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Incompressible Non-Newtonian Fluid Flows 

Quoc-Hung Nguyen and Ngoc-Diep Nguyen 
Mechanical Faculty, Ho Chi Minh University of Industry, 

Vietnam 

1. Introduction 

A non-Newtonian fluid is a fluid whose flow properties differ in many ways from those of 
Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is not independent 
of shear rate or shear rate history. In practice, many fluid materials exhibits non-Newtonian 
fluid behavior such as: salt solutions, molten, ketchup, custard, toothpaste, starch suspensions, 
paint, blood, and shampoo etc. In a Newtonian fluid, the relation between the shear stress and 
the shear rate is linear, passing through the origin, the constant of proportionality being the 
coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the 
shear rate is different, and can even be time-dependent. Therefore a constant coefficient of 
viscosity cannot be defined. In the previous parts of this book, the mechanics of Newtonian 
fluid have been mentioned. In this chapter, the common rheological models of non-Newtonian 
fluids are introduced and several approaches concerned with non-Newtonian fluid flows are 
considered. In addition, the solution of common non-Newtonian fluid flows in a circular pipe, 
annular and rectangular duct are presented. 

2. Classification of non-Newtonian fluid 

As above mentioned, a non-Newtonian fluid is one whose flow curve (shear stress versus 
shear rate) is nonlinear or does not pass through the origin, i.e. where the apparent viscosity, 
shear stress divided by shear rate, is not constant at a given temperature and pressure but is 
dependent on flow conditions such as flow geometry, shear rate, etc. and sometimes even 
on the kinematic history of the fluid element under consideration. Such materials may be 
conveniently grouped into three general classes: 

1. fluids for which the rate of shear at any point is determined only by the value of the 
shear stress at that point at that instant; these fluids are variously known as ‘time 
independent’ , ‘ purely viscous’ , ‘inelastic’ or ‘generalized Newtonian fluids’); 

2. more complex fluids for which the relation between shear stress and shear rate 
depends, in addition, upon the duration of shearing and their kinematic history; they 
are called ‘time-dependent fluids’, and finally, 

3. substances exhibiting characteristics of both ideal fluids and elastic solids and showing 
partial elastic recovery, after deformation; these are categorized as ‘viscoplastic fluids’.  

Among the three groups, the time independent Non-Newtonian fluids are the most popular 
and easiest to handle in analysis. In this chapter, only this group of Non-Newtonian fluids 
are considered. 
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Fig. 1. Types of time-independent non-Newtonian fluid 

In simple shear, the flow behaviour of this class of materials may be described by the 
following constitutive relation, 

 ( )yx yxf    (1) 

This equation implies that the value of yx  at any point within the sheared fluid is 

determined only by the current value of shear stress at that point or vice versa. Depending 

upon the form of the function in equation (1), these fluids may be further subdivided into 

three types: shear-thinning or pseudoplastic, shear-thickening or dilatant and viscoplastic 

2.1 Shear-thinning or pseudo-plastic fluids 

The most common type of time-independent non-Newtonian fluid behaviour observed is 
Pseudo-plasticity or shear-thinning, characterized by an apparent viscosity which decreases 
with increasing shear rate. Both at very low and at very high shear rates, most shear-
thinning polymer solutions and melts exhibit Newtonian behaviour, i.e., shear stress–shear 
rate plots become straight lines and on a linear scale will pass through origin. The resulting 
values of the apparent viscosity at very low and high shear rates are known as the zero 

shear viscosity, ȝ0 , and the infinite shear viscosity, ȝ, respectively. Thus, the apparent 

viscosity of a shear-thinning fluid decreases from ȝ0 to ȝ with increasing shear rate. Many 
mathematical expressions of varying complexity and form have been proposed in the 
literature to model shear-thinning characteristics; some of these are straightforward 
attempts at curve fitting, giving empirical relationships for the shear stress (or apparent 
viscosity)–shear rate curves for example, while others have some theoretical basis in 
statistical mechanics – as an extension of the application of the kinetic theory to the liquid 
state or the theory of rate processes, etc. Only a selection of the more widely used viscosity 
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models is given here; more complete descriptions of such models are available in many 
books (Bird et al ., 1987 ; Carreau et al ., 1997) and in a review paper (Bird, 1976). 

i. The power-law model 

The relationship between shear stress and shear rate for this type of fluid can be 
mathematically expressed as follows: 

 ( )n
yx yxK    (2) 

So the apparent viscosity for the so-called power-law fluid is thus given by: 

 1( )n
yxK     (3) 

For n < 1, the fluid exhibits shear-thinning properties 
 n = 1, the fluid shows Newtonian behaviour 
 n > 1, the fluid shows shear-thickening behaviour 

In these equations, K and n are two empirical curve-fitting parameters and are known as the 
fluid consistency coefficient and the flow behaviour index respectively. For a shear thinning 
fluid, the index may have any value between 0 and 1. The smaller the value of n, the greater 
is the degree of shear-thinning. For a shear-thickening fluid, the index n will be greater than 
unity. When n=1, equations (3) becomes the constitutive equation of Newtonian fluid. 

Although the power-law model offers the simplest representation of shear-thinning 
behaviour, it does have a number of limitations. Generally, it applies over only a limited 
range of shear rates and therefore the fitted values of K and n will depend on the range of 
shear rates considered. Furthermore, it does not predict the zero and infinite shear 
viscosities. Finally, it should be noted that the dimensions of the flow consistency 
coefficient, K, depend on the numerical value of n and therefore the K values must not be 
compared when the n values differ. On the other hand, the value of K can be viewed as the 
value of apparent viscosity at the shear rate of unity and will therefore depend on the time 
unit (e.g. second, minute or hour) employed. Despite these limitations, this is perhaps the most 
widely used model in the literature dealing with process engineering applications. Table 1 
provides a compilation of the power-law constants (K and n) for a variety of substances. 

ii. The Carreau viscosity equation 

When there are significant deviations from the power-law model at very high and very low 
shear rates, it is necessary to use a model which takes account of the limiting values of 

viscosities ȝ0 and ȝ . Based on the molecular network considerations, Carreau (1972) put 
forward the following viscosity model. 

