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1. Introduction 

Nowadays thermoplastics are widely used in industries; many products used different 

specifications of the thermoplastics that are adapted to their requirement. The importance of 

consideration to the environmental protection leads the mankind to thinking about 

producing environment-friendly material, and also controlling the waste material by 

recycling or reducing them. In the meantime the natural materials such as cellulose based 

material are one of the major resources that can be used to replace with many manufactured 

materials. However, cellulosed based material such as natural fibres, because of their 

degradability, need protection from any circumferential agents. The protection may require 

a special condition in order to utilise in soil, due to water absorption, soil organisms, and 

minerals. Natural fibres are amenable to modifications as they bear hydroxyl groups from 

cellulose and lignin. In addition coating the fibres with any chemical materials reduce their 

water absorptions and protect them from any bacteria and fungi attack. The hydroxyl 

groups may be involved in the hydrogen bonding within the cellulose molecules. This 

weakness of the natural material and good characteristics of natural fibres is the basis of bio-

composites invention.  

 

Fibres Cellulose
(%) 

Hemicelluloses
(%) 

Lignin
(%) 

Tensile Strength
(%) 

Elongation 
(%) 

Toughness 
(MPa) 

OPEFB* 65 - 19 248 14 2,000 

Coir 32-43 0.15-0.25 40-45 140 25.0 3,200 

Banana 63-64 19 5 540 3.0 816 

Sisal 66-72 12 10-14 580 4.3 1,250 

Pineapple 81.5 - 12.7 640 2.4 970 

*OPEFB : Oil Palm Empty Fruit Bunch 

Table 1. Chemical and mechanical properties of some important natural fibres  
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2. Natural fibres 

Many different kinds of natural cellulosic fibre such as cotton, hemp, sisal, coconut fibres 
and oil palm fibres are used in different composite products. Properties of the natural fibres 
depend mostly on the nature of the plant, locality in which it is grown, age of the plant, and 
the extraction method that is used (Sreekala et al., 1997). Coir is a hard and tough multi 
cellular fibre with a central portion called ‘‘lacuna.’’, On the other hand, banana fibre is 
weak and cylindrical in shape. Sisal is an important leaf fibre and is strong. Pineapple leaf 
fibre is soft and has high cellulose content. Many studies have been done on the natural fibre 
based composite products (Maldas & Kokta, 1990; Pavithran et al., 1987; Shah & Lakkad, 
1981; Sreekala et al., 1997). Table 1 summarised the chemical and mechanical properties of 
some natural fibres.  

2.1 Properties of oil palm fibres 

Oil palm is one of the most economical and very high-potential perennial oil crops. It 
belongs to the species of Elaeis guineensis under the family Palmacea, and originated in the 
tropical forests of West Africa. Major industrial cultivation is in Southeast Asian countries 
such as Malaysia and Indonesia. Large-scale cultivation has come up in Latin America. In 
India, oil palm cultivation is coming up on a large-scale basis with a view to attaining self 
sufficiency in oil production.  

Oil palm fibre is non-hazardous biodegradable material, extracted from oil palm's empty 
fruit bunch (EFB). Oil palm fibre is an important lignocellulosic raw material. OPEFB fibre 
and oil palm mesocarp fibre are two types of fibrous materials left in the palm-oil mill. The 
mesocarp fibres are left as a waste material after the oil extraction. These fibres must be 
cleaned of oily and dirty materials. The only current uses of this highly cellulosic material 
are as boiler fuel and in the preparation of potassium fertilizers. When left on the plantation 
floor, these waste materials create great environmental problems. Therefore, economic 
utilization of these fibres will be beneficial (Sreekala et al., 1997). 

