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1. Introduction 

With the purpose to create high strength advanced structures, new materials are being 

developed presenting favorable characteristics for specific applications. Composite 

Materials are examples of these developments. They can be formed by high strength long 

fibers, conveniently oriented in a matrix, to form a lamina of composite material. The lamina 

presents high strength in the fiber direction, but, since it is slender, does not have enough 

rigidity, what makes impossible the use of an isolated lamina. Piling up and gluing a set of 

laminas, a laminate is formed which one presents better characteristics than original and 

isolated materials. The main strength of each lamina is oriented according to the fiber 

directions. Thus, micro cracks can be produced if sufficient tension is applied in the 

transverse direction of the fibers, as shown in figure 1, since the resistance of the lamina in 

these directions depends only on the matrix material. The rise of several transverse cracks 

produces loss of stiffness in the laminate. 

Several papers are found in technical literature dealing with the behavior of composite 

materials with transverse cracks. Vejen & Pyrz (2002) investigated the transverse crack 

growth in long fiber composites using the finite element method. Three criteria concerning 

pure matrix growth, fiber/matrix interface growth and crack kinking out of a fiber/matrix 

interface were implemented to form a software package for crack propagation calculus. 

Cain and colleagues (2003) have studied unidirectional graphite bismaleimide composites to 

determine the effect of the matrix dominant properties on the failure of the material. The 

authors showed that the final fracture was caused by the development of a dominant matrix 

shear crack parallel to the fibers. They also concluded that the decrease in shear modulus of 

the composite was the most sensitive and best represented by damage evolutions. 

Ogihara et al (1998) have proposed a two-dimensional model which considers that, in the 
case of displacements and stress fields in the interlaminar cross-play laminates, there is a 
prevalence of plane-strain case, even in the presence of transverse cracks. They have also 
commented that the failure process of cross-ply laminates is due an accumulation of 
transverse cracks and delamination.  
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Fig. 1. (a) A composite [0o/90o/0o]s laminate plate with transverse micro-cracks in the 
matrix; (b) extension of pre-micro cracks; (c) formation of new micro crack.  

An analytical model based on the principle of minimum potential energy was developed by 

Ji et al (1998) and applied to determine the two-dimensional thermoelastic stress state in 

cross-ply composite laminates containing multiple equally spaced transverse cracks in the 

90o plies subjected to tensile loading in the longitudinal direction. The criterion of strain 

energy release rate was employed to evaluate the critical applied stresses for two of the 

possible fracture modes. After some numerical experiments, they have concluded that the 

formation of new cracks never takes place until pre-existing cracks extends through the 

entire thickness of the 90o plies. 

Wada et al (1999) have presented a damage mechanics model to predict the nonlinear 

behavior of laminated composites due to crack evolution. A new concept of cracking layer is 

proposed by a technique based on uniform work-softening layer. With this concept, the 

constitutive equations for a cracking layer are constructed according to modern plasticity 

theory. So, the lamina damage surface is defined in the stress space and the constitutive 

equations for a cracking layer are constructed by applying the defined damage surface to 

the associated flow rule.  
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One of the first damages that occurs in composite laminate are the transverse cracks, as 
mentioned by Allen and colleagues (Allen et al 1987 a,b) and Tay and Lim (Tay & Lim, 
1996). The cracks appear in a layer where the highest stress values act transversally to the 
fiber, exceeding the matrix resistance. With loading increment, the increase on the number 
of transverse cracks may happen in a diffuse way reducing the structural rigidity. The 
accumulation of this damage can accelerate the beginning of delamination, changing the 
natural frequency of the composite structure and causing a greater degradation in severe 
environment, jeopardizing its service life. 

After the initiation and development of micro cracks, there is a process of accumulation of 
damage that reduces the structural stiffness.The tolerance to the damage is related to the 
stiffness of the structure which, in turn, is affected by the accumulation of micro defects 
during loading. The process of damage evolution in composite laminate is generally very 
complex due to the multiplicity of failure modes such as transverse cracks, delamination, 
decoupling fiber-matrix interface, and fiber breakage. The characterization of this process is 
generally possible when single cases are analyzed, where each failure mode can be 
separated and studied individually. The use of Fracture Mechanics, especially in terms of 
linear elastic fracture, has presented good results for isotropic material because, in this case,  
can be adequately characterized by a single parameter (the stress intensity factor). However, 
attempts to apply this method in composite laminates, whose behavior is orthotropic, have 
met unsatisfactory results, mainly when transverse cracks in the matrix are studied. 
Therefore, to determine changes of the mechanical properties in a laminate, the total number 
of cracks formed in the transverse layers must be taken to account, or, under a generalized 
crack distribution, the most appropriated methodology is based on Damage Mechanics. 

