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1. Introduction  

Retinal ischemia is a frequent source of irreparable visual impairment and even loss of sight, 

affecting over a hundred million individuals in the world. It is associated with a wide range 

of clinical retinal disorders, like ischemic optic neuropathies, obstructive retinopathies, 

carotid occlusive disorders, diabetic retinopathy and glaucoma. Retinal ischemia occurs 

when the blood supply to retina is inadequate to meet the metabolic requirements of the 

retina. If treatment is not given to fix this imbalance, the outcome is irreversible, ischemic 

and apoptotic cascades resulting in cell death. Appropriate study models, particularly 

animal models, are necessary for further understanding the etiology, pathology, and 

evolution of retinal ischemia and also in order to help in the evaluation, development, and 

improvement of therapeutic strategies. Accordingly, quite a few in-vivo and ex-vivo 

mammalian models have been developed to study this syndrome. The rat models of retinal 

ischemia are frequently used, because the distribution of retinal and choroidal blood supply 

is quite similar to that in humans. 

The retina has been extensively used for the study of pathophysiology of ischemia and 

mechanism of damage triggered by ischemia and excitotoxicity. Compared to all the other 

tissues, retina has a higher metabolic rate; any disturbance in blood supply can have an 

effect on the supply of oxygen and the substrates leading to retinal ischemia.  The retina has 

a dual blood supply. The photoreceptors and most of the outer plexiform layer (OPL) are 

nourished by choriocapillaries, while the inner retinal layers are nourished by the central 

retinal artery. The actual effects of retinal ischemia vary, depending on the position of the 

occlusion. It is clear that occlusion of the retinal artery leads to inner retinal ischemia only, 

but occlusion of ophthalmic artery leads to global retinal ischemia, as it supplies blood to 

the central retinal artery as well as choriocapillaries.   

2. Retinal architecture  

The retina of mammals is a functionally specialised tissue. It is capable of light detection and 

perception as well as processing and transmission of the information received to the central 

nervous system. It has two major elements – the neurosensory retina and the pigment 

epithelium (RPE). During the embryonic development, the RPE and neural development are 

                                                 
* Corresponding Author 

www.intechopen.com



 
Brain Injury – Pathogenesis, Monitoring, Recovery and Management 

 

154 

derived from the same layer, i.e. the neuroectoderm, although they are morphologically not 

similar. Hence, they are considered collectively as “retina”.  

The retina is made up of three principal layers of nuclei, which are, from internal to 
external, the thin ganglion cell layer, the inner nuclear layer and the outer nuclear layer 
(Figure 1). The ganglion cell layer consists of cell bodies of various classes of ganglion 
cells and amacrine cells. The inner nuclear layer is the layer with nuclei of bipolar cells, 
amacrine cells, horizontal cells and Muller cells. And the outer layer is the one which 
contains the nuclei of rod and cone photoreceptors. There are also two plexiform or 
synaptic layers that are not filled with any cell nuclei. The inner plexiform layer (IPL) lies 
between the ganglion cells and inner nuclear layer and the outer plexiform layer (OPL) is 
sandwiched between the outer and inner nuclear layer. These synaptic layers contain 
axons and dendrites, which aid in early visual processing and also help in adjusting to 
different light intensities.  
The retina contains a rich assortment of cell types including light-sensing photoreceptors. 
The outermost layer of the cells in the retina is the RPE. It is a simple cuboidal epithelium, 
containing melanosomes that help in quenching photons that are not absorbed and 
therefore, minimise light scattering. RPE also has other biological functions like 
maintenance of choroidal vasculature and blood-retinal barrier. The retinal photoreceptor 
cells are specialised neurons found in the outer retina. The diversity of inner retinal 
neurons is really complex. Bipolar cells span from the OPL to the IPL, in which they form 
synapses with photoreceptor cells and ganglion cells respectively. The nuclei of bipolar 
cells are found in the inner nuclear layer. Amacrine cells in themselves as a group are 
considerable in number as well as diversity. These are present in both inner nuclear layer 
plus the ganglion cell layer where they are involved in relaying impulses (Masland, 1988). 
Another type of cells that also occur in the retina are the ganglion cells. Ganglion cells 
have long axons that are pass through the optic nerve (Berson, 2007). Glial cells are also 
found in the retina. These cells support the retinal microenvironment. These include 
Muller cells, astrocytes and microglia. Another type of cell found in the ganglion cell layer 
and optic nerve head are the astrocytes. These cells contribute to the blood retinal barrier 
(Kaur et al., 2008).  

