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1. Multiple hypothesis tracking 

Laserscanner sensors deliver distance measurements from the reflections of objects in the 
environment. In most automotive applications, the output of the sensor should consist of a 
list of detected objects. A common architecture for object detection in a laserscanner 
processing system is the following: 

 

Fig. 1. Laserscanner measurements processing architecture 

Tracking algorithm takes as input a list of clustered laserscanner measurements (objects), 

which for simplicity will be called measurements. The tracking algorithm forms a track 

whenever there is “enough” evidence that a sequence of measurements represents a real 

target. Additionally, by using the appropriate filtering techniques the tracking algorithm 

estimates the kinematic state of the formed track.  

A basic step of a tracking algorithm is the measurement to track association. This is a very 
important procedure since wrong association could mean updating a track with a wrong 
measurement, initialization of a false track or deletion of a real track if it has erroneously not 
been associated with a measurement for one or more scans.  

When a new set of measurements is outputted by the sensor, each measurement can i) be 
assigned to existing track, or ii) initiate a new track or iii) be considered as a false alarm. The 
simplest and most widely spread approach for measurement to track and track to track 
association, is the global nearest neighbour algorithm (GNN) (Blackman 1999). This 
approach formulates the most likely track to measurement and new track hypotheses. In the 
Joint Probabilistic Data Association (JPDA) algorithm (Fortmann T. 1983), multiple track to 
measurement hypotheses are generated. Hypotheses probabilities are calculated and then 
assignment hypotheses for each track are merged. With this method, track state is updated 
using all the measurements that are within the track gate by using a weighted sum of each 
hypothesis track estimate. These two methods form one track estimate for each track 
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hypothesis. So, GNN and JPDA methods make a “hard” decision on the current scan in 
cases of conflicting measurement to track association hypotheses. 

On the other hand, Multiple Hypotheses Tracking (MHT) methods form alternative 
association hypotheses in case of observation to track conflict situations. The set of 
hypotheses is propagated in the next scans with the anticipation that future observations 
will resolve assignment ambiguities. This method is divided into two approaches, the 
hypothesis oriented MHT (HOMHT) and the track oriented MHT (TOMHT). 

In order to demonstrate the difference between these tracking techniques a practical 
example will be shown. Assuming there are 2 tracks on scan N and 3 measurements are 
received in the same scan. The gate formation is illustrated in Fig. 2. 

T2
M1

M2

M3

 

Fig. 2. Gating procedure, tracks are drawn with triangles and measurements are drawn with 
crosses. 

If ijd is the statistical distance between track i and measurement j , and this distance is less 

than a threshold value (gate size), this pair is candidate for association. Gating is necessary 

for elimination of unlikely observation to track pairs. Usually a cost function is used for 

defining the cost of assigning track i to measurement j . The GNN algorithm would use an 

optimization algorithm for solving this problem, so by using this method T2 would be 

updated using M2, and T1 would be updated using M1. M3 would initiate a new track. On 

the other hand, by using JPDA, T2 would be updated by using all measurements and T1 

would be updated using M1. The MHT will form different hypotheses by taking into 

account all the possible sources of a measurement: i) new track, ii) false alarm and iii) 

existing track.  

This chapter aims into giving the reader an overview of the Multiple Hypothesis Tracking 
approach. This technique is a complicated approach that has a strong mathematical 
formulation and many variations regarding proposed implementations. This chapter aims to 
give the reader an overview of the Multiple Hypotheses Tracking philosophy along with 
some practical examples regarding techniques used in MHT. Reader is encouraged to use 
this chapter as a starting point of getting familiar with this technique and investigate further 
with other more focused publications on this topic. Since this chapter aims in making the 
reader familiar with MHT, complicated mathematical expressions were avoided  
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2. Hypothesis oriented MHT  

Hypothesis oriented MHT presents an exhaustive method of enumerating all possible 
assignment track to measurement combinations. When a new measurement set is received, 
observations that fall within a track’s validation region set a possible measurement to track 
assignment. 