 ( 1)/22

0

[1 ( ) ] n
yx

  
 






 


  (4) 

where n (< 1) and λ are two curve-fitting parameters. This model can describe shear 
thinning behaviour over wide ranges of shear rates but only at the expense of the added 
complexity of four parameters. This model predicts Newtonian fluid behaviour ȝ = ȝ0 when 
either n = 1 or Ȝ =0 or both. 
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System Temperature (K) n M (Pa sn ) 

Agro- and food-related products    

Ammonium alginate solution (3.37%) 297 0.5 13 

Apple butter – 0.15 200 

Apple sauce 300 0.3–0.45 12–22 

Apricot puree 300 0.3–0.4 5–20 

Banana puree 293–315 0.33–0.5 4–10 

Carrot puree 298 0.25 25 

Chicken (minced) 296 0.10 900 

Chocolate 303 0.5 0.7 

Guava puree 296.5 0.5 40 

Human blood 300 0.9 0.004 

Mango pulp 300–340 0.3 3–10 

Marshmallow cream – 0.4 560 

Mayonnaise 298 0.6 5–100 

Papaya puree 300 0.5 10 

Peach puree 300 0.38 1–5 

Peanut butter – 0.07 500 

Pear puree 300 0.4–0.5 1–5 

Plum puree 287 0.35 30–80 

Tomato concentrate (5.8% solid) 305 0.6 0.22 

Tomato ketchup 295 0.24 33 

Tomato paste – 0.5 15 

Whipped desert toppings – 0.12 400 

Yoghurt 293 0.5–0.6 25 

Polymer melts    

High density polyethylene (HDPE) 453–493 0.6 3.75–6.2 x 103 

High impact polystyrene 443–483 0.20 3.5–7.5 x 104 

Polystyrene 463–498 0.25 1.5–4.5 x 104 

Polypropylene 453–473 0.40 4.5–7 x 103 

Low density polyethylene (LDPE) 433–473 0.45 4.3–9.4 x 103 

Nylon 493–508 0.65 1.8–2.6 x 103 

Polymethylmethyacrylate   (PMMA) 493–533 0.25 2.5–9 x 104 

Polycarbonate 553–593 0.65–0.8 1–8.5 x 103 

Personal care products    

Nail polish 298 0.86 750 

Mascara 298 0.24 200 

Toothpaste 298 0.28 120 

Sunscreen lotions 298 0.28 75 

Ponds cold cream 298 0.45 25 

Oil of Olay 298 0.22 25 

Source: Modified after Johnson (1999) 

Table 1. Typical values of power-law constants for a few systems 
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iii. The Cross viscosity equation 

Another four parameter model which has gained wide acceptance is due to Cross (1965) 

which, in simple shear, is written as: 

 
0

1

1 ( )n
yxk

 
  








  
 (5) 

Here n (<1) and k are two fitting parameters whereas ȝ0 and ȝ are the limiting values of the 

apparent viscosity at low and high shear rates, respectively. This model reduces to the 

Newtonian fluid behaviour as k → 0. Similarly, when ȝ << ȝ0 and ȝ >>ȝ, it reduces to the 

familiar power-law model, equation (3). Though initially Cross (1965) suggested that a 

constant value of n =2/3 was adequate to approximate the viscosity data for many systems, 

it is now thought that treating the index, n, as an adjustable parameter offers considerable 

improvement over the use of the constant value of n (Barnes et al. , 1989). 

iv. The Ellis fluid model 

When the deviations from the power-law model are significant only at low shear rates, it 

is more appropriate to use the Ellis model. The three viscosity equations presented so far 

are examples of the form of equation (1). The three-constant Ellis model is an illustration 

of the inverse form. In simple shear, the apparent viscosity of an Ellis model fluid is given 

by: 

 0
1

1/21 ( / )yx





  


 (6) 

In this equation, ȝ0 is the zero shear viscosity and the remaining two constants α (> 1) and 

Ĳ1/2 are adjustable parameters. While the index α is a measure of the degree of shear thinning 

behaviour (the greater the value of α , greater is the extent of shear-thinning), Ĳ1/2 represents 

the value of shear stress at which the apparent viscosity has dropped to half its zero shear 

value. Equation (6) predicts Newtonian fluid behaviour in the limit of Ĳ 1/2 → . This form 

of equation has advantages in permitting easy calculation of velocity profiles from a known 

stress distribution, but renders the reverse operation tedious and cumbersome. It can easily 

be seen that in the intermediate range of shear stress (or shear rate), (Ĳyx / Ĳ1/2)
-1>> 1, and 

equation (6) reduces to equation (3) with n =(1/) and 1 1/
0 1/2( )m      

2.2 Viscoplastic fluid behaviour 

This type of fluid behaviour is characterized by the existence of a yield stress (Ĳ0) which 

must be exceeded before the fluid will deform or flow. Conversely, such a material will 

deform elastically (or flow en masse like a rigid body) when the externally applied stress is 

smaller than the yield stress. Once the magnitude of the external stress has exceeded the 

value of the yield stress, the flow curve may be linear or non-linear but will not pass 

through origin (Figure 1). Hence, in the absence of surface tension effects, such a material 
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will not level out under gravity to form an absolutely flat free surface. One can, however, 

explain this kind of fluid behaviour by postulating that the substance at rest consists of 

three-dimensional structures of sufficient rigidity to resist any external stress less than Ĳ0. 
For stress levels greater than Ĳ0, however, the structure breaks down and the substance 

behaves like a viscous material. In some cases, the build-up and breakdown of structure has 

been found to be reversible, i.e., the substance may regain its initial value of the yield stress. 

A fluid with a linear flow curve for |Ĳyx | > | Ĳ0 | is called a Bingham plastic fluid and is 

characterized by a constant plastic viscosity (the slope of the shear stress versus shear rate 

curve) and a yield stress. On the other hand, a substance possessing a yield stress as well as 

a non-linear flow curve on linear coordinates (for |Ĳyx| > |Ĳ0|), is called a yield 

pseudoplastic material. It is interesting to note that a viscoplastic material also displays an 

apparent viscosity which decreases with increasing shear rate. At very low shear rates, the 

apparent viscosity is effectively infinite at the instant immediately before the substance 

yields and begins to flow. It is thus possible to regard these materials as possessing a 

particular class of shear-thinning behaviour. 

