlation. The transformed nonnegative joint image can be written as 

( ) ( ) ( ), , ,f x y s x y h x y= + ∆ + − ∆ , (26) 

where ( , ) ( , )s x y s x y c= +  and, ( , ) ( , )h x y h x y c= + , ( ),s x y  is the scene image, ( , )h x y  is the 

bipolar image, and [ ]( , )c MIN h x y=  is a constant value. The intensity output of the JTC with 

the new joint image is given by 
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22

2 2
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+ + ∆ ⊗ + ∆ + − ∆ ⊗ − ∆

 (27) 

The two latter terms of Eq. (27) are the terms of interest. The intensity of the cross-

correlation between ( , )s x y  and ( , )h x y  can be computed from the intensity of the cross 

correlation between nonnegative images as follows: 

[ ] [ ] [ ]

{ } [ ]{ }
[ ]{ }

222

2 2 2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )

2 ( , ) ( , ) 2 (

s x y h x y s x y c c h x y c c s x y c h x y c

s x y h x y h x y c s x y c c c

s x y h x y h x y c s x y h x y s x y c

s x y h x y c c h x

⊗ = + − ⊗ + − = − ⊗ −

= ⊗ + ⊗ + ⊗ + ⊗

− ⊗ ⊗ − ⊗ ⊗

+ ⊗ ⊗ + [ ]{ }
[ ]{ } [ ][ ]{ }

, ) ( , )

2 ( , ) 2 ( , ) .

y c s x y c

h x y c c c s x y c c c

⊗ ⊗

− ⊗ ⊗ − ⊗ ⊗

 (28) 

Further simplifying, we can write  
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Here, ( , ) ( , )s x y h x y⊗  can be obtained by applying the pointwise square root to the 

intensity
2

( , ) ( , )s x y h x y⊗ , constants 1 ( , )C h x y c= ⊗ , 2 ( , )C s x y c= ⊗ , and 3C c c= ⊗  are 

computed in the following way: 
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≈ ≈
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where, α  is a normalization factor and the symbol “ [ ] ” denotes the summation of all 

elements of the image. 

3.4. Experimental Results 

First we characterized optoelectronics devices such as a twisted neimatic LCD of 800x600 
pixels and a monochrome CCD camera of 640x480 pixels. The LCD worked in the 
amplitude-only modulation regime. Figure 12 shows the experimental calibration lookup 
table of the intensity response of the LCD captured with the CCD camera. 
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Fig. 12. Intensity response of a twisted neimatic LCD captured with a CCD camera. 

It can be seen from Fig. 12 that a gray-scale dynamic range is [0-48]. It is interesting to note 
that in this range the plot is nonlinear due quantization effects, and it is well approximated 

with a kth-law nonlinearity 
k2

InputOutput
−

=  when 7.0k = . We used this information 

in the iterative process of the adaptive JTC design.  
The size of the input images used in our experiments is 128 x 128 pixels. The signal rage is 
[0, 255]. The input scene is shown in Fig. 13 (a).  

          

 (a)  (b) 
Fig. 13. (a) Input scene containing two objects with similar shapes but with different 
information content; (b) bipolar reference image obtained with the proposed method. 

The scene contains two objects with a similar shape and size (approximately 44x28 pixels) 
but with different gray-level contents. The target is the upper butterfly with black- wings. 
The objects are embedded into an aerial picture at unknown coordinates. The performance 
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of the adaptive JTC in the design process after eight iterations reaches DC = 0.95. The 
obtained bipolar reference image is shown in Fig. 13 (b).  

(a)

(b)
Fig. 14. Computer simulation results obtained for the input scene in Fig. 13 (a) with: (a) 

binary JTC, (b) fringe-adjusted JTC.
We compare the performance of proposed adaptive JTC with those of the binary JTC and 
the fringe-adjusted JTC. The intensity correlation planes obtained with latter two systems 
are shown in Fig. 14. We see that the binary JTC and the fringe-adjusted JTC fail to 
discriminate the target against the false object with a similar shape.  Next we test digitally 
the recognition performance with the adaptive JTC. The correlation intensity plane obtained 
with the adaptive JTC for the input scene in Fig. 13 (a) is shown in Fig. 15. 
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Fig. 15. Computer simulation result obtained for the input scene with the adaptive JTC. 