The idea of propagating multiple assignment hypotheses was first presented in (Singer et. 
al.,1974), however Reid is considered as the first to present a systematic approach using a 
hypothesis oriented approach for implementing a multiple hypothesis tracker (Reid 1979). 
In this approach, when a new set of measurements is received, an existing hypothesis is 
expanded to a set of new hypotheses by considering all the possible assignments of the 
tracks contained in the original hypothesis. Each hypothesis contains a set of compatible 
observation to track assignments, leading to an exhaustive approach of enumerating all the 
possible assignment combinations  

 

Fig. 3. Tree representation of the formed hypotheses 

Taking as example the assignment problem in Fig. 2, the formed hypotheses can be 
represented in tree (Fig.3) or table representation (Fig. 4). The root of the tree is the original 
hypothesis – in the current example the original hypothesis is that there are two tracks. The 
first expansion of the hypothesis tree is done by using all the possible assignments of the 
first measurement. The numbers in the nodes indicate to which track the measurement is 
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assigned. Regarding the origin of measurement 1, 4 hypotheses can be made: i) false alarm 
(assignment to the zero track), ii) new track (assignment to track number 4) , iii) and iv) 
assignment to existing tracks 1 and 2. In the same way the rest of the tree is created. It can be 
seen that the tree depth is equal to the number of measurements in the current scan. From an 
implementation perspective, it is more practical to represent the set of hypotheses in a matrix 
form. After taking into account the first measurement, the hypotheses matrix is a 4x1 matrix. 
Some lines of the hypothesis matrix are marked in red. These are hypotheses that don’t contain 
compatible assignments (a track is assigned to more than one measurement), thus these lines 
(branches) of the hypotheses matrix (tree) have to be deleted.  

0 0 0

1 0 0

2 0 0

3 0 0

0 2 0

1 2 0

2 2 0

3 2 0

0 4 0

1 4 0

2 4 0

3 4 0

0 0 2

1 0 2

2 0 2

3 0 2

0 2 2

1 2 2

2 2 2

3 2 2

0 4 2

1 4 2

2 4 2

3 4 2

0 0 5

1 0 5

2 0 5

3 0 5

0 2 5

1 2 5

2 2 5

3 2 5

0 4 5

1 4 5

2 4 5

3 4 5

 

Fig. 4. Matrix representation of the formed hypotheses 

It has to be mentioned that according to the association that has been considered as correct, 

the state estimation of the a track is not the same in different hypothesis. For example, track 

2 estimates in hypotheses [2  4  5], [1  2  5] and [1  0  5] are different since in each case the 

track is updated with a different measurement. 
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2.1 Implementation example 

In Fig. 5 a basic architecture of the MOMHT is given. This section will give an overview of 
the basic processing steps of the method. 

Measurements

Hypotheses
Evaluation/

Deletion

Gate
Computation

Hypotheses
Formation

Track State 
Prediction

 

Fig. 5. MOMHT basic architecture 

Assuming that the laserscanner processing in scan k provides M possible objects each 

having a measurement vector mz , 1m M  . Each hypothesis contains a set of 

tracks  ix k , 1i N  , with respective covariance  iP k . The criterion that a measurement 

mz  is inside the track gate of size G is based on the innovation vector m iz H x  , where H  

is the measurement matrix: 

 1( ) ( )T
i im mZ H B Zx H Gx    (1) 

where iB H RPH  and R  is the measurement noise covariance matrix. 

Then the hypothesis formation step is taking place. The gating procedure indicated the 
compatible track-measurement pairs of the current hypothesis. From an implementation point 
of view each line of the hypothesis matrix of scan k-1, which represents a hypothesis, is 
expanded into a new sub-matrix. This recursive procedure is repeated for each line of the 
hypothesis matrix resulting in the hypothesis matrix of scan k (Fig. 6). The new sub-matrix is 
expanded by inserting a new column until each measurement is added. When a new 
measurement is taken into account all the possible origins of this measurement will form the 
corresponding hypotheses. In any case, each measurement will form two hypotheses, one for 
assuming the measurement as false alarm and one considering the measurement as new 
target. Then, according to the gating results, additional hypotheses will be formed in case the 
measurement is inside one or more track gates. In the first scan, where there are no prior 
tracks, measurements are considered only as false alarms and new tracks. Attention has to be 
made that the associations within the hypothesis should be compatible. As a result a track 
cannot be assigned to two measurements in the same hypothesis.  

Gating can be a time consuming process since a measurement set has to be check with the 
track set of each hypothesis. If the statistical distance calculation involves a matrix inversion, 
the gate calculation can cost a great part of the total MHT calculation time. During the 
implementation, the least complex distance measure should be chosen (for example 
Euclidean), that delivers the required results. In addition, distance measure calculation is 
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affected by the sizes of the used matrixes. For example a four state track vector takes less 
time for gate computation than a six state vector. 