Strictly speaking, it is virtually impossible to ascertain whether any real material has a 

true yield stress or not, but nevertheless the concept of a yield stress has proved to be 

convenient in practice because some materials closely approximate to this type of flow 

behaviour, e.g. see Barnes and Walters (1985) , Astarita (1990) , Schurz (1990) and Evans 

(1992) . Many workers in this field view the yield stress in terms of the transition from a 

solid-like (high viscosity) to a liquid-like (low viscosity) state which occurs abruptly over 

an extremely narrow range of shear rates or shear stress (Uhlherr et al ., 2005). It is not 

uncommon for the two values of viscosity to differ from each other by several orders of 

magnitude. The answer to the question whether a fluid has a yield stress or not seems to 

be related to the choice of a time scale of observation. Common examples of viscoplastic 

fluid behaviour include particulate suspensions, emulsions, foodstuffs, blood and drilling 

mud, etc. (Barnes, 1999). 

Over the years, many empirical expressions have been proposed as a result of 

straightforward curve-fitting exercises. A model based on sound theory is yet to emerge. 

Three commonly used models for viscoplastic fluids are: Bingham plastic model, Herschel-

Bulkley model and Casson model. 

i. The Bingham plastic model 

This is the simplest equation describing the flow behaviour of a fluid with a yield stress and, 

in steady one-dimensional shear, it is described by 

0 ( )yx yx       for 0yx   

 0yx   for 0yx   (7) 

Often, the two model parameters Ĳ0 and ȝ are treated as curve-fitting constants irrespective 

of whether or not the fluid possesses a true yield stress. 
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ii. The Herschel-Bulkley fluid model 

A simple generalization of the Bingham plastic model to embrace the non-linear flow curve 
(for Ĳyx > Ĳ0) is the three constant Herschel–Bulkley fluid model. In one dimensional steady 
shearing motion, the model is written as: 

0 ( )n
yx yxK      for 0yx   

 0yx   for 0yx   (8) 

It is again noted that, the dimensions of K depend upon the value of n. With the use of the 
third parameter, this model provides a somewhat better fit to some experimental data. 

iii. The Casson fluid model 

Many foodstuffs and biological materials, especially blood, are well described by this two 
constant model as: 

1/21/2 1/2
0 ( / )yx yx       for 0yx   

 0yx   for 0yx   (9) 

This model has often been used for describing the steady shear stress–shear rate behaviour 
of blood, yoghurt, tomato purée, molten chocolate, etc. The flow behaviour of some 
particulate suspensions also closely approximates to this type of behaviour. The 
comparative performance of these three as well as several other models for viscoplastic 
behaviour has been thoroughly evaluated in an extensive review paper by Bird et al . (1983) 
and a through discussion on the existence, measurement and implications of yield stress has 
been provided by Barnes (1999). 

2.3 Shear-thickening or dilatant fluid behaviour 

Dilatant fluids are similar to pseudoplastic systems in that they show no yield stress but 
their apparent viscosity increases with increasing shear rate; thus these fluids are also called 
shear-thickening. This type of fluid behaviour was originally observed in concentrated 
suspensions and a possible explanation for their dilatant behaviour is as follows: At rest, the 
voidage is minimum and the liquid present is sufficient to fill the void space. At low shear 
rates, the liquid lubricates the motion of each particle past others and the resulting stresses 
are consequently small. At high shear rates, on the other hand, the material expands or 
dilates slightly (as also observed in the transport of sand dunes) so that there is no longer 
sufficient liquid to fill the increased void space and prevent direct solid–solid contacts which 
result in increased friction and higher shear stresses. This mechanism causes the apparent 
viscosity to rise rapidly with increasing rate of shear. The term dilatant has also been used 
for all other fluids which exhibit increasing apparent viscosity with increasing rate of shear. 
Many of these, such as starch pastes, are not true suspensions and show no dilation on 
shearing. The above explanation therefore is not applicable but nevertheless such materials 
are still commonly referred to as dilatant fluids. 
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Of the time-independent fluids, this sub-class has received very little attention; consequently 
very few reliable data are available. Until recently, dilatant fluid behaviour was considered 
to be much less widespread in the chemical and processing industries. However, with the 
recent growing interest in the handling and processing of systems with high solids loadings, 
it is no longer so, as is evidenced by the number of recent review articles on this subject 
(Barnes et al., 1987; Barnes, 1989; Goddard and Bashir, 1990). Typical examples of materials 
exhibiting dilatant behaviour include concentrated suspensions of china clay, titanium 
dioxide (Metzner and Whitlock, 1958) and of corn fl our in water (Griskey et al., 1985). The 
limited information reported so far suggests that the apparent viscosity–shear rate data 
often result in linear plots on double logarithmic coordinates over a limited shear rate range 
and the flow behaviour may be represented by the power-law model, with the flow 
behaviour index, n, greater than unity, i.e., 

 1( )n
xyK     (10) 

One can readily see that for n > 1, equation (10) predicts increasing viscosity with increasing 

shear rate. The dilatant behaviour may be observed in moderately concentrated suspensions 

at high shear rates, and yet, the same suspension may exhibit pseudoplastic behaviour at 

lower shear rates. 

This section is concluded by Table 2 providing a list of materials displaying a spectrum of 

non-Newtonian flow characteristics in diverse applications to reinforce idea yet again of the 

ubiquitous nature of such flow behaviour. 