 

Chemical constituents (%)
Cellulose 65
Hemi cellulose -
Lignin 19
Ash content 2

Table 2. Chemical constituents of oil palm empty fruit bunch fibre 

Physical properties of oil palm fibre 
Diameter (mm) 0.15-0.50
Density (g/mm³) 0.7-1.55
Linear density (denier)* 2150
Tensile strength (MPa) 100-400
Young’s modulus (MPa) 1000-9000
Elongation at break (%) 14
Microfibrillar angle (°) 46
* 1 denier= 1/9000 g/m

Table 3. Physical and mechanical properties of oil palm empty fruit bunch fibre 
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OPEFB fibre is obtained after the subtraction of oil seeds from fruit bunch for oil extraction. 
OPEFB fibre is extracted by the retting process of the EFB. Average yield of OPEFB fibre is 
about 400 g per bunch. Previous studies report the mechanical properties of OPEFB fibres. 
Table 2 and Table 3 show the summary of oil palm fibre properties (Jacob et al., 2004; 
Sreekala et al., 2001; Sreekala et al., 1997) 

3. Thermoplastic coat 

Thermoplastics as a coating can lead to improving the natural fibre performance in two ways: 
1. the thermoplastics cover the fibres and keep the fibres from any fungi or bacteria attacks by 
decreasing the water absorption and contact of the fibres to the soil and any organism inside it, 
2. The physical performance of the fibre such as tensile strength and elongation can be affected 
by modification and coating with any kind of thermoplastics. Therefore, a method was 
developed to coat the fibres with the thermoplastics. The solvent was used to prepare soluble 
thermoplastic since the natural fibres cannot reside in high temperature. Different density of 
the thermoplastic solution was used to evaluate the coated fibres to reach the best strength and 
resistance. Two types of the fibre were used as a reinforcement of composites such as soil, first 
the discrete fibres where it needs to be coated one by one, and second is the sheet fibres that 
were made by compaction of bulk fibres. The fibre was coated by acrylonitrile butadiene 
styrene (ABS) solution and the characterisation test results for both single and sheet fibres are 
described in the following sections. 

3.1 Acrylonitrile butadiene styrene 

ABS is an important engineering copolymer widely used in industry due to superior 
mechanical properties, chemical resistance, ease of processing and recyclability (Yang et al., 
2004). ABS is a common thermoplastic used to make polymeric wood composites, has good 
physical properties in comparison with other commodity plastics and is cheap in 
comparison with other engineering plastics (Huang & Mo, 2002). 

ABS is derived from acrylonitrile, butadiene, and styrene. The chemical structure of the ABS 
is shown in Figure 1. Acrylonitrile is a synthetic monomer produced from propylene and 
ammonia. Butadiene is a petroleum hydrocarbon obtained from butane. Styrene monomers, 
derived from coal, are commercially obtained from benzene and ethylene from coal. The 
advantage of ABS is that this material combines the strength and rigidity of the acrylonitrile 
and styrene polymers with the toughness of the polybutadiene rubber. The most amazing 
mechanical properties of ABS are resistance and toughness. 
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Fig. 1. Chemical structure of ABS 
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The chemical resistance for ABS is relatively good and it is not affected by water, non 

organic salts, acids and basic. The material will dissolve in aldehyde, ketone, ester and some 

chlorinated hydrocarbons. The properties of moulded ABS are shown in Table 4 based on 

MatWeb (2009) material specification data sheet. 

 

Property Test Method Value 

Tensile Strength ASTM D638 44.8 MPa 

Flexural Modulus ASTM D638 2.59 GPa 

Tensile Elongation ASTM D638 15 % 

Flexural Yield Strength ASTM D790 69 MPa 

Flexural Modulus ASTM D790 2.59 GPa 

Table 4. Physical properties of moulded ABS 

3.2 Characterization of coated fibres 

An ABS solution was prepared by adding ABS pieces to methyl ethyl ketone (MEK) solvent. 

Fibres were chopped into 30 mm length for water absorption tests and 100 mm length for 

tensile strength tests. The average aspect ratio for 100 mm length fibre was found to be equal 

to 250. The chopped OPEFB fibres were incubated in the 15% ABS solution to be coated. 