Hyp(k-1)1

Hyp(k-1)2

…

Hyp(k-1)i

…
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Hyp(k-1)j
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hypothesis

Formation of 
Hypotheses matrix in 

scan k

Size M

 

Fig. 6. Expansion of the hypotheses matrix 

In parallel to the hypothesis formation, the track states are also updated. If a track has been 
associated with a measurement in the current scan, the state update is performed using the 
Kalman filter: 

        
_ _

ˆ [ ]x k x k K z k H x k    (2) 
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  
1_ _ _ _

ˆ T TP k P P H H P H R H P


 

   
 

 (3) 

where K is the Kalman gain. As it has already been mentioned, a track with the same ID will 
have different state vectors in each hypothesis since it has been associated with a different 
measurement. In addition to the track state update, the hypothesis probability is also 
calculated and is described in section 4.2.  

The next step of the algorithm is the reduction of the number of hypotheses. Since this 
method uses all the possible assignment possibilities, many of the hypotheses will have a 
very low probability and will be deleted after they have been created. There is a variety of 
hypotheses reduction techniques which will be discussed in Ch. 5. 

An important aspect of the algorithm is to output a file of confirmed tracks. As already 
mentioned the essence of MHT is to resolve assignment ambiguities in the future. Usually 
the number of scans that hypotheses are propagated is fixed, called also as window size. 
This means that we go a number of scans back in the hypothesis tree and make a decision 
about the origin of the measurement. Assuming we have a window size equal to 3, on scan 
N we go back to the columns of the hypothesis matrix corresponding to scan N-2. Each 
column represents the possible origins of the measurement. If the entries in a particular 
column are the same, this means that the measurement has a unique origin, so the track that 
is associated with this measurement has a probability equal to one and can be considered as 
confirmed. If the measurement does not have a unique origin the authors use the following 
procedure. In the case mentioned there are two options: a) no track is confirmed from this 
particular measurement and we wait for future scans in order to confirm a target or b) if a 
track is more likely to be associated with the measurement then this track can be considered 
as confirmed. An illustrative example can be seen in Fig. 7. If measurement 2 has a unique 
origin, track 1 is confirmed. On the other hand if there are two assignment options with 
probabilities P1 and P2, depending on the implementation neither track 1 or track 2 are 
confirmed or if P2>P1 and P2>Pthreshold track 2 is confirmed. Usually, it is useful to keep a list 
which indicates the hypotheses that contain each track. In this way, the track probability and 
state vector can be retrieved from each hypothesis. 

After track confirmation the question is which is the track state and covariance that will be 
given to the output. The simplest method is to take the most probable hypothesis and use 
the state vector from this particular hypothesis. Another option is to combine the estimates, 
by using for example JPDA or a simple weighted sum using track probabilities, in order to 
combine the estimates from all the hypotheses that contain the track. In addition to the track 
confirmation, the implementation should incorporate a track deletion scheme. As mentioned 
a track’s probability is the sum of the probabilities that contain this track. So if a track has a 
low probability it should be deleted from all the hypotheses. An additional heuristic 
measure is to delete a track if it has no associations for a continuous number of scans. 

As it can be seen the track management scheme is based on the calculation of a probability 
of each hypothesis. The correct tuning of the parameters in the probabilistic expressions and 
the right choice in deletion and confirmation thresholds is crucial. Otherwise, wrong 
parameters can result in premature or delayed track confirmation and deletion. In addition, 
the propagation of a large number of hypotheses and tracks as a result of bad 
parameterization can compromise the real time efficiency of the algorithm. 
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Fig. 7. Selection of the best measurement- track association 

3. Track oriented MHT 

Track oriented MHT approach was introduced in (Y.-B. Shalom 1990) and in contrary to the 

hypothesis oriented approach, it does not maintain hypothesis from scan to scan. When a 

new measurement set is received, the existing track set is formed into an expanded new 

track set using all the possible assignments. This method does not maintain a hypothesis set 

between scans, but it maintains a set of tracks which are not compatible. This set of 

incompatible tracks is used to form the hypotheses. 