 

Practical fluid Characteristics Consequence of non-Newtonian behaviour 

Toothpaste Bingham Plastic Stays on brush and behaves more liquid-like 
while brushing 

Drilling muds   Bingham Plastic   Good lubrication properties and ability to 
convey debris  

Non-drip paints  Thixotropic  Thick in the tin, thin on the brush  

Wallpaper paste Pseudoplastic and 
Viscoelastic 

Good spreadability and adhesive properties 

Egg white  Visco-elastic  Easy air dispersion (whipping)  

Molten polymers  Visco-elastic  Thread-forming properties  

‘ Bouncing Putty ’ Visco-elastic Will flow if stretched slowly, but will bounce 
(or shatter) if hit sharply 

Wet cement 
aggregates   

Dilatant and 
thixotropic   

Permit tamping operations in which small 
impulses produce almost complete settlement  

Printing inks  Pseudoplastic   Spread easily in high speed machines yet do 
not run excessively at low speeds  

Waxy crude oils Viscoplastic and 
Thixotropic 

Flows readily in a pipe, but difficult to restart 
the flow 

Table 2. Non-Newtonian characteristics of some common materials 
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3. Rabinowitsch-Mooney equation 

Consider a one-directional flow of fluid through a circular tube with radius R, Figure 2. The 

volumetric flow rate through an annular element of area perpendicular to the flow and of 

width r is given by 

    2 . xQ r r v    (11) 

and, consequently, the flow rate through the whole tube is 

 
0

  2
R

xrv drQ    (12) 

Integrating by parts gives 

 
2 2

00

+  
2 2

  2
i i

r r

x xr v dvr
dr

dr
Q 

       
     

   (13) 

Provided there is no slip at the tube wall, the first term in equation (13) vanishes. Equation 
(13) then can be written as 

  
.

2

0

( )  
R

r drQ     (14) 

If the fluid is time-independent and homogeneous, the shear stress is a function of shear rate 

only. The inverse is that the shear rate  , is a function of shear stress rx  only and the 

variation of rx  with r is known from the following well-known equation: 

  rx

w

r

R




  (15) 

where w  is the wall shear stress.  

Changing variables in equation (14), using equation (15), and dropping the subscripts rx, 

equation (14) can be written as 

 
2 2 3. .

2
2 3

0 0

( )  ( )  
w w

i

ww w

R R
d dQ

      
 

       (16) 

where   is interpreted as a function of  instead of r.  

 

Fig. 2. Geometric presentation of MR fluid in o circular tube 

x

R r
drvx
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Writing equation (16) in terms of the flow characteristic gives 

 
.

2
3 3

0

8 4 4
  = ( )

w

w

u Q
d

D R



  
 

   (17) 

where u is the average velocity of the fluid flow and D is the diameter of the tube. For flow 

in a pipe or tube the shear rate is negative so the integral in equation (17) is positive. For a 

given relationship between   and  , the value of the integral depends only on the value of 

w . Thus, for a non-Newtonian fluid, as well as for a Newtonian fluid, the flow 

characteristic 8u/D is a unique function of the wall shear stress w .  

The shear rate   can be extracted from equation (17) by differentiating with respect to  . 

Moreover, if a definite integral is differentiated w.r.t. the upper limit ( w ), the result is the 

integrand evaluated at the upper limit. It is convenient first to multiply equation (17) by 3
w  

throughout, then differentiating w.r.t. w  gives 

 
.

2 3 28 (8 / )
3  +  = 4 ( )  w w w w

w

u d u D

D d
   


  (18) 

Rearranging equation (18) gives the wall shear rate w  as 

 
8 3 1 (8 / )

 
4 4 (8 / )

w
w

w

u d u D

D u D d




 
   

 
  (19) 

Making use of the relationship dx/x = dlnx, equation (19) can be written as 

 
8 3 1  ln(8 / )

 
4 4  ln

w
w

u d u D

D d



 

   
 

  (20) 

As the wall shear rate wN  for a Newtonian fluid in laminar flow is equal to (-8u/D), 

equation (20) can be expressed as 

 
3 1  ln(8 / )

4 4  ln
w wN

w

d u D

d
 


 

  
 

   (21) 

Equations (20) and (21) are forms of the Rabinowitsch-Mooney equation. It shows that the 

wall shear rate for a non-Newtonian fluid can be calculated from the value for a Newtonian 

fluid having the same flow rate in the same pipe, the correction factor being the quantity in 

the square brackets. The derivative can be estimated by plotting ln(8u/D) against ln w  and 

measuring the gradient. Alternatively the gradient may be calculated from the (finite) 

differences between values of ln(8du/D) and ln w . Thus the flow curve w  against w  can 

be determined. The measurements required and the calculation procedure are as follows. 

1. Measure Q at various values of /fP L , preferably eliminating end effects. 

2. Calculate   from the pressure drop measurements and the corresponding values of 

the flow characteristic 3(8 / 4 / )du D Q R  from the flow rate measurements. 
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3. Plot ln(8 / )du D  against ln w  and measure the gradient at various points on the curve. 

Alternatively, calculate the gradient from the differences between the successive values 

of these quantities. 

4. Calculate the true wall shear rate from equation (20) with the derivative determined in 

step 3. In general, the plot of ln(8 / )du D  against ln w will not be a straight line and the 

gradient must be evaluated at the appropriate points on the curve. 

Example 1 

The flow rate-pressure drop measurements shown in Table 3 were made in a horizontal 

tube having an internal diameter D = 6 mm, the pressure drop being measured between two 

tapings 2.0m apart. The density of the fluid, , was 870 kg/m3. Determine the wall shear 

stress-flow characteristic curve and the shear stress-true shear rate curve for this material. 

 

Pressure drop 
  (bar) 

Mass flow rate 
x 103 (kg/s) 

0.384 
0.519 
0.716 
0.965 
1.16 
1.29 
1.46 
1.60 

0.0864 
0.463 
1.37 
2.76 
4.13 
5.20 
6.78 
8.15  

Table 3. 

The results are shown in Table 4 

 

 (Pa)  8 /du D  gradient n’ (3n’+1)/4n’ -1
.

