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1. Introduction 

In hydraulic systems, pumps are the major source of noise and vibration. It generates flow 

ripples which interact with other hydraulic components, such as transmission lines and 

valves to create harmonic pressure waves, i.e., fluid-borne noise (FBN). Fig. 1 shows a 

typical oscillating pressure measured at the outlet of a ten-vane pump running at 1500 rpm. 

Fig. 2 gives the frequency spectrum for the pressure signal which contains harmonic 

components of the fundamental frequency, 25 Hz, which correlates with the pump 

operating speed. The largest peak is at 250 Hz, which corresponds to the shaft speed times 

the number of the pumping elements (10 vanes in this case). The FBN propagates along as 

well as interacts with the tubing and other components to result in airborne noise (ABN) 

and structure-borne noise (SBN, i.e., structural vibration). These noises can become 

excessive, and lead to damage the tubing system and other components. Therefore, to study 

the pressure wave propagation in the hydraulic tubing system, it is important to take the 

fluid-structure interaction into account to further the understanding of noise transmission 

mechanism. 

Fluid-structure interaction can be divided into three categories: junction coupling, Poisson 

coupling, and Bourdon coupling. Junction coupling occurs at discontinuities, such as bends 

and tees, where the pressure interacts with the structure to cause structural vibration. In 

unsteady flow, the pressure varies along the tube. Differences in pressure exert axial and 

transverse forces during power transmission at bends and other locations where the 

diametrical geometry changes. Moreover, the pressure is related to the longitudinal stresses 

in the pipe because of the radial contraction or expansion via Poisson coupling (Hatfield & 

Davidson, 1983). Furthermore, the cross-sectional shape of the line in a bend is not circular 

because of action by the bending forces. This effect, known as the Bourdon effect (Tentarelli, 

1990), influences the structural modes at low frequencies. 

Several approaches have been used (To & Kaladi, 1985; Everstine 1986; Nanayakkara & 

Perreia, 1986), such as the transfer matrix and finite element (FEM) methods, to model the 

fluid-structural coupling. In this study, the transfer matrix method (TMM) is used because 

of its simplicity. Even though FEM may offer better accuracy, it is more complicated and 

time-consuming than TMM. 
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Fig. 1. Pressure waveform measured at the outlet of a ten-vane power steering pump 
running at 1500 rpm. The periodic waveform is generated by the rotating elements of the 
pumping mechanism. 
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Fig. 2. Frequency spectrum of the pressure signal shown in Fig. 1 Pump speed: 1500 rpm; 
number of pumping elements: 10; fundamental pump rotational frequency: 25 Hz 

Davidson and Smith (1969) first studied fluid-structure interactions using the TMM and 

verified their model with their own experimental data. Their data were used widely by 

subsequent researchers (Davidson & Samsury, 1972; Hatfield & Davidson, 1983) to verify 

analytical models which did not include viscosity. Hatfield et al. (1982) applied the 

component synthesis method in the frequency domain. In their method, fluid-structure 

interaction was included in terms of junction coupling. Their simulation predictions were 

validated with Davidson and Smith’s (1969) experimental data. Bundy et al. [9] introduced 
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structural damping which was neglected by other researchers in previous experimental and 

theoretical investigations. 

Brown and Tentarelli (1988) arranged the 1414 transfer matrices for n segments and then 

assembled them into a global 14(n-1)14(n-1) sparse matrix. This approach was beneficial 

because, by solving the linear equations, the state variables at every point were obtained. 

Their algorithm also avoided round-off error at higher frequencies. Fluid friction was not 

considered in their analysis. Chen (1992), and Chen and Hastings (1992; 1994) considered 

both the fluid-structure interaction caused by discontinuities and the viscosity of the fluid in 

a distributed parameter, transfer matrix model of the transmission line in an automotive 

power steering system. 

Most researchers verified their models with a simplified experimental system; for example, 

L-tube or U-tube systems. Until now, the system model has not been verified in a complex 

tubing system. In this book, a transfer matrix system model incorporating the acoustic 

characteristics of termination is developed to predict the fluidborne noise in a complex 

three-dimensional tubing system. The results show good agreements between simulated 

and experimental data. 

2. Analysis 

2.1 Axial motion 

For a three-dimensional tubing system, fluidstructural coupling must be considered 

because tubing discontinuities, such as bends, cause unbalanced forces to act on both the 

tubing and fluid. Fig. 3 displays the coordinate system and state variables in a straight tube 

segment used in the following analysis. 