3. Retinal blood supply  

As mentioned earlier, the cause of retinal ischemia is insufficient supply of blood, which is 
unable to meet the metabolic demands of the retina. When occlusion occurs in any tissue, 
anatomy of blood supply plays a significant role. The retina has a higher metabolic rate, 
even than that of the brain. The retina is a specialised extension of central nervous system 
and has a complex and dual blood supply, i.e the choroidal and the retinal. The choroid gets 
the maximum blood supply (around 65-85% of total supply to the eye), whereas the retina 
gets just 20-30%blood (Henkind, et al., 1979). The photoreceptors in the outer nuclear layer 
and the outer plexiform layer are nourished indirectly from the choriocapillaries; whereas, 
the inner retinal layers are nourished by branches of central retinal artery, which arises from 
the ophthalmic artery as the central retinal artery enters the retina, it divides into four main 
branches. The retinal blood vessels also help in maintaining the blood-retinal barrier. Outer 
retinal layer ischemia is caused by occlusion in choriocapillaries. On the other hand, 
complete retinal ischemia and infarction require ophthalmic artery occlusion (Saint-Geniez 
and D’Amore, 2004). 
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Fig. 1. Different cell layers in retina (where RPE – Retina Pigmented Epithelium, OLM – 
Outer Limiting Membrane, ONL – Outer Nuclear Layer, OPL – Outer Plexiform Layer,    
INL – Inner Nuclear Layer, IPL – Inner Plexiform Layer, GCL – Ganglion Cell Layer) 
(reproduced and readapted with permission – Poche & Reese, 2009) 

4. Correlation between the brain and the retina 

The retina shares many functional, embryological and anatomic characteristics with the 

brain. In humans, the eye starts developing at about 3 weeks of pregnancy. The eye is 

mainly derived from three types of embryonic tissue – neuroectoderm forms retina, pigment 

cell layers and optic nerves, mesoderm leads to cornea, sclera and blood vessels and the 

ectoderm forms the lens. At 22 days of embryonic stage, a pair of optic vesicles is formed on 

each side of the forebrain. These vesicles form connections with the developing central 

nervous system through stalk-like structures. As the development progresses, these stalks 

become thinner and form optic nerves. Thus, it is a representative of the CNS. The 

mesoderm in the embryo forms the blood vessels – the hyaloid artery and vein, that 

nourishes the developing lens, which later on in development transform to the central artery 
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and the vein. The retina can be visualised directly, thus, it can be used to study stroke. Many 

retinal conditions are associated with stroke, such as occlusion of middle cerebral artery also 

leads to retinal ischemia, as can be seen in figure 2, where it shows that the ophthalmic 

artery originates nearby to the MCA. Thus, the mechanisms that affect the eye and the brain 

are linked to some extent. But, the examination of retina to predict future stroke incidence is 

still doubtful.  

Retinal neurons and glia show same response to ischemia as the neurons in the other part of 
the CNS. Retina also has a blood-retinal barrier similar to the blood-brain barrier (Tso & 
Jampol, 1982). These two also differ in the resistance to the ischemic injury. The retina can 
survive much longer than the brain. Also, the retina shows geographical difference in 
sensitivity to ischemia, the outer retinal layers being more prone to the injury than the inner 
ones.  
 

 

Fig. 2. The figure depicting Circle of Willis showing blood supply to brain and retina 
(Reproduced with permission from M. F. Block, 1997) 

www.intechopen.com



 
Animal Models of Retinal Ischemia 

 