(s )  

28.8 
38.9 
53.7 
72.4 
87.0 
96.8 

110 
120 

4.68 
25.1 
74.3 

150 
224 
282 
367 
442 

0.157 
0.232 
0.375 
0.439 
0.475 
0.475 
0.475 
0.475 

2.34 
1.83 
1.42 
1.32 
1.28 
1.28 
1.28 
1.28 

11.0 
45.9 

106 
197 
286 
360 
469 
564 

Table 4 

4. Calculation of flow rate-pressure drop relationship for laminar flow using 
    data 

Flow rate-pressure drop calculations for laminar non-Newtonian flow in pipes may be made 

in various ways depending on the type of flow information available. When the flow data 

are in the form of flow rate and pressure gradient measured in a tubular viscometer or in a 
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pilot scale pipeline, direct scale-up can be done as described in Section 5. When the data are 

in the form of shear stress-shear rate values (tabular or graphical), the flow rate can be 

calculated directly using equation (17), where D is the diameter of the pipe to be used and 

w  is the wall shear stress corresponding to the specified pressure gradient. Whether 

obtained with a rotational instrument or with a tubular viscometer, the data provide the 

relationship between   and  . Numerical evaluation of the integral in equation (17) can be 

done using selected pairs of values of   and   ranging from 0 to w .  

If the    , relationship can be accurately represented by a simple algebraic expression, 

such as the power law, over the required range then this may be used to substitute for  , in 

equation (17), allowing the integral to be evaluated analytically. Both these methods are 

illustrated in the following example. 

Example 2 

Using the viscometric data given in Table 5 calculate the average velocity for the material 
flowing through a pipe of diameter 37mm when the pressure gradient is 1.1kPa/m. 

 

1
.
( )s   ( )Pa  (  s)a Pa  

0.00911 
0.0911 
0.911 
9.111 

91.11 
102.3

0.0417 
0.175 
0.708 
2.82 

11.22 
12.03

4.58 
1.95 
0.777 
0.310 
0.123 
0.118

Table 5. 

Calculations 

The wall shear stress is given by 

    
4

w

D P

L
 


-3(37 x 10 m)(1100 Pa/m)

          
4

  10.18 Pa           

the flow characteristic 

.
2

3
0

8 4
 ( )

w

w

u
d

D



  


   

It is necessary to evaluate the integral from   = 0 to   = 10.18Pa. This can be done by 

calculating 
.

2   for each of the values given in the table and plotting 
.

2   against  . The 

area under the curve between   = 0 and   = 10.18Pa can then be measured. An alternative, 

which will be used here, is to use a numerical method such as Simpson's rule. This requires 

values at equal intervals of  . Dividing the range of integration into six strips and 

interpolating the data allows Table 6 to be constructed. 
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 (Pa)   
.

2   

0.00 0.0 0.00 (Centerline) 

1.70 3.91 11.24 

3.39 12.41 142.8 

5.09 24.38 631.0 

6.78 39.39 1812 

8.48 57.14 4108 

10.18 77.43 8016 (pipe wall) 

Table 6. 

By Simpson's rule 

10.18 .
2 3 -1

0

10.18 /6
[0+8016+4(11.24+613+4108)+2(142.8+1812)]=   17490 Pa s  

3
d     

From equation (17) 

-3 3 -1

3

(37 x 10 m)(17490 Pa s )
  = 0.307 m/s       

2(10.18 Pa)
u   

The above is the general method but in this case the viscometric data can be well 

represented by 0.60   0.749   Pa, thus 1.667  1.62  s-1. This allows the integral in equation 

(17) to be evaluated analytically. 

10.18.
2 3.667 3 1

0 0

 = 1.62 17510 d d Pa s


        

This agrees with the value found by numerical integration and would give the same value 

for u. 

Note that the values of the apparent viscosity 0  were not used; they were provided to 

show that the fluid is strongly shear thinning. If the data were available as values of 0  at 

corresponding values of  , then   should be calculated as their product. The table of 

values of 2   (Table 6) illustrates the fact that flow in the centre makes a small contribution 

to the total flow: flow in the outer parts of the pipe is most significant. 

As mentioned previously, the minus sign in equation (17) reflects the fact that the shear rate 

is negative for flow in a pipe. In the above calculations, the absolute values of  , and   

have been used and the minus sign has therefore been dropped. 

5. Wall shear stress-flow characteristic curves and scale-up for laminar flow 

When data are available in the form of the flow rate-pressure gradient relationship obtained 

in a small diameter tube, direct scale-up for flow in larger pipes can be done. It is not 

necessary to determine the  -   curve with the true value of   calculated from the 
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Rabinowitsch-Mooney equation (Equation (20)). Equation (17) shows that the flow 

characteristic is a unique function of the wall shear stress for a particular fluid: 

.
2

3
0

8 4
 ( )

w

w

u
d

D



  


   

In the case of a Newtonian fluid, substituting /     into the above equation and 

evaluating the integral gives 

 
8

 wu

D




  (22) 

Recall that the wall shear rate for a Newtonian fluid in laminar flow in a tube is equal to 

8 /u D . In the case of a non-Newtonian fluid in laminar flow, the flow characteristic is no 

longer equal to the magnitude of the wall shear rate. However, the flow characteristic is still 

related uniquely to w  because the value of the integral, and hence the right hand side of 

equation (17), is determined by the value of w . 

If the fluid flows in two pipes having internal diameters D1 and D2 with the same value of 

the wall shear stress in both pipes, then from equation (17) the values of the flow 

characteristic are equal in both pipes: 

 1 2

1 2

8 8
  

u u

D D
  (23) 

So the average velocities are related by 

 1 1

2 2

   
u D

u D
  (24) 

By substituting for u or by writing the flow characteristic as 34 /Q R , the volumetric flow 

rates are related by 

 

3

1 1

2 2

   
Q D

Q D

 
  

 
 (25) 

It is important to appreciate that the same value of w  requires different values of the 

pressure gradient in the two pipes. It is convenient to represent the flow behaviour as a 

graph of w  plotted against 8 /u D , as shown in Figure 3. In accordance with the above 

discussion, all data fit a single line for laminar flow. The graph is steeper for turbulent flow 

and different lines are found for different pipe diameters. It is noteworthy that the same 

would be found for Newtonian flow if the data were plotted in this way and the laminar 

flow line would be a straight line of gradient µ passing through the origin. The plot in 

Figure 3 is not a true flow curve because the flow characteristic is equal to the magnitude of 

the wall shear rate only in the case of Newtonian laminar flow. 
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Fig. 3. Shear stress at the pipe wall against flow characteristic for a non-Newtonian fluid 
flowing in a pipe 

Given a wall shear stress-flow characteristic curve such as that in Figure 3, the flow rate-

pressure drop relationship can be found for any diameter of pipe provided the flow remains 

laminar and is within the range of the graph. For example, if it is required to calculate the 

pressure drop for flow in a pipe of given diameter at a specified volumetric flow rate, the 

value of the flow characteristic 3(8 / 4 / )u D Q R  is calculated and the corresponding 

value of the wall shear stress w  read from the graph. The pressure gradient, and hence the 

pressure drop for a given pipe length, can then be calculated. 