Coated fibres were dried over a mesh at room temperature.  

3.2.1 FTIR 

The chemical reactions during fibre coating were characterised using IR spectroscopy. IR 

spectra of the uncoated and coated OPEFB fibres are given in Figure 2 (Bateni et al., 2011). 

Series (a) is the IR spectra for ABS, Series (b) shows the IR spectra of OPEFB fibre and 

series (c) and (d) show the coated OPEFB fibre infrared spectra, for coating incubation 

times of 6 hour and 24 hour, respectively. ABS coating imparts physical and chemical 

modifications to the fibre. A band shown in the 3300–3600 cm−1 regions in coated and 

uncoated OPEFB fibre corresponds to O–H stretching of the cellulose and lignin. The 

intensity of the 1636 cm-1 band increased and the 3400 cm-1 band was shifted to 3420 cm-1, 

corresponding to C=O stretching and O–H stretching vibrations after coating of the fibre, 

respectively. Strong peaks are observed in the IR spectrum of coated fibres at 2239 and 

2929 cm-1 when compared with the uncoated fibre. Peak detected at 1455 cm-1 may 

correspond to the characteristic peaks of ABS plastic which are the aliphatic C–H 

stretching (Sreekala et al., 2000). 

The presence of a peak at 2929 cm−1 may be due to C–H stretching. The peaks at 1039 and 

2929 cm-1 for coated fibres were increased and shifted, corresponding to C–O stretching and 

C–H stretching vibrations. The change C=C peak frequency increased with coating. Two 

peaks were observed at approximately 2347 cm−1 due to C≡N stretching. The shifting of the 

2347 cm-1 band to 2239 cm-1 indicates the change in C≡N stretching of the OPEFB fibre after 

coating by ABS. Those peaks which changed over the time show the increment the presence 

rate of ABS in coated fibres. The presence of the peaks over the time increment shows that 
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the chemical reactions of ABS and fibres have increases. This increase led to a more physical 

stability of ABS coating over fibres and thus fibres were more resistant. 
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Fig. 2. FTIR of ABS coated and uncoated fibres 

3.2.2 Fibre surface topology 

The porous surface morphology was useful for better mechanical interlock of fibre with the 

ABS coating. The SEM micrograph of fibres and the coated fibres clearly shows the surface 

structure of an uncoated OPEFB fibre and the quality of thermoplastic coat (Figure 3). The 

micrographs show porous and grooves on the surface of the fibre. The uniform cover and 

fully coating of the fibre surface is an important factor in protecting the fibres while surface 
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structure of a coated fibre is shown in Figure 3(b). The layer of ABS worked as a surface to 

protect the fibres from water, degradation and physical damages. The entire fibre appears to 

be covered and the surface exhibits a smoother surface than the uncoated fibre.  

 

Fig. 3. SEM micrographs of uncoated (left) and coated (right) OPEFB fibre 

Figure 4(a) presents the cross section of an uncoated fibre, which exhibits a lacuna-like 

portion in the middle in comparison with Figure 4(b), the SEM micrograph of the cross-

section of a coated fibre. The thickness of the coated layer can be seen in the figure, the 

structure of portions is indicating the penetration of the ABS into the fibre structure. The 

ABS filled some of the lacuna like portion in the fibre.  