157 

5. Susceptibility to retinal ischemia 

Various changeable and non-changeable factors are involved in ischemia, such as age, 
family history, ethnic group, and previous medical history. Kawai et al studied the different 
risk factors related to neuronal injury using an intraocular pressure rat model. The number 
of retinal ganglion cells (RGCs) keeps on decreasing with age and the residual RGCs become 
more susceptible to damage. Calorie intake has also been proven to be a factor involved in 
ischemia. The diet restriction has a neuroprotective effect and thus, leads to lesser damage to 
RGCs. As seen in the case of glaucoma, pre-existing diabetes is a reason for greater harm to 
RGCs (Kawai et al, 2001).  
Genetic background is one of the principal determinants of susceptibility to retinal 
neovascularisation and breakdown of blood retinal barrier. Vulnerability to ischemia-induced 
retinal neovascularisation depends on the strain of animal model used. Strain difference in rat 
model leads to variation in expression of VEGF and thus, causes an increase in permeability 
and leakage of fluid and plasma proteins, resulting in edema. It has been demonstrated that 
Brown-Norway rats are more susceptible to Sprague-Dawley rats (Gao et al., 2002). 
It is seen that a certain percentage of cell death that occurs in transient cerebral and  

retinal ischemia occurs by means of apoptosis. An apoptosis cascade involves both pro-

apoptotic and anti-apoptotic genes. One of these is p53, which is a DNA-binding 

transcription factor involved in DNA damage and repair. Ischemia leads to increase in 

expression of p53. The p53 causes selective vulnerability of inner retina to transient 

ischemia. Also, it is observed that transgenic mice lacking in p53 are resistant to 

excitotoxicity. Mice heterozygous for null mutation in p53 gene are resistant to retinal 

ischemia. From the above discussion, it is safe to say that p53 can be one more target for 

therapeutic strategy for retinal ischemia (Zhang et al., 2005). 

6. Pathophysiology of retinal ischemia 

Retina has a really high metabolic rate. Glucose and oxygen deprivation can harm the whole 

retina, but all cells are not equally vulnerable. The loss of cells due to ischemia is irregular. 

The retinal cells that lie near the blood vessels are exposed to an environment rich in oxygen 

and thus, are more prone to the ischemic damage. But, another thing to consider is that 

these cells are the first one to be cured on reperfusion. Temporary interruption of blood 

circulation prevents the exchange of metabolic substrates and products, affecting cells in 

retina. However, in addition, there are many indirect effects which are sustained even after 

restoration of blood supply. These effects may be systemic, such as respiratory or vasomotor 

centre failure or the outcome can also be localised, i.e. impaired reperfusion, edema or 

breakdown of blood-brain barrier. Thus, evidently, these effects are so complicated that it is 

hard to identify the order of events leading to damage. 

Retinal ischemia causes a number of morphological and functional changes. These changes 
are a product of combined and inter-related pathophysiological pathways – leading to 
imbalance in ion transport, changes in neurotransmitter levels, neuronal depolarisation, 
oxidative stress, and energy failure. The occurrence of ischemia leads to a complex cascade 
of response to energy failure and ATP depletion which eventually causes cell death. Studies 
have shown that substrate deprivation is the less damaging as compared to oxygen 
deprivation, which reduces protein synthesis. The irreversible damage increases with an 
increase in the duration of oxygen deprivation. The cells which are the most affected are the 

www.intechopen.com



 
Brain Injury – Pathogenesis, Monitoring, Recovery and Management 

 