It is found useful to define two quantifies K' and n' in order to describe the w  -flow 

characteristic curve. If the laminar flow data are plotted on logarithmic axes as in Figure 4, 

then the gradient of the curve defines the value of n' : 

 
ln

'   
ln(8 / )

wd
n

d u D


  (26) 

The equation of the tangent can be written as 

 
'

8
    '

n

w

u
K

D
    

 
 (27) 

In general, both K' and n' have different values at different points along the curve. The 

values should be found at the point corresponding to the required value of w. In some 

cases, the curve in Figure 4 will be virtually straight over the range required and a single 

value may be used for each of K' and n'. Although equation (27) is similar to the equation of 

a power law fluid, the two must not be confused. 

The reason for defining n' in this way can be seen from equation (21) where the inverse of 

the derivative occurs in the correction factor. Equation (20) can be written in terms of n' as 

 

8u/D 

Laminar 

Decreasing 

diameter 

Turbulent 

D0 D1 
D3 
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Fig. 4. Logarithmic plot of wall shear stress against flow characteristic: the gradient at a 
point defines n' 

 
. . 3n'+1

  
4n'N      

 
 (28) 

Equation (28) is helpful in showing how the value of the correction factor in the 

Rabinowitsch-Mooney equation corresponds to different types of flow behaviour. For a 

Newtonian fluid, n' = 1 and therefore the correction factor has the value unity. Shear 

thinning behaviour corresponds to n' < 1 and consequently the correction factor has values 

greater than unity, showing that the wall shear rate w  is of greater magnitude than the 

value for Newtonian flow. Similarly, for shear thickening behaviour, w  is of a smaller 

magnitude than the Newtonian value wN . The value correction factor varies from 2.0 for n' 

= 0.2 to 0.94 for n' = 1.3. 

6. Generalized Reynolds number for flow in pipes 

It is recalled that for Newtonian flow in a pipe, the Reynolds number is defined by 

   
uD

Re



  (29) 

In the case of non-Newtonian flow, it is necessary to use an appropriate apparent viscosity. 

Although the apparent viscosity µa is defined in the same way as for a Newtonian fluid, it 

no longer has the same fundamental significance and other, equally valid, definitions of 

apparent viscosities may be made. In flow in a pipe, where the shear stress varies with 

radial location, the value of µa varies. It is shown that the conditions near the pipe wall that 

are most important. The value of µa evaluated at the wall is given by 

 
shear stress at wall

   
shear rate at wall ( / )

 = 
x

a
dv dr





  


 (30) 

Another definition is based, not on the true shear rate at the wall, but on the flow 

characteristic. This quantity, which may be called the apparent viscosity for pipe flow, is 

given by 

ln() 

ln(8u/D) 
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shear stress at wall

  
flow characteristic (8 / )

 = 
i

ap
u d

   (31) 

For laminar flow, µap has the property that it is the viscosity of a Newtonian fluid having the 
same flow characteristic as the non-Newtonian fluid when subjected to the same value of 
wall shear stress. In particular, this corresponds to the same volumetric flow rate for the 
same pressure gradient in the same pipe. This suggests that µap might be a useful quantity 
for correlating flow rate-pressure gradient data for non-Newtonian flow in pipes. This is 
found to be the case and it is on µap that a generalized Reynolds number Re' is based 

 Re'  i

ap

ud


  (32) 

Representing the fluid's laminar flow behaviour in terms of K' and n' 

 

'
8

   '     

n

i

u
K

d


 
  

 
 (33) 

The pipe flow apparent viscosity, defined by equation 31, is given by 

 

' 1
8

  '
8 /

n

ap
i i

u
K

u d d



 

   
 

 (34) 

Using µap in Equation (34), the generalized Reynolds number takes the form 

 
2 ' '

' 1
'   

8 '

n n
i

n

u d
Re

K

 

  (35) 

Use of this generalized Reynolds number was suggested by Metzner and Reed (1955). For 
Newtonian behaviour, K' = µ and n' = 1 so that the generalized Reynolds number reduces to 
the normal Reynolds number. 

7. Turbulent flow of Inelastic non-Newtonian fluids in pipes and circular 
ducts 

Turbulent flow of Newtonian fluids is described in terms of the Fanning friction factor, 
which is correlated against the Reynolds number with the relative roughness of the pipe 
wall as a parameter. The same approach is adopted for non-Newtonian flow but the 
generalized Reynolds number is used. The Fanning friction factor is defined by 

 
1 2

2

  f
u




  (36) 

It is straightforward to show that the Fanning friction factor for laminar non-Newtonian 
flow becomes 

 16 /Re'f   (37) 
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This is of the same form as equation for Newtonian flow and is one reason or using this 
form of generalized Reynolds number. Equation (37) provides another way of calculating 
the pressure gradient for a given flow rate for laminar non-Newtonian flow. 

7.1 Laminar-turbulent transition 

A stability analysis made by Ryan and Johnson (1959) suggests that the transition from 
laminar to turbulent flow for inelastic non-Newtonian fluids occurs at a critical value of the 
generalized Reynolds number that depends on the value of n'. The results of this analysis 
are shown in Figure 5. This relationship has been tested for shear thinning and for Bingham 
plastic fluids and has been found to be accurate. Over the range of shear thinning behaviour 
encountered in practice, 0.2 ≤ n' ≤ 1, the critical value of Re' is in the range 2100 ≤ Re' ≤ 2400. 