Assuming axisymmetric, two-dimensional, laminar, viscous, compressible flow and 

negligible temperature variation (i.e., constant fluid viscosity), the linearized NavierStokes 

equations reduce to (Chen, 2001): 

 
2

2

  1 1

   
z z z

f

pv v v

t z r rr

  
   

 
    

  
 (1) 

where vz , vr , and p denote the deviation of axial velocity, radial velocity, and pressure from 

the steady state, respectively. 

Combining the continuity equation and equation of state for a liquid, gives: 

 0
   

r r z p  v v  v1

β t r r z

  
   

  
 (2) 

where  is the fluid bulk modulus. 

By averaging vz over the cross section, applying the boundary condition at the inner radius 

of the tubing, f zu u , and transforming to the Laplace domain, the following equation is 

obtained: 
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Fig. 3. Hydraulic line coordinate system and state variables: u is translational displacement 

of tubing;  , angular displacement of tubing; f, force acting on the tubing; h, moment acting 

on the tubing; fp , fluid pressure; fu , fluid displacement; and subscripts x, y, and z the axes 

for the Cartesian coordinates (adapted from Chen, 1992). 
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,  f is the fluid density, and Jo and J1 are the zero and 

firstorder Bessel functions of the first kind, respectively, and s denotes the Laplace 
transformation. 

Applying Newton’s second law to the tubing wall, yields: 
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 (4)  

where F  is the friction force per unit length acting on the inner tubing wall, A  is the cross-
sectional area of the tubing, and   is the density of the tubing. 

Applying Newton’s second law to the fluid gives: 

 2 
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 (5) 

where fA  is the cross-sectional area of the fluid. 

Combining Equations (4) and (5), gives: 

 2 2  

  
z

f z f f f

F P
A As U A s U

z z
 

 
  

 
 (6) 
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Substituting Equation (3) into Equation (6), and rearranging Equation (6) yields: 

 2 2 1 1
1 1

 ( ) ( )
z

f f z f f f

F
A A s U A s U

z s s
  

                     
  (7) 

2.1.2 Poisson effect 

The Poisson effect, longitudinal motion resulting in radial strain of the tubing or vice versa, 
was not included in previous work (Chen, 1992). The axial strain of the tubing, z , in a 
cylindrical coordinates is written as: 

  1

 
z

z z r

 u

z E
   


   


 (8) 

where   is the stress, E  and   are the elastic modulus and Poisson’s ratio for the tubing 
material, respectively, and subscripts z , r  and   are the cylindrical coordinates. 

For thick-walled tubing, the radial and tangential stresses can be represented as: 
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Combining Equations (8) and (9), gives: 
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For conservation of mass to hold, the axial change in volume of a fluid element results from 
pressure and expansion of the tubing. Radial expansion of the tubing is caused by pressure, 
and axial motion of the tubing results from Poisson coupling: 
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 (11) 

where e  is an effective fluid bulk modulus that accounts for compliance of the tubing wall. 
When the Poisson effect is neglected, Equations (10) and (11) reduce to equations for 
longitudinal motion of a bar. 

2.1.3 Bourdon coupling 

The Bourdon effect occurs at bends where the fluid-filled tubing cross-section is ovalized. 
Bending of the tubing results in a change of cross-sectional area and thus fluid motion. The 
fluid pressure gradient in the bend produces a bending moment in the tubing, and the 
balancing bending moment in the tubing then displaces the fluid. For curved tubing, the 
Bourdon coupling is described by Reissner et al. (1952) and Tentarelli (1990): 
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where 
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, vR  is the radius of curvature of the bend, and a 

and b are the major and minor axes of the elliptical cross section, respectively. 

Equations (12) and (13) reduce to the common flexural motion equations for a = b (i.e., 
circular cross-section). When there is no fluid pressure present, 22A  can be approximated as 
a flexural stiffness with a correction factor to account for the ovalization effect. The effect 
produces a reduction in stiffness at bends in the transmission line. 

Several straight short-length segments are used to model the bends and twists in the three-
dimensional tubing line. To account for the ovalization effect, a correction factor is used to 
adjust the flexural stiffness for the curved line. The correction factor ( ) for the flexural 
stiffness is formulated as Vigness (1943): 
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The product of   and a flexural stiffness can be shown to be a simplified form of 22A  
(Reissner et al., 1956). 

2.2 Flexural and torsional motion 

Rearranging Equations (3), (7), (10) and (11), and considering the flexural motions in the x-z 

and y-z planes, and torsion about the z-axis in Laplace domain, four groups of linear, first
order differential equations are obtained (Chen 2001): 
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Equations (15)  (18) can be represented in the following form: 

        ; 1,4
 

k k kS A S k
z


  


 (19) 

where  kA  is coefficient matrix, T
1 z f zS P F U U    , T

2  x y x yS U H F    , 
T

3 y x y xS U H F     and   T
4 z zS H  . 