In order to point out the differences with HOMHT, the hypothesis formation method will be 

explained with the same example given in section 2. The original track set contains two 

tracks. These tracks are represented by the two leftmost trees in Fig. 8. The nodes are 

numbered according to the measurement that the track has been associated in the current 

scan. Let’s assume that Track 1 is associated with measurement 2 and Track 2 is associated 

with measurement 1 at the previous scan. Recalling the gating results (Fig. 2), there are 4 

possible assignments for Track 1. Assignment to the dummy measurement is indicated with 

0 and declares that the track is not assigned to any measurement in the current scan. A 

matrix representation of the formed tracks is depicted in Fig. 9. The difference with the 

hypothesis oriented approach is that each track is represented by a tree, and the alternative 

association hypotheses are represented by the different nodes in the target tree. Each node 

within the tree is incompatible with all the other tracks of the tree, so the set of tracks in the 

same tree can represent one target at the most. 
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Fig. 8. Tree representation of he formed tracks 

0 1

0 2

0 3

1 0

1 1

2 0

2 1

2 2

2 3  

Fig. 9. Table representation of the formed tracks 

3.1 Implementation example 

In this section a general description of the basic TOMHT steps will be described. An 

overview of sample architecture is depicted in Fig. 10. This is a sample logic and the 

sequence can be changed or more blocks may be added according to the implementation.  

As in section 2.1, the first step of the tracking algorithm is the gate computation. The gates 

are calculated using for example equation(1). All the possible assignments result in the 

formation of new tracks or updates of existing ones. The target tree expansion begins with 

the assumption that tracks are updated with the dummy measurement, meaning that the 

track is not updated with any measurement (indicated as node “0” in the target tree). 

Additionally all measurements spawn a new track. Then all the possible measurements that 

can be associated with a track are used to update the track state. This is indicated as 

different branches that are formed in the target tree. Taking as example track T2 in Fig. 8, the 

track may be assigned to the dummy measurement and also to measurements 1, 2 and 3. In 

parallel to the track formation step, track probabilities are also calculated (sect. 4.2). 

The next step is the reduction in the number of tracks. Each track is assigned with a 

probability. Tracks that have a probability lower than a defined threshold will be deleted. 

Additionally similar tracks (sec. 5.2) can also be merged, thus the overall number of tracks 

can be further reduced 
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Fig. 10. Architecture of TOMHT algorithm 

1 2

1 2 2 3

1 2 3 2 2

0 1 1 3 4 4

0 2 1 3 0 4 0 5 0 5

T1 T2

 

Fig. 11. Target tree pruning after solving the multi-dimensional assignment problem 

After the track reduction step, the target trees have to be pruned. Similarly to HOMHT we 

have to go back a number of scans in the past and decide which track-measurement 
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assignment is correct. For the rest of the section the following example will be used. Let’s 

assume we have a 5 scan window and the track hypotheses trees are formed as illustrated in 

Fig. 11. In this particular association problem we have to decide if T1 is associated with 

measurement 1 or 2 in scan N-3 and whether T2 is associated with measurement 2 or 3. 

Assuming that the correct track pairs are T1-M1 and T2-M3, all tracks that do not stem from 

these associations will be deleted. In order to perform the tree pruning, the multi-

dimensional assignment problem has to be solved. A possible solution that also has been 

used by the authors is the use of Lagrangian relaxation algorithm (Fisher 1981). The output 

of the algorithm will be a set of S-tuples that represent a set of compatible tracks. In our 

example the two 5-tuples will be [1 1 1 1 1] and [2 2 2 4 5] 

The final step of the presented TOMHT architecture is the formation of the most probable 

hypothesis. The number of trees indicates the maximum number of possible tracks. The total 

number of tracks is equal to the number of nodes in the target tree that correspond to the 

last scan or equal to the number of rows in the hypotheses matrix. As mentioned before, this 

set of tracks is incompatible. In order to form the most probable hypothesis that contains a 

set of compatible tracks, the tracks are arranged into descending probability order. The most 

probable track is added to the hypothesis. Then, the next most probable track is added. This 

track should be compatible with the rest of the track in the hypothesis. This procedure is 

continued until there are no more compatible tracks that can be added to the hypothesis. 

The steps of composing the most probable hypothesis in our example are depicted in Fig. 12. 