 

Fig. 5. Variation of the critical value of the Reynolds number with n' 

7.2 Friction factors for turbulent flow in smooth pipes 

Experimental results for the Fanning friction factor for turbulent flow of shear thinning 
fluids in smooth pipes have been correlated by Dodge and Metzner (1959) as a generalized 
form of the yon Kármán equation: 

 1 '/2
1/2 0.75 1.2

1 4.0 0.40
 = log[ ']

( ') ( ')

nf Re
f n n

   (38) 

This correlation is shown in Figure 6. The broken lines represent extrapolation of equation 
(38) for values of n' and Re' beyond those of the measurements made by Dodge and 
Metzner. More recent studies tend to confirm the findings of Dodge and Metzner but do not 
significantly extend the range of applicability. Having determined the value of the friction 
factor f for a specified flow rate and hence Re', the pressure gradient can be calculated in the 
normal way. 

Example 3 

A general time-independent non-Newtonian liquid of density 961 kg/m3 flows steadily with 
an average velocity of 2.0m/s through a tube 3.048 m long with an inside diameter of 0.0762 
m. For these conditions, the pipe flow consistency coefficient K' has a value of 1.48 Pa s0.3 
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and n' a value of 0.3. Calculate the values of the apparent viscosity for pipe flow µap, the 
generalized Reynolds number Re' and the pressure drop across the tube, neglecting end 
effects. 

 

Source: D. W. Dodge and A. B. Metzner, AIChE Journal 5 (1959) 189-204 

Fig. 6. Friction factor chart for purely viscous non-Newtonian fluids. 

Calculations 

The flow characteristic is given by 

18 8(2.0 / )
= 210

0.0762

u m s
s

D m
  

and 

' 1
(0.3 1.0) 0.78

 210 0.0237
n

u
s

D


    

 
 

Hence 

' 1
0.3 0.78

'  (1.48 Pa s )(0.0237 ) 0.0351 Pa s
n

ap

u
K s

D



    
 

 

and 

3(0.0762 m)(2.0 m)(961 kg/m )
'   = 4178

(0.0351 Pa s)ap

uD
Re




   
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From Figure 6, the Fanning friction factor f has a value 0.0047. Therefore the pressure drop is 
given by 

3 22 2(0.0047)(3.048 m)(961 kg/m )(2.0 m/s)u
= 1445 Pa

2 (0.0762 m)
  4f

i

L

d
P f

 
 

 
   

8. Laminar flow of inelastic fluids in non-circular ducts 

Analytical solutions for the laminar flow of time-independent fluids in non-axisymmetric 

conduits are not possible. Numerous workers have obtained approximate and/or complete 

numerical solutions for specific flow geometries including square, rectangular and 

triangular pipes (Schechter, 1961 ; Wheeler and Wissler, 1965 ; Miller, 1972 ; Mitsuishi and 

Aoyagi, 1969, 1973). On the other hand, semi-empirical attempts have also been made to 

develop methods for predicting pressure drop for time-independent fluids in ducts of non-

circular cross-section. Perhaps the most systematic and successful friction factor analysis is 

that provided by Kozicki et al . (1966, 1967) . It is useful to recall here that the equation (19) is 

a generalized equation for the laminar flow of time-independent fluids in a tube and it can 

be slightly rearranged as: 

 
1 3

( ) + ( )
4 4

(8 / ) 8
w ww

w

f
d u D u

d D
  


    (39) 

Similarly, one can parallel this approach for the fully developed laminar flow of time 

independent fluids in a thin slit (Figure 7) to derive the following relationship: 

 ( ) +2( )
( / )z

w w
w

w
w

dV
f

dr

d u h u

d h
  


      
 

  (40) 

In order to develop a unified treatment for ducts of various cross-sections, it is convenient to 

introduce the usual hydraulic diameter Dh (defined as four times the area for flow/wetted 

perimeter) into equations (39) and 40). 

For a circular pipe, Dh = D and hence equation (38) becomes: 

 
1 3

( ) + ( )
4 4

(8 / ) 8h

h

f
d u D u

d D 


  


    (41) 

For the slit shown in Figure 7, the hydraulic diameter Dh= 4h , and thus equation (39) is 

rewritten as: 

 
(8 / )1 8

+( )
2

h
w w

w h

d u D u

d D
 


   (42) 

By noting the similarity between the form of the Rabinowitsch–Mooney equations for the 

flow of time-independent fluids in circular pipes (equation (41)) and that in between two 

plates (equation (42)), they suggested that it could be extended to the ducts having a 

constant cross-section of arbitrary shape as follows: 
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(8 / ) 8

( ) +b( )h
w w w

w h

d u D u
f a

d D
  


    (43) 

 

Fig. 7. Laminar flow between parallel plates 

where a and b are two geometric parameters characterizing the cross-section of the duct 

(a=1/4 and b= 3/4 for a circular tube, and a =1/2 and b =1 for the slit) and w  is the mean 

value of shear stress at the wall, and is related to the pressure gradient as: 

 
4

h
w

D P

L
    

 
 (44) 

For constant values of a and b , equation (42) is an ordinary differential equation of the form 
(d y/d x) + p(x) y = q(x) which can be integrated to obtain the solution as: 

 
( ) ( )

0( )
p x dx p x dx

y e e q x dx C
    (45) 

Now identifying y= (8V/Dh) and x = w , p(x) =(b /a w ) and q(x)= (f( w )/a w ), the solution 

to equation (43) is given as: 

 ( / ) 1/

0

8 1
( ) ( )

w

b ab a
w

h

u
f d

D a



      (46) 

where ξ is a dummy variable of integration. The constant C0 has been evaluated by using the 
condition that when V =0, w = 0 and therefore, C0 =0. 