 

Fig. 4. Cross section of uncoated (left) and coated (right) OPEFB fibre 

The uncoated fibre surface was found to be rough and had protruding portions and groove-
like structures on its surface (Figure 5(a)). The surface of the coated fibre has an uneven 
structure, as shown in Figure 5(b). This feature of surface depends on the application of the 
fibres where it can be positive or negative due to less friction existence within the fibres and 
composites mass. Otherwise, the ABS coating may increase the diameter and the section 
area of fibres which can affect the contact surface area between fibres and soil particles. The 
surface area of the fibres is the most effective parameter in increasing the shear strength of 
some fibre reinforced composites. 

www.intechopen.com



 
Application of Thermoplastics in Protection of Natural Fibres 

 

335 

 

Fig. 5. Surface structure of uncoated (left) and coated (right) OPEFB fibre 

3.2.3 Tensile strength of fibre 

The tensile strength test result of the coated OPEFB fibre showed an increase in tensile strength 
of the fibre in breaking point. The elongation of the fibre in tensile test was increased from 15% 
to near 20% in coated fibre. The main improvement in coated fibres occurs in Young’s 
modulus. Table 5 shows the tensile properties of coated and uncoated OPEFB fibre. 

 

Type of the fibres 
Tensile Strength 

(MPa) 
Elongation at Break 

(%) 
Young’s modulus 

(MPa) 

OPEFB fibre 283 15.4 5500 

Coated OPEFB fibre 306 19.1 6600 

Table 5. Summary of the tensile test result on coated and uncoated OPEFB fibre  

 

Fig. 6. Stress-strain curve of coated OPEFB fibres on tensile test  
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The tensile test result showed that the ABS coat was broken before failure of the OPEFB 

fibre, the gaps in the stress strain curve within the strain of 10% to 15% in Figure 6 describe 

the weakness of the coated fibres to handle the force. Figure 7 shows the photographs of the 

coated fibre before and after the tensile test. The split of the ABS coating was shown clearly 

at different strain of OPEFB fibre and ABS thermoplastic. From the figure the gap in the 

stress strain curve represented the failure of the ABS coat before the OPEFB fibres. The 

strain of the ABS thermoplastic (Table 3) also proves this result. 

 

 

 

 

Fig. 7. Coated OPEFB fibre before and after tensile test, a) coated OPEFB fibre, b) Break of 
the coating after tensile test 

3.2.4 Water absorption of fibres 

The water absorption of the coated and uncoated OPEFB fibre was presented in Figure 8 as 

a percentage of dry weight. Figure 8 shows the absorption behaviour of coated and 

uncoated OPEFB fibre in distilled water at 30°C and 70°C respectively. The results show that 

the water absorption of the coated fibre was lower than that of the uncoated fibre. As the 

temperatures increased, the water sorption was generally decreased. 

The decrease in sorption value for coated fibre had the same range of treated fibres with 

different methods reported by Sreekala & Thomas, (2003). Different fibre surface 

modifications such as mercerization, latex coating, gamma irradiation, silane treatment, 

isocyanate treatment, acetylation and peroxide treatment were used in their study. It is 

recommended that the modification techniques were also used before the coating process. 

The decrease of the water sorption capacity of the fibre reduces the biodegradability of the 

OPEFB fibre, and also increase in tensile capacity of the fibres. 

(a) (b) 

Break on ABS coating 
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Fig. 8. Sorption curves of uncoated and ABS coated OPEFB fibres  

3.3 Characterization of coated fibre sheets 

For the first phase of experiments, the ABS solution was prepared in three different 

percentages of 5, 10 and 15 per cents. The 20% ABS solution was excluded from the 

experiments since some gel-forming behaviour was observed. The specimens were soaked 

for one minute in 5%, 10% and 15% of ANS solution and the tensile test conducted for 

specimens according to ASTM D4595-86 (2001) specifications. The 15% solution was picked 

for the rest of the experiments because it gives the optimum results. For next stage, the 

specimens were soaked in 15% ABS solution and repeated the tensile tests to study the effect 

of soaking duration on tensile strength. 

3.3.1 Fibre sheets 

OPEFB sheets are commercially available is Malaysia. These sheets are manufactured 

through a compaction process in which the fibres orient randomly (Figure 9). Sheets are 
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produced only in single direction that is the machine direction, so there is no warp or weft 

direction, the detailed sheet and cross section are presented in Figure 9 and Figure 10.  