Apart from the best hypothesis, the m-best hypotheses may also be formed (Popoli et. 

al.,2001;Fortunato et. al., 2007). Tracks that are not contained in the m-best hypotheses can 

also be deleted. 
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Fig. 12. Hypothesis formation in TOMHT  

4.1 Window size 

An important parameter of the MHT algorithm is the number of scans that the track history 

is kept, called also the window size. The larger the window size, the larger the number of 
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hypotheses that are created. If the window size is N and in is the number of measurements 

in scan i , the tree depth in HOMHT will be
N

i
i 1

N n


 . TOMHT consists of multiple trees, each 

one having depth equal to N. Window size is a design parameter and should be chosen so 

that it is large enough to resolve assignment ambiguities but also not result in an 

unmanageable number of hypotheses. 

4.2 Hypotheses probability 

As mentioned, for each hypothesis a probability has to be calculated. In Reid’s original work 

the probability k
iP  of hypothesis k

i  formed from hypothesis k 1
i
  is calculated as follows: 

 

  

  1

1

1
1

,

NGT DT
NTDT FT

DT

N N NN Nk
i DD FT NT

N
k

m g
m

P P P
c

N Z Hx B P

 






 

 
  
  


 (4) 

Where: 

DP  = Probability of detection 

FT = Density of false targets 

NT = Density of previously unknown targets that have been detected 

DTN = Number of measurements associated with prior targets 

FTN = Number of measurements associated with false targets 

NTN = Number of measurements associated with new targets 

mZ H x and B are the innovation vector and innovation covariance matrix. 

Log Likelihood Ratio (LLR) is a more convenient value to be calculated. Many formulas 

exist for the calculation of this value. The basic advantage is that if ( 1)L k  is the LLR of track 

at scan k 1  the LRR ( )L k at scan k will be (Blackman 2004): 

 ( ) ( 1) ( )L k L k L k     (5) 

where ( )L k can be calculated using the original work in (Sittler 1964) or expressions like 

(Bar-Shalom et. al., 2007). Another advantage of LLR is that is a dimensionless quantity and 

it can also be easily converted to the probability TP  of a true target 

 / 1LLR LLR
TP e e     (6) 

5. Hypothesis and track management  

Multiple Hypothesis Tracking can result in an exponential increase of hypotheses, making 
this approach impossible without the use of hypotheses reduction techniques. In this section 
a number of techniques regarding hypotheses and track management will be presented, 
including some practical application examples. 
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5.1 Hypotheses clustering 

Clustering is a well explored topic in computer science (Bouguettaya & Le-Viet, 1998; 
Steinbach et. al., 2000) whereas it has also been applied to target tracking (Czink et. al., 
2006). Reid had indicated the need of a clustering scheme in order to improve the efficiency 
of his HOMHT algorithm implementation (Reid 1979). As a result, clustering was integrated 
into the HOMHT algorithm architecture  

Clustering is not a direct way of reducing hypotheses number in HOMHT. However it 
presents a way of dividing a large tracking problem into smaller tracking sub-problems. 
Each cluster consists of a separate hypothesis tree, so the number of hypotheses that are 
managed in each cluster is smaller than it would be in the case that the tracking problem 
was handled in one hypothesis tree. For example, it is not necessary to gate a measurement 
with all the tracks, but only to those tracks that belong to a particular cluster. In addition, 
with the use of multi core processors, it is possible to process each cluster separately.  

A cluster management algorithm for MHT mainly consists of three sub-routines: cluster 
initialization, cluster merging and cluster splitting. Cluster management should not allow 
clusters to grow uncontrollably. In this case, the additional processing overhead of cluster 
management algorithm will not be covered but the gains from the reduction in MHT 
processing time. 

The first step is to distribute the measurements into existing clusters. For every 

measurement i the distance ijd  from each cluster j is calculated. The calculation of the 

distance can be the defined as the statistical distance between the measurement and the 

cluster centroid for example. If ip  and ix are the probability and the estimate of track i in 

the cluster, the cluster centroid can be defined as follows: 

 
i i

i
c

i
i

p x

x
p





 (7) 

Alternatively, ijd can be considered as the closest distance between the measurement and 

the cluster’s tracks. If ijd is smaller than a threshold value then the measurement is assigned 

to the particular cluster. If the measurement is assigned to more than one cluster, these 

clusters are merged, a process that will be managed by the cluster merging routine. Finally, 

if the measurement is not assigned to any cluster, a new cluster is initialized. 