Many researchers have developed studies to evaluate the properties of laminates subjected 
to generalized cracks in the matrix. Among these ones, can be cited the papers of Allen et. al. 
(1987 a,b), Hashin (1987), Talreja (1984) and Lim & Tay.  

The present paper has the objective to apply the Continuum Damage Mechanics Theory to 
long fiber laminate composites. The transverse cracks appearance in the matrix implies in a 
rigidity loss due to damage accumulation. The increase of the load is considerate 
monotonically. Several failure criterions are presented and implemented such as, the 
Maximum Stress Criterion, the Maximum Strain Criterion, Tsai-Hill and Tsai-Wu Criterion. 
The proposed methodology is restrict to the case of symmetric laminate and it is evaluated 
by a numerical approximation technique known as Modified Local Green's Function 
Method (MLGFM), which one will be briefly descript on this paper. 

2. Representation of the generalized damage in symmetric laminates 

2.1 Constitutive relations 

The models developed by Talreja & Boehler (1990), Allen et. al. (1987 a,b) and Lim and Tay 
(1996) to describe the damaged composite laminates were based on the Continuum Damage 
Mechanics using internal state variables. In the presente paper, the model proposed by 
Allen et al (1987 a,b) will be used, which describes the damage through a set of internal state 
variables. The final result of the distributed damage is built in the constitutive equations 
through these variables. Thus, the stress-strain relationship of the representative volume of 
a damaged material at the level of a lamina is assumed as: 
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 ij ijkl kl ijkl klC I      (1) 

where ij is the applied stress tensor, Cijkl is the constitutive relation tensor of the 

undamaged material, kl are the strain tensor, ijklI are the elements of the damage matrix, 

kl
 are the internal state variables, and  = 1, 2, 3, …, refers to the damage modes. As 

suggested by Allen et al (1987 a,b), a first simplification can be made considering that the 

tensor Iijkl is the actual tensor of constitutive relationships, as shown in Equation (2). 

 ijklijklI C   (2) 

However, it is important to emphasize that equation (1) does not provide any information 
on how the damage state has been attained, that is, the history of damage accumulation. 
Thus, it is necessary to turn to Fracture Mechanics in search of a suitable criterion to 
evaluate the damage growth. Thereby, equation (1) is sufficiently general to permit the use 
of Classical Laminate Theory to determine the composite laminate constitutive relations 
with transverse cracks in the matrix. 

Supposing the representation of the laminated plate by plane elements located in its middle 
surface, the loads in a certain point inside this surface can be evaluated by the following 
expressions: 

    /2

/2

t

x y xyt
N dz  


   (3) 

    /2

/2

t

x y xyt
M zdz  


   (4) 

where {N}e {M} are, respectively, the force and moment resultants vectors, x, y, xy are the 
stresses in the plane of the lamina and t is the thickness of the laminate. Taking to account 
that {ǆ0} e {κ0} are the strain and bending vectors in the middle surface of the plate, [A], [B] 
and [D] are the laminate extensional stiffness matrix, coupling stiffness matrix and bending 
stiffness matrix, respectively, {DN}e {DM} are the damage vectors related to the force and 
moment resultants, the expressions (3) and (4) can be transformed to: 

          0 0
NN A B D     (5) 

          0 0
MM B D D     (6) 

Assuming that zk-1 e zk are the corresponding distances from the middle surface to the inner 

and outer surfaces of the kth lamina, respectively, [ ]kQ  and { }k  are the transformed 

reduced material stiffness matrix and the transformed vector of the internal state variables 

(expressed in global coordinates), respectively. The matrix and vectors presents in equations 

(5) and (6) can be expressed by: 
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_

1
1

N

k k
k k

A z z Q
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 
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 
  (7) 
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The internal state variables vector has two components and is expressed by: 

  22 12
1

0
P
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 
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where P is the total number of damage models being considered and 22 and 12 are the 
internal state variable of the problem.  