158 

photoreceptor cells as these have the maximum oxidative metabolic rates. But when both 
substrate and oxygen deprivation are combined, a reduction in the ATP synthesis is 
observed.  This leads to energy metabolism failure. The process can be explained as follows - 
decrease in ATP levels disrupt the Na+/K+ ATPase transporter, leading to disruption of 
membrane potential and ion gradients, preventing the repolarisation of axons and synaptic 
membranes. There are many studies which testify to the discharge of various 
neurotransmitters, e.g. GABA, glycine, dopamine, acetylcholine, after the occurrence of 
ischemia. During the ischemia the receptors for different neurotransmitters, present on the 
retina, are opened in response to the elevated levels of their ligands, e.g. GABA, glycine, 
extracellularly. Under normal circumstances, neurotransmitter levels are low extracellularly. 
Glutamate is recognized as the major excitatory retinal neurotransmitter. It is released by 
photoreceptor bipolar cells and the ganglion cells. During retinal ischemia glutamate gets 
accumulated in the extracellular space (Louzada-Junior et al., 1992). Lucas and Newhouse 
showed the occurrence of glutamate excitotoxicity in ischemia.  Neurons in inner retina and 
ganglion cells are more susceptible to ischemia due to the incidence of high levels of 
glutamate receptors. Glutamate causes neurotoxicity by several different mechanisms, i.e., 
increase in Ca2+ ion levels, Na+ influx, which depolarises the plasma membranes. There are a 
number of receptors which can activate glutamate neurotoxicity. These can be NMDA as 
well as non-NMDA based receptors (Lucas & Newhouse, 1957). In 1992, Osborne stated the 
role of NMDA – based excitotoxicity in retinal ischemia. NMDA receptors are Ca2+ 
permeable, and thus, increase in glutamate levels raises the Ca2+ ion levels intracellularly. 
Excess glutamate causes Na+ influx, which is followed by Cl- influx, which cannot be 
countered by outward efflux as the membranes are impermeable to most intracellular 
anions. Therefore, transport of cations and Cl- ions increases the intracellular osmolarity, 
causing osmotic shock, edema and cell lysis and death (Osborne et al., 1992). The voltage 
gated Ca2+ channels are also opened, leading to rise in intracellular levels of Ca2+ ions, which 
inhibit the mitochondrial metabolism. Another group also validated the involvement of 
NMDA as well as non-NMDA based receptors in retinal degeneration. Romano et al., in an 
in-vitro model of ischemia in the retina from a chick embryo reported by using the blockers 
of both NMDA and non-NMDA receptors that the damage to the retina is due to 
overexcitation of the receptors (Romano et al., 1998). Ueda et al also showed that the NMDA 
caused damage to blood vessels in the retina. They created a rat model by injecting NMDA 
into the eye, which led to loss of retinal ganglion cells and thinning of the inner plexiform 
layer, thus damaging the inner retinal layers and also led to loss of endothelial cells in the 
blood vessels in the retina (Ueda et al., 2010). 
Reperfusion, i.e. restoration of blood supply after the ischemic injury, can also lead to cell 
damage. Oxygen restoration to the deprived tissue can add up to the injury caused by 
ischemia (Jennings et al., 1960). Also, it has been shown that LDH, marker of cell death 
increases after oxygen restoration (Sims et al., 1992).  

7. In-vitro models of retinal ischemia 

Most of the cell culture models for ischemia utilise primary nerve cell cultures, that are 
exposed to insults associated with ischemia in-vivo, e.g., glutamate neurotoxicity, glucose 
and oxygen deprivation. One of the approach involved chemical ischemia in immortalised 
rat retinal ganglion cell line (RGC-5). They used iodoacetic acid (IAA), a known inhibitor of 
enzyme glyceraldehyde 3-phosphate dehydrogenase. This IAA treatment induces changes 

www.intechopen.com



 
Animal Models of Retinal Ischemia 

 

159 

seen in retinal ischemia, such as disturbance in membrane potential, ATP loss and reactive 
oxygen species generation (Malur et al., 2008). Another way of inducing ischemic-like 
changes in-vitro is to incubate retinal pigmented epithelium (RPE) cells with oligomycin (an 
ATP synthase inhibitor) and sodium cyanide (inhibits cytochrome-c oxidase), along with 
IAA (Palmero et al., 2000). In-vitro model can also be induced by glucose/oxygen 
deprivation. 
These in-vitro models can be used for testing and identifying novel neuroprotective 
compounds. Many herbal products are nowadays being used, the Chinese herbal medicines, 
in a large number of disorders, e.g. coronary heart disease, cardiovascular disease and 
traumatic wounds. Romano et al examined the neuroprotective activity of an extract from 
Chinese safflower (Cartnamus tinchoris, Honghua). An in-vitro model of retinal ischemia was 
made from chick embryo retina. The ischemia was generated by removing glucose from the 
media and growing the culture in nitrogen atmosphere. It was seen that Honghua protected 
the retina from the effects of toxins like NMDA and also from the ischemic conditions 
(Romano, et al., 1993).  
Another herbal extract that has been used in Korea and China are derived from the shrub, 
Thuja orientalis. It has been shown to be effective in disorders such as, gout, diarrhoea and 
rheumatism. It was demonstrated by Jung et al in the transformed retinal ganglion cell line 
(RGC-5) in vitro that the extract of Thuja orientalis has anti-oxidant properties. In this study, 
RGC-5 cells were exposed to H2O2 to create oxidative stress. The major component found in 
this extract with anti-oxidant properties is the isoquercitrin, which can be in future used for 
treating glaucoma, but requires further investigation (Jung, et al., 2010). The roots of another 
plant, Scutellaria baicalensis, are also used in China. It contains three flavnoids – wogonin, 
baicalin, baicalein. These flavenoids are natural free-radical scavengers. Out of the three 
flavenoids found, baicalin has been shown to have neuroprotective action, but the mode of 
its action is unknown. The role of baicalin was observed in in vitro model in RGC-5 cell line, 
where it reduces the damage caused by reactive species and apoptosis (Jung et al., 2008). 
Matteucci et al have also tested the curcumin, the phenolic extract obtained from Curcuma 
longa in primary retinal cell cultures. It showed protective effect for both the retinal as well 
as hippocampal neurons from NMDA excitotoxicity. The mode of action of curcumin may 
be through the increase in production of NMDA receptor subunits (Matteucci, et al., 2011). 
But these in-vitro models have some limitations of their own, such as getting sufficient 
quantities of cells and obtaining reproducible and comparable data. Also, the in vitro models 
do not correlate much to the in vivo conditions as these do not provide apt physiological 
environment and are based on chemical interactions. 