Cluster merging is the second routine of the clustering algorithm. If a measurement is 
associated with two clusters, these two clusters have to be merged. The merging method 
should combine the hypotheses that are contained in the two clusters. This involves the 
combination of the tracks and measurements that are contained in these two separate 
clusters. Additionally, a combined hypothesis matrix and tree has to be formed while the 
combined hypotheses probabilities have to be calculated. Assuming we have the case of Fig. 
13 where clusters A and B have to be merged. Cluster A has a two row hypothesis matrix 
whereas cluster B has a three row matrix. Numbers above each column represent the scan of 
the corresponding measurement. The final matrix combines the rows and columns of the 
initial matrixes, whereas the probability of the merged hypothesis will be the product of the 
probabilities of the merged hypotheses. 
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Fig. 13. Merging of two hypotheses matrixes 

Cluster splitting is the process where one track of a cluster is removed from this cluster and 
initiates a new cluster. For this purpose we have to set a similarity criterion for tracks within 
the cluster. A simple method is to use the Euclidian or Mahalanobis (8) distance in order to 
calculate the distance dij between the tracks. 

      
1

2 ˆ ˆ ˆ ˆ
T T T

ij i j i j i jd x x P P x x
      

 (8) 

where ˆix , iP and ˆ jx , jP are the state estimate and covariance of tracks i and j respectively. 

If this distance is greater than a define value, these tracks are considered to be candidate for 

splitting. Let’s assume we have 3 tracks, we form a 3x3 matrix which contains binary values. 

A value of “1” at entry (i,j) indicates that these two tracks are “far away” so they can be 

assigned to different clusters. A value of “0” indicates the opposite. This example is 

illustrated in Fig. 14. All the columns are examined sequentially, if the sum of the column is 

greater than zero, then this track is removed, along with the corresponding row and matrix, 
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and a new cluster is initiated. In addition, all the hypotheses that contained the particular 

track are removed from the hypotheses matrix. 

1 2 3

1 0 1 0

2 1 0 1

3 0 1 0

2 3

2 0 1

3 1 0

3

3 0

T1,T3T2

T1,T2,T3

2 3

2 0 1

3 1 0

T2T1 T3

 

Fig. 14. Cluster splitting procedure 

A final routine that a clustering algorithm should include is the cluster deletion. Clusters 
that do not contain any tracks should be deleted. Similar clustering strategy applied to 
tracks and not hypotheses can be used also in TOMHT. 

5.2 Hypotheses reduction 

In this section some methods for hypotheses reduction will be presented. As it has been 

described hypotheses are reduced when a decision for an assignment in the past is made. 

In addition, hypotheses deletion is an efficient measure for keeping algorithm calculation 
time under control. Hypotheses reduction techniques for HOMHT and TOMHT will be 
described separately. 

5.2.1 Hypotheses reduction in HOMHT 

The simplest way of reducing the number of hypotheses is to delete those hypotheses that 

have a probability below a certain threshold. Since HOHMT is an exhaustive method that 

enumerates all the possible assignments, a large part of those assignments will be highly 

unlikely, so they can be deleted. However, this presents the danger of deleting some useful 

hypotheses also. For example when a track has just been created, the hypotheses that contain 
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it will have a low probability. Some of these hypotheses have to survive deletion and wait for 

the next scans in order to calculate whether the probability will be increased or not. A useful 

practice according to authors is that each column in the hypotheses matrix that corresponds to 

the last scan should contain not only “0” but at least one track number. As a result, we will 

allow alternative hypotheses for this measurement to be propagated and when we decide 

about the origin of the measurement the correct assignment will be made. Of course this can 

result in an unacceptable high number of hypotheses. Authors suggest that a maximum 

number of hypotheses and tracks should be set in the algorithm. If the hypotheses or track 

number exceeds these thresholds, additional hypotheses deletion should take place. This will 

ensure that the system will always be able to run real time, even if tracking performance is 

sacrificed. Apart from hypotheses, the number of tracks that are contained in the hypotheses 

can be reduced. A track probability is the sum of hypotheses probabilities that contain it. Low 

probability tracks are deleted from the hypotheses that contain them. 

Apart from hypotheses deletion, similar hypotheses can be merged in order to reduce the 

total number of hypotheses. Two hypotheses are merged if they satisfy one or more 

similarity criteria. In general, two hypotheses can be merged if they contain at least the same 

number of tracks and these tracks are “close enough”. Assuming we have 3 hypotheses as 

indicated in Fig. 15. Hyp1 and Hyp2 contain 2 tracks whereas Hyp3 contains 2 tracks.  