2.2 Determination of internal variables  

In spite of the random characteristic, as can be found in the work of Silberschmidt (2005), the 
transverse cracks are assumed to be uniformly distributed. In this way, the laminate 
behavior can be adequately represented by a representative unit volume of material 
containing a transverse crack, as shown in figure 2. In the particular case of symmetric 
laminates, the damage models are simplified and incorporate only two types of fracture, 
namely, Mode I (crack opening) and Mode I coupled with Mode III (shear out of plane). 

They are represented respectively by the internal variables 22 e 12. As only symmetric 
laminates are analyzed in this paper, just the α22 variable will be developed. 

The internal variable, equation (15), proposed by Allen (Allen et al., 1987 a,b) can be 
determined by a computational analysis based on Finite Element Method. The 
representative volume is modeled, as shown in figure 3, for the symmetric laminate 
[0o/90o/0o]. A uniform displacement is imposed in one side of the element to determine the 
opening of the crack. The size and shape of the representative volume depend on the 
thickness of the different plies and the crack density (the number of cracks per unit of 
volume). Then, the internal variable can be determined by: 

 22 2 2

1

cS

u n dS
V

    (15) 
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where u2 is the crack opening displacement, n2 is the unitary vector normal to the crack 
surface, V is the representative element volume and Sc is the crack surface. 

 

Fig. 2. A [0°/90°/0o] laminated plate with generalized cracks: definition of parameters and 
the representative volume (Machado et al, 2008). 

 

Fig. 3. Boundary conditions and finite element mesh to evaluate the crack opening in a 
representative volume [0°/90°/0o] – (as suggested by Lim & Tay, 1996) 

Considering that t1 and t2 are the thickness of the 0° and 90° plies, respectively, t is the total 

thickness of the laminate, l is the distance between two adjacent transverse cracks, ρ is the 
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non-dimensionalized crack density (the quantity of cracks per unit of length), ǅ is the non-

dimensionalized maximum crack opening displacement, u2 is the maximum crack opening 

displacement, ψ is a normalized function of the crack opening profile and  is the 

normalized distance between the cracks center, the following expressions can be defined: 

 1 2t t t   (16) 

 
2t

L
   (17) 

 2

2

u

t
   (18) 

 
2

( )u

u

   (19) 

The maximum crack opening displacement u2 can be determined by a simple finite element 

analysis, considering the boundary conditions specified in figure 3. An arbitrary 

displacement is imposed. The value of ǅ is determined by the equation (18), and the 

displacement u2 is determined by MEF. The non-dimensionalized maximum crack opening 

displacement ǅ can be obtained using ρ, as shown in the expression (20): 

    1 1
1 2 3

a bc e c e c       (20) 

The constants a1, b1, c1, c2 e c3 in the expression (20) depends on the type of the used material. 

The table 1 exposes the value of these constants for the laminate glass/epoxi (Gl/Ep). 

 

Material 
Formulation in terms of ρ 

c1 c2 c3 a1 b1 

Glass/Epóxi 1.03 -0.81 2.28E-2 0.94 1.00 

Table 1. Coefficients for the expression (20) (Lim & Tay, 1996) 

As the internal variable used in this problem depends on the maximum crack opening 

displacement according to equation (15), and the crack density is calculated by 1 /L  , it 

can be shown that the state variable associated to the Mode I becomes: 

 Mode I:         22 2

8

5
u   (21) 

3. Approximation by computational methods 

In this paper, the maximum crack opening displacement u2 is determined by the expressions 
(18) and (20). The crack density ρ depends on the distance between two adjacent transverse 
cracks l, and its values are successively modified by the verification of the composite 
material rigidity loss. 
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Considering a conventional structural approximation by conventional Finite Element 

Method, the problem can be expressed by a system of algebraic equations, representing a 

typical element: 

 

1 111 12 16

21 22 26 2 2

61 62 66 6 6

a d

x
a d

y

a d
z

F FK K K d

K K K d F F

K K K d F F

                       
                

 (22) 

where Kij are the element stiffness matrix, (dx, dy, dz) are the components of the element 

displacement vector and {Fa} and {Fd} are the applied force vector and the element damage 

force vector. 