Solving Equation (16) by employing boundary conditions at the inlet (z = 0) of each section 

yields: 

    [ ] 

 0
kA L

k kz L z
S e S

   (20) 

where   0k z
S 

is the substate vector at the inlet. 

Relating the two end conditions for a given section i, yields the 1414 field transfer 

matrix   iT : 

      1    i i i
S T S   (21) 

A three-dimensional tubing system can be treated as a combination of short straight lines 

with different orientations resulting in coupling of the fluid pressure, and forces and 

moments in the tubing wall. Each section of tubing is modeled by a 1414 transfer matrix 

with state variable vectors. Details on the assembly of the 1414 matrix can be found in 

Chen [11]. Each bend is broken into three straight-line segments. For these segments, the 

correction factor,  , is used to include the Bourdon effect by replacing the flexural 

stiffness EI with EI  in Equation (14). 

A transformation matrix [R] transfers the force and displacement from one section to 

another, couples structural vibration and fluid pressure waves at points of discontinuity, 

and transforms the coordinate system from one section to the next. Force and moment 
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equilibrium, conservation of mass flow, and structural continuity are considered when 

deriving the transformation matrix (Chen, 1992). Finally, the relationship between one end 

of the system and the other is obtained by multiplying [R] and [T] for each line section: 

            1    1  1  1n n n
S R T R T S            (22)  

2.3 Implementation of the matrix partitioning algorithm 

The transfer matrix method solves the equations of motion step by step and determines the 

unknown variables (translational displacement, angular displacement, force and moment) 

simultaneously in the solution process. Because of the transfer matrix chain multiplication, 

as shown in Equation (22), numerical errors occur and build up as the multiplicative process 

progresses. In this study, matrix partitioning was applied to the system of equations to 

eliminate the long chain of matrix multiplication. 

In most tubing systems, the boundary conditions at each end are defined because the tubing 

is attached to the pump outlet and the rotary valve inlet. Therefore, to reduce numerical 

error, matrix partitioning originally developed by (Clark, 1956) was used. With known 

boundary conditions at the ends, the state variables are re-arranged as follows: 

   * 1

 1
1

a

b

S
S
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 (23) 
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1
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 n b
n

S
S
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 (24) 

where 1
aS  and 1

a
nS  are the known state variables, and 1

bS  and 1
b

nS   are the unknown 

variables. 

By using the matrices  1MR  and   1n
MR  , the following equations are obtained: 

      *

1  1  1
S MR S  (25) 

       *

1  1  1n n n
S MR S    (26) 

      1  *

1  1  1
S MR S

  (27) 

The relationship between one end and the other for the first element is:  

       1 2  21
S TR S  (28) 

where       21  1  1
TR R T  . 

Combining Equations (27) and (28) and arranging the unknown variables on the left side, 
yields: 
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where       * 1

 21  21  1
TR TR MR

  . 

Similarly, the equation of the last section of tubing can be written as: 
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where       *

 1,  1  1,n n n n n
TR MR TR    and       1,  n n n  n

TR R T  . 

By rearranging the equations for all tubing sections, the global matrix is obtained: 
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 (31) 

To solve for the unknown state variables in Equation (31), MATLAB command “\”, which 
solves the system of linear equations by Gaussian elimination, was used in the simulation. 

2.4 Acoustic impedance of hydraulic system components 

Impedance characteristics of hydraulic components have an important effect on pressure 
pulsations in hydraulic circuits. These pressure oscillations lead to vibrations and are a 
source of noise. By using plane wave propagation theory, impedances can be estimated 
using the two-microphone technique (ASTM E 1050-90, and ASTM C 384-108a). 

Fig. 4 displays an acoustic impedance representation for the hydraulic circuit Five 
parameters can be used to define this system: the source impedance ( sZ ), source flow ripple 
( sQ ), line impedance ( cZ ), line propagation constant (  ), and termination impedance ( tZ ). 
The source pressure ( sP ) is derived from sZ .  
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Fig. 4. Acoustic representation of a hydraulic circuit 
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The pressure ( zP ) and volumetric flow velocity ( zQ ) at any harmonic frequency at a 

distance z along the line are: 

 z z
z i rP P e P e    (32) 

  1 z z
z i r

c

Q P e P e
Z

    (33) 

where iP  and rP  are the complex incident and reflected pressures, respectively. 