1 2 3

Hyp1 1 1 2 3

Hyp2 1 4 2 2

Hyp3 1 0 2 0
 

Fig. 15. Hypotheses merging example 

The first two hypotheses are candidate for merging. The distance measure , 1...3ijd i j  , 

between the tracks of the two hypotheses is calculated. If all the tracks of the first hypotheses 

have a distance from a track of the second hypotheses below a defined threshold, these two 

hypotheses can be merged. The probability of the merged hypotheses will be the sum of the 

individual hypotheses probabilities. The estimates of the merged tracks can be calculated 

using JPDA which results in a weighted sum of the individual estimates. 

5.2.2 Track reduction in TOMHT 

As in MOMHT, a first step is to delete low probability tracks. In TOMHT, low probability 
tracks can also be deleted before and after the hypothesis formation step. Deletion thresholds 
should be adapted carefully since new tracks have a low probability; it may happen that 
hypotheses which contain new tracks may be deleted. A useful practice is to have each 
measurement of the current scan associated with at least one track. In this way, if the 
measurement represents a real target, the track will have an increased probability after the 
next scan, otherwise it will be deleted. On the other hand, tracks with a long history have 
relatively high probabilities, so a large number of “old” tracks may describe the same target 
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Similar tracks can also be merged. Again, a similarity criterion has to be set. For example, two 
tracks can be merged if they share N measurements in the past and are closer than a defined 
threshold are merged. If one track is associated with a measurement and another track is 
associated with the dummy measurement, these two tracks are considered as compatible in 
the particular scan. In Fig. 16, for example tracks 1 and 3 are considered as compatible, so they 
can be merged. The same applies to tracks 5 and 6. On the other hand, tracks 2 and 3 are not 
compatible since they are associated with a different measurement in the last scan. 

T1 1 2 2 0 2

T2 1 2 4 1 3

T3 1 2 4 1 2

T4 2 1 1 0 1

T5 2 1 3 2 0

T6 2 1 3 2 1

T13 1 2 2 1 2

T2 1 2 4 1 3

T4 2 1 1 0 1

T56 2 1 3 2 1

 

Fig. 16. Track merging example 

A possible danger in track merging is the situation depicted in Fig. 17. If the similarity 
criteria are satisfied, the five tracks will be merged into two tracks. These two tracks are not 
compatible, so in the track extraction process only one track is outputted. However the 
correct hypothesis may be that there are two real targets represented by measurements 3 
and 5 of the last scan. This example is used in order to show that the similarity criteria have 
to be set carefully or that the necessary measures have to be taken so that enough tracks are 
maintained. 

T1 0 0 0 0 3

T2 0 0 0 0 5

T3 1 2 4 1 0

T4 1 2 4 1 3

T5 1 2 4 1 5

T134 1 2 4 1 3

T25 1 2 4 1 5

 

Fig. 17. Track merging resulting in one track 

6. Results 

In this section some indicative results of MHT implementation will be presented in order to 
demonstrate the performance gains of the MHT algorithm. 

In the first set of tests, five scenarios recorded from an IBEO LUX laserscanner system in 
highway scenarios were used. The scenarios differed in the amount of traffic that was 
encountered. Theses series of tests were conducted in order to measure the savings in 
execution time after applying a clustering algorithm in HOMHT. The sensor setup is 
illustrated in Fig. 18. Laserscannner network topology. The laserascanner raw data are 
processed by a fusion module (Fig. 19) whose output consists of a list of detected objects. 
This list is then given as input to the HOMHT algorithm. 
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Fig. 18. Laserscannner network topology 

Sensor Network

Fusion ECU

Object Data  

Fig. 19. Laserscannner processing architecture 

Two algorithms were implemented in a C++ environment, the first one without clustering 
and the second one with the clustering scheme presented in section 5.1. The use of a 
profiling software made possible to extract the calculation times indicated in Table 1 