The procedure used in this paper to obtain the expected results is a little different because it 

uses a different computational method known as Modified Local Green's Function Method 

(MLGFM), in witch the system defined in expression (22) is not directly applied in a 

conventional FEM. A detailed explanation of this procedure can be found in Barbieri et al 

(1998a,b) and Machado et al (2008). The MLGFM is an integral method that determines the 

unknowns on the boundary, similarly to the Boundary Element Method, but the fundamental 

solutions are generated automatically by projections of the Green’s Functions developed from 

de field, as in the Finite Element Method. The matrix and the vectors indicated in (22) will be 

used to produce values at the boundary, as explained in the next topic. 

3.1 The Modified Local Green’s Function Method - MLGFM 

The Modified Local Green's Function Method (MLGFM) is an integral technique that 

associates the Finite Element Method and the Boundary Element Method, solving the 

problem through an integral equations system. Unlike to the BEM and the Trefitz Methods, 

the MLGFM does not use a fundamental solution and/or a Green’s function. The term 

“Local” indicates that the calculation of the GF projections can be done locally, that is, for 

each element.  

Essentially, the MLGFM uses a transverse integration technique and reciprocity relations to 

determine, at a local level, the Green’s Function, transforming the partial differential 

operator in an ordinary partial operator (Barcelos & Silva, 1987). The MLGFM uses finite 

elements at the domain with the purpose to create discrete projections of the Green’s 

Function, corresponding to fundamental solutions, that are used later in the integral 

equations system associated to the boundary approximation. To analyze a continuum 

mechanics problem through the MLGFM, such as the plate indicated in figure 4, two meshes 

are necessary, one for the domain and other for the boundary. With domain elements, the 

method generates a set of domain equations, which are used to generate automatically the 

domain Green’s projections. Later, a set of boundary equations are also generated and the 

boundary Green’s projections can be determined with the domain projections developed 

before. At the end, the system is solved only for boundary equations, where the main 

variables are calculated. Domain values may be obtained once the boundary values are 

known after the solution of the boundary equation system. 
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(a) Finite Elements Mesh (b) Contour Elements Mesh  

Fig. 4. Symmetric boundary conditions and plate for a 2x2 mesh (4 finite elements and 8 
contour elements) by the MLGFM. 

The most important steps of the MLGFM are detailed in the work sof Barbieri et al (1998a) 

and Machado et al (2008). It is possible to show that through the MLGFM two sets of 

equations are formed, the first one in the domain (equation (23)) and the other one on the 

boundary (equation (24)): 

 u(Q) = 

 [GT(P,Q) a(P)]d + 


 [GT(p,Q) f(p)]d ;  P,Q  ; p  (23) 

 u(q) = 

 [GT(P,q) a(P)]d + 


 [GT(p,q) f(p)]d ;  P  ; p, q  (24) 

where Q, P are two points in the domain; q, p are other two points on the boundary; a(P) is 

the vector of independent terms for the original problem; f(p) is the vector associated to the 

fluxes on the boundary; G(i,j) are the Green’s functions which may be understood as the 

generalized displacement in the point i in the direction of an unitary vector ni, when a 

generalized force is applied over the point j, in the direction of a unitary vector nj.  

Equations (23) and (24) describe completely the problem. Since these equations involve 

domain and boundary integrals, two types of meshes are necessary, one in the domain and 

the other on the boundary, using FE and BE methods, respectively. The FE domain 

approximation is also used to develop the Green’s functions which are associated to the 

matrices G(P,Q), G(p,Q), G(P,q) and G(p,q).  
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The approximation shape functions are the same as in the conventional FE and BE methods. 
For the present work, quadratic shape functions were employed to construct nine nodes 
lagrangean finite elements and three nodes boundary elements. 