8. Need for animal models  

Animal models have been a mainstay of basic and applied research. Animal testing has been 
used since second century where early writings by Greeks discuss its use. Dissection and 
experimentation has been used to get knowledge about anatomy and physiology in humans. 
The use of animal models has allowed the fast progression of scientific discovery. Animal 
models have had a central place in medical research, in developing new therapeutic 
strategies for treating human diseases as well as in preclinical trials. The aim of using animal 
models is to achieve better understanding of pathways involved in the disease without 
causing any harm to the human being. A number of animal models are available for 
studying the mechanisms of retinal ischemia. The vascular supply and pathways involved 
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in retinal ischemia in animal models must be better understood for developing new 
therapies for human disorders. 
In-vitro models have always been used to get insight of biochemical and molecular events 
caused by ischemia; but animal models are essential in understanding pathophysiology of 
retinal ischemia. In all animal models of retinal ischemia, the retinal circulation is 
obstructed to study the balance between energy supply and demands, vascular and 
neuronal changes. Different species such as monkeys, rabbits, rodents, cats, dogs have 
been used as animal models. In choosing an animal model, several factors are considered 
like anatomy of vascular circulation and retina, relevance to humans and also the 
availability of the animals. 

9. Desirable characteristics in animal models  

Animal models are used to understand the mechanism behind a particular disease and also 
to discover new as well as validate the already therapeutics for it. Animal models can either 
be spontaneous or induced and can be developed in any species which fits best for the 
disease to be studied and the purpose of our study. 
The model should show up same characteristics and symptoms as seen in human disorders. 

The model should have common features with the humans, such as anatomy, vascular 

system and retina in case of animal models for retinal ischemia. But at the same time these 

animals should be easy to manipulate, i.e. they should have small size, high reproducibility 

and easy for genetic manipulation. For testing the therapeutics, the animal models being 

used should mimic the humans and give same response as desired in the humans, so that 

the humans will show similar response. Other desirable characteristics include low cost, 

easy availability, easy to handle and breed and less prone to infections or diseases other 

than the desired one. 

10. Animal models of retina ischemia 

10.1 Raising the intraocular pressure 

It is the most widely used method to study the mechanisms involved in retinal ischemia. 
Peachey et al. demonstrated that the high intraocular pressure (IOP) induced retinal 
ischemia model has been established as an important model system. IOP model creates 
ischemia by elevating and maintaining the intraocular pressure above the systemic arterial 
pressure (Peachey et al., 1993). Flower et al described the retinal ischemia model in cats. The 
IOP was raised to 110mm Hg by cannulation of anterior chamber with a 26-gauge needle, 
which is connected through nylon tubing to an elevated container with normal saline. This 
increase in intraocular pressure blocks the retinal blood circulation and thus, leads to 
ischemia (Flower et al., 1971). Following a similar procedure, a model of pressure-induced 
retinal ischemia/reperfusion injury was established in rats (Buchi et al., 1991). 
It has been used to study changes in protein expression, excitotoxicity and alteration in 
membrane properties in various different models. IOP animal models have also been used 
to study changes in serum antibody reactivities after ischemia. Joachim et al. created IOP 
model by raising the pressure to 130mm Hg for an hour to check the antibody response to 
ischemia/reperfusion injury (Joachim, et al., 2011). On the other hand, Hirelinger et al. 
investigated the involvement of ion imbalance and role of Muller cells in degeneration of 
retina in a mouse IOP model (Hirelinger, et al., 2010).  
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Baicalin, a flavenoid found in roots of Scutellaria biacalensis, when was administered in rats 
intraperitoneally showed protection from the retinal ischemia’reperfusion injury, as was 
seen in vitro. The baicalin was given before subjecting the animals to raised intraocular 
pressure of 120mm Hg for 50 minutes (Jung, et al., 2008). 
The principle limitation of this model include that the raised intraocular pressure itself can 
contribute to the resulting retinal damage. Thus, this model is complicated by a combination 
of ischemic as well as pressure-induced injury.  