The results indicated that the average execution times can be improved by almost 92%. Of 
course, this improvement heavily depends on the sensor used and also by the scenario. 
However, since a multilayer laserscaner network has a great range, it is not unusual to 
receive up to 40 targets in a highway scenario, or even double this number in urban 
environments. As it can be seen, the algorithm without clustering is impossible to run real 
time, since the calculation time exceeds the refresh rate of a usual sensor. It has also to be 
mentioned, that the tracking performance of the two algorithms does not differ. Clustering 
does not deteriorate at all the performance gains of the MHT technique. 
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Total Mean Max Total Mean Max Total Mean Max

Scen 1 5437 3 199 1573 1 9 71.08% 71.03% 95.46%

Scen 2 20311 20 447 1618 2 7 92.04% 91.98% 98.42%

Scen 3 51100 51 21127 17447 18 80 65.86% 65.86% 99.62%

Scen 4 81740 47 37345 25633 14 150 68.64% 69.62% 99.60%

No Clustering Clustering Difference

 

Table 1. Execution times in milliseconds for the MHT algorithm with and without clustering 

Another interesting test was to measure the difference in calculation times by changing the 
width of the observation area. For a given scenario, only the measurements that had a lateral 
distance below a certain limit were given as input to the MHT. In this way, it is possible to 
measure, roughly, how the calculation times increase as the number of measurements 
increase. The comparison chart is depicted in Fig. 20. This chart shows that execution time of 
a Multiple Hypotheses Tracker that incorporates clustering processing steps is increased by 
far less compared to an MHT without clustering. However, efficiency of the clustering 
mainly depends on the density of the measurements. 

 

Fig. 20. Execution time vs observation area chart 

In order to test the performance of the HOMHT algorithm and identify the benefits over the 
conventional GNN, a series of simulations of a typical driving scenario were performed. The 
scenario to be examined is: two parallel moving targets. In simulated measurements (122 in 
total), a variable random Gaussian noise was added, with standard deviation varying from 
0.1 to 2 meters. In addition, random clutter (40% of the total measurements) was added, 
simulating measurements from non-vehicle objects. The measures that were calculated are i) 
ID losses, ii) Correct Associations ratio, iii) False Alarms ratio and iv) Estimation error. 
Tracking results for both methods are shown in Fig. 21 and Fig. 22. These figures were 
extracted from the scenario with measurement noise of 1.2m. Red circles correspond to true 
observations while black squares represent measurements originated from random clutter. 
The estimated position for each target is shown with colourful crosses. Consecutive crosses 

www.intechopen.com



 
Laser Scanner Technology 

 

218 

of the same colour correspond to the same track ID. The plots clearly show that MHT 
maintains the track throughout the scenario while GNN fails to provide a good tracking 
result. A detailed analysis of these scenarios and results can be found in (Spinoulas 2010) 
and (Thomaidis et. al.,2010). 

 

Fig. 21. Tracking output of GNN 

 

Fig. 22. Tracking output of MHT 
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Fig. 23. Estimation error of MHT and GNN 
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In Fig. 23, the estimation error of both algorithms is plotted. As it can be seen MHT provides 
more accurate estimation than GNN. This is explained by the fact that MHT has better 
association results; it associates more often a track with the correct measurement. If a track is 
updated with the wrong measurement, then the track estimation will degrade or the track 
may be lost at all. 

Fig. 24 presents the percentage of correct associations and the ID changes of the two 
algorithms. Correct associations indicate the percentage of scans that a track was associated 
with the correct measurement. ID changes present the number of times that the ID of the 
track was changed; indicating the number of times that a track was lost and re-initialized. 
As it can been seen, MHT has a higher percentage of correct associations over GNN. In 
addition the two algorithms have a degrading performance as noise levels increase. The 
second plot of Fig. 24. indicates that MHT has less track losses than GNN method.  
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Fig. 24. Comparative results of MHT and GNN  

7. Conclusions 

This chapter presented practical aspects in the implementation of a Multiple Hypothesis 
Tracker. The two basic algorithmic approaches where presented, but of course alternative 
algorithms such as the Bayesian MHT (Koch 1996) have been proposed. 

The MHT tracking algorithm yields better results than other methods which propagate only 
one association hypotheses. Undoubtedly this performance advantage comes at a cost. This 
method is much more complicate in the implementation than other tracking methods since 
it involves many processing steps. In addition each step can be implemented in a variety of 
ways. The propagation of many hypotheses as it has been mentioned also implies increased 
needs in terms of computational time. However, with the advent of modern fast CPUs and 
the use of optimization methods like the ones presented in this chapter, the implementation 
of a real time MHT is feasible.  
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