Developing discrete equations from the nodal values, two sets of linear equations are 
determined: 

 A u = B f + C a  (in the domain)  (25) 

 D u = E f + F a   (on the boundary) (26) 

where u and u are the domain and the boundary displacements, respectively, a and f are 
the independent and the fluxes variables vectors. The matrices A, B, C, D, E and F can be 
written as: 

 A = 

 (Q)T (Q)d  (27) 

 B = 


 (Q)T G(Q)d (28) 

 C = 


 (Q)T G(Q)d (29) 

 D = 


 (q)T (q)d (30) 

 E = 


 (q)T G(q)d (31) 

 F = 


 (q)T G(q)d (32) 

where (Q) and (q) are matrices with the shape functions in the domain and on the 

boundary, respectively, and G(Q), G(Q), G(q), G(q) are the Green’s function projections 

over the boundary  and the domain , evaluated on the points Q and q. The Green’s 
projections can be written as: 

 G(Q) = 

 GT(p,Q) (p) d (33) 

 G(Q) = 


 GT(P,Q) (P) d (34) 

 G(q) = 


 GT(p,q) (p) d (35) 

 G(q) = 


 GT(P,q) (P) d (36) 
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In order to determine the Green’s functions automatically, it must be considered the 

following functional F, which one depends on G or G : 

 F(G,G) = B(G,G) -  B1(G,) -  B2(G, ) + B3(G,G) (37) 

where 

G – corresponds to G or G depending on the case of interest; 

B – is a bilinear form, developed to G or G; 

 and  are constants whose values are: 

 = 1 and  = 0 to determine G 

 = 0 and  = 1 to determine G 

B1, B2, B3 – are bilinear forms which can be written as: 

 B1(G,[]) = 

 G(Q) (Q) d (38) 

 B2(G,[]) = 

 G(q) (q) d (39) 

 B3(G,G) = 1
2

 N#(q) G (q). G (q) d (40) 

As in the variational approach of the FEM, the minimization of functional F(G,G) in 
Equation (37) results in a linear equation system which can be solved to determine the 
Green’s projections  

     (Q) (Q)  Ω ΓK G G A D  (41) 

where [K] is the global stiffness matrix, evaluated in the same way of the conventional finite 
element stiffness matrix; A and D are the matrices of Equations (27) and (30), respectively. In 
this way, the Green’s projections are determined directly from Equation (41), and can be 
applied in Equations (28), (29), (31) and (32) to complete the matrices of equations (25) and 
(26), which are the main system of the MLGFM. 

4. Damage evolution  

With purpose to quantify the damage accumulation due to a monotonic load increment, 

some failure criterion will be used. Generically, failure criteria can be considered as: 

 
ij

a
ij

F Z
X

 
  
 
 

 (42) 

where Fa is the failure criterion, ij  are the local stress, Xij are the principal material strength 

and Z is the failure value characteristic to each criterion. The rigidity degradation of a 

component occurs due to a progressive process during its serviceable life. It is important to 

note that the evolution of rigidity loss in a structure can be characterized by a single crack or 

by the occurrence of generalized cracks. Combinations of failure modes can act together 
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causing changes in the material properties and in its local stress distribution. In this way, the 

main difficulty in this kind of analysis is the adoption of a failure criterion, aF , that 

conveniently describes the damage evolution due to a failure mode. 

The theories introduced to prevent the failure of an orthotropic laminate are adaptations of 

failure criterion for isotropic materials, modified for biaxial stress cases, such as, Maximum 

Stress Criterion, Maximum Strain Criterion, Tsai-Hill Criterion and Tsai-Wu Criterion 

(Reddy, 1997; Vasiliev & Morozov, 2001; Mendonça, 2005). 

A new criterion is presented, based on the strain energy release rate, to evaluate the 

formation of a new micro crack (Anderssen et al., 1998; Ji et al., 1998; Kobayashi et al.,2000). 

The released energy is used because it is practically independent from the crack length 

(Anderssen et al., 1998). Some of these criterions are presented here. 

4.1 Maximum stress criterion  

According to the Maximum Stress Criterion, for orthotropic materials, while the stresses in 

the principal directions of the material are lower than strength of the material in this 

direction, there are no fails, which means: 

Tensile failure 
1 tX   - longitudinal direction 

2 tY   - transverse direction 

Compressive failure 
1 cX   - longitudinal direction 

2 cY   - transverse direction 

Shear failure 12 C   - plane shear 

where tX  is the longitudinal tensile strength, tY  is the transverse tensile strength, cX  is the 

longitudinal compressive strength, cY is the transverse compressive strength and C is the 

shear strength of the lamina. 