10.2 Cerebral artery occlusion 

Acute thrombotic/embolic stroke in humans are often associated with temporary 

diminishment (amaurois fugax) or even permanent loss of vision. Middle cerebral artery 

occlusion (MCAO) is a purely vascular model of retinal ischemia that reproduces transient 

human vision loss. MCAO in rodents is one of the most widely used experimental 

paradigms to induce focal cerebral ischemia. This model occludes arterial blood flow 

intraluminally and allows reperfusion by removing the inserted filament. The ophthalmic 

artery that mainly supplies the inner retina originates from the internal carotid artery 

proximal to the origin of the middle cerebral artery. Therefore, it is expected that MCAO 

simultaneously obstructs blood flow in the ipsilateral retina. Block et al demonstrated the 

first evidence of retinal ischemia by MCAO in rats (Block et al., 1992). Steele et al have shown 

for the first time that MCAO simultaneously obstructs blood flow in ipsilateral retina in 

mice (Steele et al., 2008).  

Kaja et al indicates that the MCAO/ reperfusion model is more appropriate than other 
retinal ischemia models such as high intraocular pressure or optic nerve ligation models to 
study the cellular and molecular changes in retina after stroke (Kaja et al., 2003). This model 
is non-invasive with respect to the eye and does not induce blood-retina barrier disruption 
or mechanical damage to retina. The model is reproducible and easily reversible and 
involves vascular structure of the entire eye. Therefore, MCAO is a more relevant model for 
studying changes and testing the efficacy of therapeutic strategies for retinal ischemia. 
This model has been used to validate the effect of a various herbs of Chinese origin. The 

extracts from wolfberries (Lycium barbarum, Gougizi) mostly consist of polysaccharides and 

are believed to be good for the eye. It has also been shown previously in many studies that 

these extracts have protective effect against liver damage, ageing and oxidation (Ha, et al., 

2005, Li, et al., 2007, Yu, et al., 2007).The group created a model by occluding the internal 

carotid artery in rats. The extracts were given orally for 1 week before the occlusion. This 

study showed that this pre-treatment with the extracts protected the retina from various 

conditions linked with retinal ischemia, such as, neuronal death, apoptosis, glial cell 

activation and blood-retinal barrier disruption (Li, et al., 2011). 

10.3 Chronic carotid ligation 

In two-vessel occlusion model, the occlusion is permanent and long-lasting and reperfusion 
does not occur. This model reduces the cortical/hippocampal blood flow to 25-50% of the 
normal levels in 2.5 hours post occlusion (Yamamoto et al., 2006). The blood flow in the 
retina may be more severely reduced than in the brain. Davidson et al have also shown that 
the two-vessel occlusion, i.e. the bilateral carotid artery occlusion causes an early loss of the 
pupillary reflex in 50% of the animals (Davidson et al., 2000). The 2-VO model mimics the 
ocular pathology of human carotid artery disease. The internal carotid artery (ICA) which 
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begins at the bifurcation of the common carotid artery (CCA) provides the major blood 
supply to brain. It also provides the blood supply to the eye through the ophthalmic artery.  
Many studies have shown that bilateral common carotid artery occlusion in rat causes 
functional impairment of retina (Block et al., 1992). The electroretinogram have also 
demonstrated that b-wave amplitude representing bipolar and Muller cell activity in 
response to light exposure is decreased 7 days after the onset of 2VO (Barnett and Osborne, 
1995). These functional changes are accompanied by structural damage. In animals that lost 
their pupillary reflex, the total retinal thickness decreased from approximately 120 μm to 
around 87 μm. The most affected layers being the synaptic zones in inner plexiform as well 
as the outer plexiform layer (Lavinsky et al., 2006).  
In this model, occlusion of both CCAs cuts off blood supply to the retina, however, some 
retinal perfusion is maintained by retrograde blood flow to ophthalmic artery through the 
Circle of Willis. The degree of retinal damage also varies greatly within the same 
experiment, due to heterogeneity in tolerance towards ischemia in individual animal. 