The size of merchandised sheets was 3000 mm in length, 1000 mm in width and 10 mm in 

thickness. The coated or uncoated sheets have a potential to be used as a kind of geotextile 

for soil reinforcement was named Geo-Mat. 

 

Fig. 9. OPEFB sheet 

 

Fig. 10. Longitudinal cross section of OPEFB sheet 
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3.3.2 Effects of ABS percentage on OPEFB sheets 

The weight variations of sheets are determined before coating and after drying process. The 

results, which are shown in Figure 11, showed that by increasing the density of ABS 

solution, larger amounts of ABS were oriented on the fibres.  

 

Fig. 11. Weight changes of ABS coated OPEFB sheets  

The ABS thermoplastic brings ductility and toughness for the sheets. When the amount of 

oriented ABS increases, the toughness and ductility of sheets increases too. The influences of 

such ductility and toughness could become clearer by conducting the tensile test.  

3.3.3 Effect of ABS percentage on tensile strength 

By comparing the results of untreated sheets and 5%, 10% and 15% ABS coated sheets, it 

could be realized that the coating resulted to a slight increase in average tensile strength and 

remarkable decrease of elongation percentages. The effect of those variations is more 

obvious in tensile modulus, since it was doubled for the coated OPEFB sheets. Enhancement 

of 15% ABS coating showed better improvements than the 5% and 10% ABS coating; the 

average tensile strength of sheets reached to approximately 12 kN/m. The obtained average 

tensile strength is relatively 6 times higher than the average tensile strength of untreated 

OPEFB sheets. The resulted average tensile modulus of these sheets was around 350.3 

kN/m. As it was expected, the ABS improved the tensile properties of OPEFB sheets very 

significantly. The ductility and toughness of 15% ABS coated sheets were more sensible than 

the others (Table 6). The ABS covered approximately all of the fibres properly and filled the 

void areas among the fibres. 
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Fig. 12. Comparison of tensile test results for 5%, 10% and 15% ABS coated OPEFB sheets 

Since the 15% ABS solution covered the fibres and sheets more properly, it is expectable to 

experience higher tensile strength and also better durability for them. It is worth to mention 

that for all specimens, the complete rupture did not occur at the peak force. Although the 

failure area became clear, but the two parts of sheets were still joined together. The Figure 13 

shows the rupture area of the failed specimens of ABS coated sheets. 

 

Specimen Breaking 
Force 
(kN) 

Tensile 
Strength 
(kN/m) 

Elongation 
 

(%) 

Tensile 
Modulus 
( kN/m) 

Uncoated 0.359 1.79 37.08 4.80 

5 % 0.392 1.93 20.60 9.37 

10 % 0.542 2.71 12.27 22.00 

15 % 2.41 12.05 3.44 350.30 

Table 6. Tensile properties of ABS coated OPEFB sheets 

3.3.4 Tensile strength comparison 

Among the previous works there is only one work which is comparable. Subaida et al. 

(2008) conducted experimental investigation on tensile strength of woven coir geotextiles. 

They reported that the tensile strength of the mesh mattings lies in range of 10 and 20 

kN/m. The tensile test was carried out for three types of nonwoven geotextiles with 

commercial names of MTS 300, MTS 350 and MTS 400. MTS series geotextiles are a technical 

fabric mechanically bonded nonwoven needle punched made from 100% UV stabilized 

polyester. The average tensile test results of these fabrics are presented and compared by 

Figure 14. For all of these fabrics the peak tensile strengths are achieved at relatively large 
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values of elongation which are practically useless. In soil structures large displacements are 

equal to failure of structures; basically, soil reinforcing materials must be able to reach to the 

peak tensile strength within the minimum displacement. Between all the materials 

mentioned in Figure 14, the 15% ABS coated OPEFB sheets are the most suitable choice 

based on the highest tensile strength along with the small elongation at the peak point. 