4.2 Maximum strain criterion  

This theory is analogous to the Maximum Stress Criterion, but the fail criterion is controlled 

by deformation limits in the principal directions of material. In this theory the material will 

fail when one of the following limits are reached: 

Tensile failure 
1 tX   - longitudinal direction 

2 tY   - transverse direction 

Compressive failure 
1 cX   - longitudinal direction 

2 cY   - transverse direction 

Shear failure 12 C   - plane shear 

where X, X, Y, Y are the maximum deformation deformation values in the principal 

directions 1 and 2, for tensile and compressive loading, C , is the maximum angular 

distortion in the plane 1-2. 
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4.3 Tsai-Hill Criterion  

An adaptation made by Tsai in the Hill Criterion for transverse orthotropic laminate at 
plane stress condition, resulted in the expression (43): 

 
2 2 2
1 2 1 2 12
2 2 2 2

1
X Y X C

    
     (43) 

4.4 Tsai-Wu Criterion  

A simple procedure was proposed by Tsai-Wu, changing the Tsai-Hill Criterion in equation 
(43). When the tensile and compression strength are similar, the expression (44) becomes the 
Tsai-Hill Criterion. 

 
2 2 2
1 2 1 2 12
2 2 2

1
XYX Y C

    
     (44) 

4.5 Strain Energy Release Rate Criterion  

The Strain Energy Release Rate Criterion to describe the damage evolution was applied by 
Lim and Tay (Lim & Tay, 1996). Consider a symmetric laminated composite of width b and 
length L, with the configuration [0°l/90°m]s, where l and m are integers. When the laminated 
is loaded uniaxially in tension, the stress-strain curve is linear until the failure criterion is 
reached for the first time, at point A (figure 5). A transverse crack is introduced in 90° layer. 

 
Fig. 5. Stiffness loss in composite laminates [0°l/90°m]s – Lim & Tay (1995). 

The result is a reduction in the effective stiffness of the laminate in the loading direction, 
and this is represented by the OB segment in figure 5. Upon further loading, this reduction 
is verified by the segment BC. This process is repeated until line OF is reached. Note that 

 

 

O 

A 

B 
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D 

E 

F 
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H 
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this dotted line represents the stiffness of the laminate where the contribution of the 90° 
layers was neglected. 

When the area BCHG reaches a critical value. An additional transverse crack is formed and 

the effective stiffness reduces again, as indicated by the segment OC. Denoting the area 

BCHG in figure 5 as 0iU , where i indicates the lamina in analysis, the strain energy density 

is given by: 

  0

1

2
i xi xi yi yi xyi xyiU             (45) 

Where xi , yi  e xyi  are the stress in x direction, y direction and xy plane shear of the 

lamina i, respectively, and xi , yi  e xyi  are the strain in x direction, y direction and xy 

plane of the lamina i, respectively. Therefore, the energy iU , necessary to form a new crack, 

can be defined as: 

 0
2

i i

t
U LU

t
  (46) 

Where t is the thickness of the laminated, t2 is the thickness of the 90° plies an L is the length 
of the laminated. 

In this way, a transverse crack is assumed to be formed when: 

 i IcU G  (47) 

Where IcG  is the mode I energy release rate for the formation of a transverse crack. The 

process of determining the transverse crack density is repeated for each successive micro 

crack, using the same value for IcG . As seen in figure 5, a series of points (A, B, C, D, …, E) 

can be generated until the limit OI is reached. From this limit, matrix cracking in the 90º 

layers no longer influences significantly the laminate stress-strain behavior. It must be 

observed that in practice, the intervals between the points are very small, turning the curve 

smooth, rather than the curve shown in figure 5. 

5. Applications 

5.1 Analysis of laminated plates by the MFLGM  

The first application refers to the analysis of a laminate plate, whose materials of its lamina 
are defined in table 2. The aim of this application is to determine the stiffness loss E/Eo due 

to the improvement of crack density  for the Gr/Ep [0o./90o]s laminated, using () 
formulation 

 

Material E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12 

Grafite / Epoxi (Gr/Ep) 142,00 9,85 4,48 3,37 0,3 

Glass / Epoxi (Gl/Ep) 41,70 13,00 3,40 3,40 0,3 

Table 2. Material Properties - Highsmith e Reifsnider (1982) 
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The loss of stiffness is observed in figure 6 for different meshes and compared with the 

results obtained by Lim & Tay (1996) and experimental results. As the crack density grows 

up, the stiffness diminishes. The results are better with finest meshes, but even with coarse 

meshes, the approximation is good. Figure 7 shows the loss E/Eo versus crack density ζ for 

the case Gl/Ep [0°/90°]s – using () formulation. The same considerations are made for this 

case. 
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Fig. 6. Stiffness loss E/Eo versus crack density  for the Gr/Ep [0o./90o]s laminated, using 