Note that the target is clearly detected. The adaptive JTC architecture can reliably detect a 
target embedded in a noisy background even if the target presents small geometric image 
distortions. We used 50 statistical trials of our experiment for different positions of the 
target. With 95% confidence, the DC obtained in computer simulation is equal to 0.82±0.003. 

Bipolar Decomposition Method Results 

The first optodigital experiment is based on the bipolar decomposition method. The 
reference image in Fig. 13(b) has real positive and negative values. We decompose this 
image into two nonnegative images (see Eqs. (22)-(24)). Two experiments are performed. In 
the first experiment the input scene is composed with the positive part of the reference 
image and the joint transform correlation is carried out. The experiment is repeated with the 
negative part of the reference image. The intensity correlation plane obtained after the 
postprocessing given in Eq. (25) is shown in Fig. 16. The DC obtained in the experiment is 
equal to 0.78. 

Constant Addition Method Results 

The second optodigital experiment is based on the constant addition method described. We 
use the input image and the reference image shown in Fig. 13. The SLM has a finite size (less 
than the size of the optical lens), and, after adding a high constant bias to the joint image, the 
signal at the plane of the SLM may be considered as a signal masked by a rectangular 
window.
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 (a)  (b) 
Fig. 16. Cross-correlation intensity plane obtained with bipolar decomposition method: (a) 
intensity plane, (b) intensity distribution. 

The joint image formed for the constant addition method is shown in Fig. 17. 

Fig. 17. Joint image formed for the constant addition method. 

The Fourier transform of such a signal is the convolution between the spectrum of the joint 
image and a sinc function (Fourier transform of the rectangular window). Actually, the sinc 
function possesses high sidelobes that may severely affect the joint power spectrum. To 
avoid these effects, the input joint image is masked by a window with smoothed edges. 

Next we calculate all needed constants 1C , 2C , and 3C  given in Eq. (30). Figure 12 gives 

the relationship between a dynamic range of the used optodigital LCD and CCD camera and 
a digital range of a signal. Whereas digital images possess a range of [0-255] gray-scale 
levels, the signals in the optodigital domain have a range of [0-48] levels. We need to scale 
all images and the constant bias involved in the optodigital setup. The needed constants are 

equal to 1 31.75C = , 2 23.03C = , and 3 40C = . The α  value can be estimated as 1/ csα = ,
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where s  is the number of image pixels. The cross-correlation intensity plane obtained in the 

optodigital JTC after postprocessing is shown in Fig. 18.  

 (a)  (b) 
Fig. 18. Cross-correlation plane obtained with constant addition method; (a) intensity plane, 
(b) intensity distribution. 

One can observe that the target is successfully recognized with DC=0.648. Finally, note that 
this method requires only one optical correlation, whereas the bipolar decomposition 
method uses two correlations to reconstruct the desired output. 

4. Conclusion 

Adaptive pattern recognition is still in state of rapid evolution. In this chapter we proposed 
digital and hybrid optodigital systems designed on the base of adaptive correlation filters to 
improve recognition of objects in cluttered backgrounds. It was shown that the proposed 
iterative filter design algorithms with a few training iterations helps us to take the control 
over the whole correlation plane. The digital systems are based on iterative training of the 
SDF filters. The hybrid systems additionally take into account real characteristics of used 
optoelectronics devices. The digital systems can be easily implemented in a computer, 
whereas the hybrid systems are able to provide real-time pattern recognition. The computer 
simulation and experimental results demonstrated a good performance of the proposed 
filters for pattern recognition comparing with known correlation filters. The suggested 
filters possess high scene-adaptivity, good robustness to small geometric image distortions 
and input noise.  
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