For the flow of a power-law fluid, f(Ĳ) = (Ĳ/K)1/ n and integration of equation (46) yields: 

 8
( )

n

n
w

u a
K b

D n


    
  

 (47) 

which can be rewritten in terms of the friction factor, f = 2 w /ρu2 as: 

 16
  

g

f
Re

  (48) 

where the generalized Reynolds number, 

 
2

1
Re

8 ( )

n n
h

g
n n

u D

a
K b

n

 





 (49) 

p+p 
h 

y 

z 
x 

yz 

p 

L 
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Table 7. Values of a and b depending on geometry of the ducts  


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The main virtue of this approach lies in its simplicity and the fact that the geometric 

parameters a and b can be deduced from the behaviour of Newtonian fluids in the same 

flow geometry. Table 7 lists values of a and b for a range of flow geometries commonly 

encountered in process applications. 

Kozicki et al.(1966) argued that the friction factor of the turbulent flow in non-circular ducts 

can be calculated from the following equation 

 (2 )/2 0.25
100.75 1.2

1 4 0.4 ( )
log (Re ) 4 log[ ]

3 1
n

g

a a bn
f n

nf n n

 
  


 (50) 

Note that since for a circular tube, a= 1/4 and b =3/4, equation (50) is consistent with that for 

circular pipes. The limited data available on turbulent flow in triangular (Irvine Jr, 1988), 

rectangular (Kostic and Hartnett, 1984) and square ducts (Escudier and Smith, 2001) 

conforms to equation (48). In the absence of any definite information, Kozicki and Tiu (1988) 

suggested that the Dodge–Metzner criterion, Reg  2100, can be used for predicting the limit 

of laminar flow in non-circular ducts. 

Some further attempts have been made to simplify and/or improve upon the two geometric 

parameter method of Kozicki et al . (1966, 1967). Delplace and Leuliet (1995) revisited the 

definition of the generalized Reynolds number (equation (49)) and argued that while the use 

of a and b accounts for the non-circular cross-sections of the ducts, but the factor 8n-1 

appearing in the denominator is strictly applicable for the flow in circular ducts only. Their 

reasoning hinges on the fact that for the laminar flow of a Newtonian fluid, the product 

(f.Re) is a function of the conduit shape only. Thus, they wrote 

 
48

  
( . )f Re

   (51) 

where both the (Fanning) friction factor and the Reynolds number are based on the use of 

the hydraulic diameter, Dh and the mean velocity of the flow, u. Furthermore, they were able 

to link the geometric parameters a and b with the new parameter β as follows: 

 
1

  ;      
1 1

a b


 
 

 
 (52) 

and finally, the factor of 8n-1 in the denominator in equation (49) is replaced (24/ β)n-1. With 
these modifications, one can use the relationship f =(16/Reg) to estimate the pressure 
gradient for the laminar flow of a power-law fluid in a non-circular duct for which the value 
of β is known either from experiments or from numerical results. Therefore, this approach 
necessitates the knowledge of only one parameter (β) as opposed to the two geometric 
parameters, namely, a and b in the method of Kozicki et al . (1966) and Kozicki and Tiu 
(1967), albeit a similar suggestion was also made by Miller (1972) and Liu (1983). Finally, for 
the limiting case of a circular pipe, evidently β=3 thereby leading to a=(1/4) and b=(3/4) and 
the two definitions of the Reynolds number coincide, as expected. The values of β for a few 
standard duct shapes are summarized in Table 5. While in laminar flow, these two methods 
give almost identical predictions, the applicability of the modified method of Delplace and 
Leuliet (1995) has not been checked in the transitional and turbulent flow regions. Scant 

www.intechopen.com



 
Continuum Mechanics – Progress in Fundamentals and Engineering Applications 

 

70

analytical and experimental results suggest that visco-elasticity in a fluid may induce 
secondary motion in non-circular conduits, even under laminar conditions. However, 
measurements reported to date indicate that the friction factor–Reynolds number behaviour 
is little influenced by such secondary flows (Hartnett and Kostic, 1989). 

Example 4 

A power-law fluid (K = 0.3 Pa.sn and n = 0.72) of density 1000 kg/m3 is flowing in a series of 
ducts of the same flow area but different cross-sections as listed below: 

i. concentric annulus with R= 37mm and ı=(R/Ri)= 0.40 
ii. circular pipe of radius R 
iii. rectangular, (H /W) =0.5 
iv. elliptical, b’/a’= 0.5 

Estimate the pressure gradient required to maintain an average velocity of 1.25m/s in each of 
these channels. Use the geometric parameter method. Also, calculate the value of the 
generalized Reynolds number as a guide to the nature of the flow. 

Solution 

i. For a concentric annulus, ı = 0.4 

- From Table 6 we have: a =0.489; b = 0.991 
- The hydraulic diameter, Dh = 2R(1-σ)=0.044m. 

- Reynolds number, 
2

1
Re 579

8 ( )

n n
h

g
n n

u D

a
K b

n

 


 


 

- Thus, the flow is laminar and the friction factor is estimated as: f=1/578=0.0276 and  

22
1963 /

h

f uP
Pa m

L D


    

ii. For a circular tube, the area of flow 

- For a circular pipe, a =0.25, b = 0.75, Dh = D = 0.0678m 

- Reynolds number, 
2

1
Re 1070

8 ( )

n n
h

g
n n

u D

a
K b

n

 


 


 

- The flow is laminar and the friction factor is estimated as: f=1/1070=0.01495 and  

22
689 /

h

f uP
Pa m

L D


    

iii. For a rectangular duct with H /W = 0.5, H =0.0425 m and W= 0.085 m (for the same area 
of flow), and from Table 6: a=0.244, b= 0.728 

- Dh = 4HW/2(H+W) = 0.0567m 

- Reynolds number, 
2

1
Re 960

8 ( )

n n
h

g
n n

u D

a
K b

n

 


 


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- f=1/960=0.0167 and 
22

919 /
h

f uP
Pa m

L D


    

iv. elliptical, b’/a’= 0.5. 

- From Table 6 : a=0.2629, b= 0.7886 
- Dh = = 0.0607m 

- Reynolds number, Re 953g   

- f =0.0168 and 864 /
P

Pa m
L


   
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