() formulation. 
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Fig. 7. Stiffness loss E/Eo versus crack density ζ for the case Gl/Ep [0°/90°]s – using () 
formulation  
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5.2 Progressive stiffness loss of laminate  

To evaluate the stiffness loss of laminated plates due to micro-crack accumulation under 

increasing monotonic loading using the MLGFM, the following conditions were considered: 

a. Stress-strain relations of a thin orthotropic laminate are considered in plain stress state;  

b. Dimensions of the squared plate are 2,0 m x 2,0 m, but only a ¼ was modeled due to its 

double symmetry: 2{( , ) : (0 1,0;0 1,0}x y R x y     ; 
c. Axial tension loading in “x” direction; 
d. The properties of the material used are listed in the tables 2 and 3; 

e. The value of IcG  adopted is 250 J/m2 for the glass/epoxi laminate (Tay & Lim, 1993). 
 

Material E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) υ12 

Glass / Epoxy (Gl/Ep) 41.70 13.00 3.40 3.40 0.3 

Table 3. Mechanical properties (Highsmith & Reifsnider, 1982) 

 

Xt (MPa) Yt (MPa) Xc (MPa) Yc (MPa) C (MPa) 

1170.00 32.00 53.00 18.00 45.00 

Table 4. Strength limits for glass/epoxy laminate (Highsmith & Reifsnider, 1982) 

In order to compare the failure criterion, a [0o/90o3]s glass/epoxy symmetric laminated with 
total thickness of 1,624mm was used. All layers on the laminated have the same thickness. 
The results are presented in figure 8. All criterions were implemented in the same program 
to facilitate the comparison. 

 

 

Fig. 8. Gl/Ep [0º/90º3]s Laminated – Failure Criterion comparison. 
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To demonstrate the model capability to prevent the laminate stiffness loss, a comparison 

between the results obtained by the strain energy criterion implemented in this paper and 

the results obtained by Talreja (Talreja,1984) and Tay (Tay & Lim, 1993) was made. This 

analysis also used the [0o/90o3]s glass/epoxy symmetric laminated with total thickness of 

1,624mm. The results are presented in figure 9. 

 

Fig. 9. Gl/Ep [0º/90º3]s Laminated – Results comparison. 

6. Conclusion 

The present paper deals with damage composite laminate with transverse cracks in the 

matrix applying Continuous Damage Mechanics Theory, which was initially proposed by 

Kachanov (Kachanov, 1958) and than adapted by Allen (Allen et al., 1987a,b) for orthotropic 

laminated composites. This theory was also applied by Lim and Tay (Lim & Tay,1996) in 

laminates with transverse cracks to describe the stiffness loss of the structure. The adapted 

Damage Theory considers the mechanism associated to the transverse cracks through the 

internal state variables inside the constitutive relations based on the Continuous Damage 

Mechanics. 

The theoretical model was implemented in a computational program, developed in 

FORTRAN language, based on the Modified Local Green's Function Method (MLGFM). The 

approximated solution was obtained by the MLGFM. The damage evolution model, 

originally developed for FEM, can be applied also to MLGFM without substantial changes 

in the original code. 

In the presented results, it can be observed that the conventional criterions catch only the 

moment when the 90º layers no longer influences the stiffness of the laminated. Most of the 

criterions were able to determine the loss of stiffness. The strain energy criterion is able to 

evaluate the damage evolution, identifying the moment when the transverse cracks starts to 

affect the laminated rigidity. However, during the strain increase, the efficacy of the method 

to evaluate the stiffness loss decreases. Even so, as shown in the figure 8, the implemented 
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code is able to denote, for all criterions, the stiffness loss in laminated composites when 

transverse cracks are formed in the matrix. 

It is important to note that the actual stage of damage of a laminated plate depends on the 

historical of loading. As the micro cracks rise by quantity, length and opening, the external 

load must be applied step by step. A tolerance and a stopping strategy must be decisive for 

the accuracy and approximation of the true solution. 
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