 

Fig. 13. Rupture area for 5% ABS coated OPEFB sheet 
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Fig. 14. Tensile test result of MTS fabrics and coated OPEFB sheets 

3.3.5 Biodegradation of fibres 

The degradable properties of both coated and uncoated OPEFB fibre were monitored 

through aging in two different soils and in contact with moisture and fungus for about 3 

months. Figure 15 shows the effect of fungus in the degradation of the fibre, the black part 

of the fibre was affected by the fungus. Most part of the uncoated fibres was influenced by 

fungus and the fungus spread over the surface of the fibres. In comparison the coated 

fibre was less affected by fungus and it only decayed at the end parts of fibres. Otherwise, 

the colour of the fibres was shown as the water sorption in the uncoated fibres. Water is 

the important factor for the growth of the fungus that increased the biodegradation of the 

fibres.  

 

Fig. 15. Fungus biodegradation of the fibres after 3 month a) Sheet of OPEFB fibre, b) Sheet 
of coated OPEFB fibre  

Coated fibre Uncoated fibre 

a b
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The fibres were also placed in to the silty sand and peat soil to estimate the weight loss of 
the fibres in soil. The discrete fibre and fibre sheet were weighed before test. The fibres also 
were coated with ABS solution for 24 hours and all the specimens were placed on soils for 
about 3 months. 

Figure 16 shows the coated and uncoated OPEFB fibre after aging in the silty sand soil. The 
fibre sheets decayed after 3 months and it is shown that the uncoated fibre had the separate 
structure due to the biodegradation of the fibre.The coating was protected the fibres from 
biodegradation; the shape of the coating fibres was kept. 

 

Fig. 16. a) before decay b) decayed ABS coated c) decayed uncoated fibre sheet in the silty 
sand soil after 3 months 

The same results are shown in Figure 17 for the fibres in organic clay soil. The uncoated 
sheet fibre in organic clay separated from each other and did not have the textile structure. 
The uncoated fibre lost its weight due to biodegradation in the soil. 

 

Fig. 17. a) before decay b) decayed ABS coated c) decayed uncoated fibre sheet in the 
organic clay soil after 3 months 

The results of these losses are graphically plotted in Figure 18. Loss of weight of the discrete 
fibres was higher than the fibre sheet due to their larger contact surface with the soils and 
environment factors. 

The result shows that in all condition coating decreases the biodegradation of the fibres both 

in discrete fibre and fibre sheet. The decay of the fibres in three conditions had 
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approximately the same result. The weight loss result indicate the influence of coating on 

protecting OPEFB fibres from biodegradation, around 50% decrease on weight loss were 

estimated from tests after three months.  

 

Fig. 18. Biodegradation of the fibres inside Silty sand, Organic soil and be in contact with 
fungus after 3 months 

4. Conclusion 

The thermoplastic was used as a treatment of the OPEFB fibres. The ABS coated fibres had 

an acceptable effect on the protection of fibre as the same as other treatment techniques. The 

water absorption of the coated fibre decreased due to protection capacity of the coated layer. 

The ABS coated fibre was found to be more durable compared to uncoated due to the 

condition of fibre. Morphological studies revealed that the coating modifies and protects the 

fibre surface entirely and the covered structure of the ABS over fibres can be seen from the 

respective scanning electron micrographs, also FTIR studies shown the chemical 

modifications within the ABS thermoplastic and fibres. From the tensile test it was found the 

Young’s modulus of the coated fibre shown improvement due to ABS coating. However, the 

tensile strength of the fibre indicated less increase in comparison to untreated fibre. 

The previous studies describe that inclusion of OPEFB fibres can significantly increase the 

peak shear strength of silty sand soil (Ahmad et al., 2010). The fibre content increment leads 

to increasing the shear strength and consequently stabilized the reinforced soil. Coated 

OPEFB fibres increased the shear strength of silty sand compared to uncoated fibres. Coated 

fibres shown higher interface friction between fibre and soil particles by increasing the 

surface area. 
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