The termination reflection coefficient, rC , is defined by the ratio of the reflected pressure to 

the incident pressure: 

 r
r

i

P
C

P
  (34) 

The pressures at locations 1z  and 2z  are: 

 1 1
1

z z
z i rP P e P e    (35) 

 2 2
2

z z
z i rP P e P e    (36) 

Solving Equations (35) and (36) for iP  and rP , and substituting into Equation (34), the 

reflection coefficient is obtained: 
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 (37) 

If the impedance of the termination is tZ , applying Equations (32) and (33) at the boundary 

0z   (i.e., z L ) gives: 

    
' 0 ' 0i r tz z

P P P
 

   (38) 

    
' 0' 0i r c t t zz

P P Z P Z


     (39) 

By rearranging the above two equations and combining with Equation (34), the termination 

impedance can be represented in terms of cZ  and rC : 
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cZ is the characteristic impedance in the tubing given by Chen and Hastings (1992): 
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where c is the sound speed;   is the angular frequency; ir  is the inner radius of 

transmission line;   is the density and kinematic viscosity of the fluid, respectively; and 0J  

and 1J  denote the zero- and first-order Bessel functions of the first kind, respectively. 

The measuring pressure signals before the valve, the termination impedance can be readily 

determined by Equation (37) and (40). Fig. 5 displays the estimated impedance of the rotary 

valve in power steering system at various opening positions. The data show that modeling 

this valve as a pure resistance is not appropriate as a strong reactive component of the 

impedance is apparent.  
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Fig. 5. Amplitude and phase angle of the valve impedance 
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3. Experimental results 

An automotive hydraulic power steering tubing system was tested in this research. Detailed 

layout of this three-dimensional tubing transmission line was provided by the 

manufacturer. Since this study addresses pump induced noise, a system with a pump source 

was set up to verify the transfer matrix model for the tubing system. Fig. 6 illustrates the 

system layout. This includes the power steering pump, hydraulic transmission lines, a rack 

and pinion unit, steering wheel and column, and rotary valve. The steering pump is driven 

by an electric motor through a belt. A variable speed, AC controller is used to control the 

electric motor and vary the speed of pump. In this setup, a water-cooling system using a coil 

heat exchanger is used. Water from the building supply circulates through the coil heat 

exchanger connected to the return line and then flows into a drain. 
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Fig. 6. Experimental setup for an automotive hydraulic power steering tubing system 
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Four piezoelectric pressure transducers are used to measure the dynamic pressure in this 

system. The first pressure transducer (P1) is placed at the outlet of the pump to measure the 

source of pressure disturbance. The fourth one (P4) is located at the inlet of the rotary valve 

so that the amplitude ratio of outlet pressure to inlet pressure (P4/P1) can be measured and 

compared to the model prediction. The pressure signals are connected to the Kistler Charge 

amplifier and then to a HP3566A 8-channel analyzer. Data are saved in a computer and 

retrieved later for further analysis. 

Because the focus of this study is to investigate the fluidborne noise propagation in the 

tubing system and interaction with the tubing structure, the pressure frequency response of 

the tubing transmission line is investigated. To correlate the transfer matrix model with 

better accuracy, the sound speed in steel tubing and damping factor are experimentally 

estimated (Chen, 2001). The sound speed was optimized to be 1374 m/s. The frequency-

dependent damping in the system was estimated based on the Half-Power method. Figs. 7 

and 8 display the frequency response for the outlet pressure of the pressure side 

transmission line (P4) with different valve opening due to the steering wheel positions for 

an all steel tubing system. The model prediction and experimental data match very well. 

Good agreement was obtained. 

 
 
 
 
 
 
 
 

0 250 500 750 1000
-15

-10

-5

0

5

10

Frequency (Hz)

P
re

ss
u

re
 a

m
p

li
tu

d
e 

ra
ti

o
, 
P

4
/P

1
 (

d
B

)

Simulation

Experiment

 
 
 

Fig. 7. Pressure response of an all steel tubing system with a fully turned steering wheel. 
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Fig. 8. Pressure response of an all steel tubing system with a steering wheel at neutral 
position 

4. Conclusions 

A distributed-parameter transfer-matrix model is developed to predict the fluidborne noise 

in a complex tubing system. This study provides a systematic approach to predict the 

pump-induced fluidborne noise by incorporating the experimentally determined acoustic 

characteristics of valve termination. The developed model was supported by experimental 

measurement with good agreements. Inclusion of Poisson and Bourdon effects in the model 

provide better predictions. Furthermore, the transfer matrix-partitioning algorithm 

presented here not only can reduce truncation error but also be more efficient in comparison 

with the matrix chain multiplication. It is also noted that the damping of the tubing system 

needs to be included to better predict the peak amplitude. The mathematical model 

presented can be applied to the analysis of noise in other hydraulic systems, such as those 

used in air conditioners and power plants. However, to fully characterize the noise 

propagation/transmission in the tubing system, SBN (not presented here, but can also be 

predicted by the developed model) should also be investigated because of fluid-structure 

interaction. 
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