10.4 Photocoagulation of retinal vessels 

There are only a few studies at present that report the ischemia of less than 5 minutes, which 

is often observed during the ocular surgeries. The faults that are present in other methods, 

such as invasiveness and inflammation in raising the intraocular pressure or ligation of optic 

vessels that causes changes in retina unrelated to ischemia, can be reduced by direct laser 

exposure of the main retinal vessels.  

Kalamkarov et al. induced the characteristics of retinal ischemia in rats by direct laser 

coagulation of blood vessels using argon laser (Kalamkarov et al., 2000). Selective occlusion 

of vessels using laser permits creation of local and extensive retinal ischemia by choosing 

various retinal vessels and by modifying the exposure dose. In this technique, Rose Bengal, 

an iodinated photosensitive dye is injected intravenously through tail vein. The eyes are 

then exposed to 7 minutes of intense light (550nm, which is the absorption peak for this 

dye). Retinal vein occlusion was simulated in non-human primate model, i.e. cynomolgus 

monkey (Maccaca fascicularis). Dye yellow (577nm) laser light was used to occlude all branch 

retinal veins in the eye (Miller et al., 1994). Photodynamic thrombosis with green argon laser 

light and Rose Bengal dye was also used to create retinal ischemia model in pigs by 

occluding the retinal veins. 

Laser coagulated Sprague Dawley rats were used to validate the effect of Hongua in vivo. In 

this model, Honghua extract was injected intravitreally, before they were subjected to Rose 

Bengal dye and laser (550nm). It is hypothesised that as the major component in the 

Honghua extract is glucose, the neuroprotective effect of the same could be due to 

availability of energy source after ischemia (Romano, et al., 1993). Another Chinese herbal 

medicine – Fufang Xuehuantong capsule was also studied by Yuan et al. They created a rat 

model for retinal vein occlusion by using laser photocoagulation and then validated the 

therapeutic benefits Chinese herbal medicine by quantitating the expression of various 

growth factors in the animal model (Yuan et al., 2011). 

10.5 Central retinal artery occlusion  

In humans, CRAO results in severe retinal ischemia, resulting in irreversible damage within 
hours. A minimal invasive model of transient retinal ischemia was introduced by 
Dangeliene et al., which involves photothrombotic central retinal artery occlusion (CRAO) 
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using intravenous injection of Rose Bengal and green laser irradiation of CRA in rats 
(Dangeliene et al., 2000). Rose Bengal is a photosensitive dye that releases oxygen free 
radicals when irradiated by the laser. This active oxygen results in intraluminal thrombus 
formation and thus, occlusion of CRA.  Another retinal ischemia-reperfusion model through 
the occlusion of central retinal artery involves placing a suture behind the eye globe, 
including the CRA and ciliary artery. Both ends of the suture were then passed through a 
small plastic tube and ischemia is caused by pressing the tube against the artery. Prasad et al 
used the central retinal artery ligation model in rats to compare between different occlusion 
times as well as different time-period of reperfusion. They studied gene expression of 
various transcription-related genes after 30 and 90 minutes of occlusion and at 3 hours and 
12 hours of reperfusion (Prasad et al., 2010).  

10.6 Endothelin administration 

Transient obstruction of central retinal artery can also be obtained by injecting 
vasoconstrictive drug. This method is less invasive, simple and does not require any special 
equipment. Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced by the 
vascular endothelial cells. Endothelin is found naturally in various tissues and is involved in 
a variety of biological activities. It has been linked with pathophysiology of various human 
disorders, e.g. cardiovascular, renal and ocular. Endothelin-1 can cause apoptosis of neurons 
in the CNS (Syed, et al., 2006). Endothelin-1 causes cell death through mechanism involving 
free-radicals (Oku, et al., 2008). Sugiyama et al have shown the association of endothelin with 
glaucoma. The authors investigated the effect of ET-1 on rabbit eye and observed that the 
intravenous as well as intravitreal administration of ET-1 reduces both the intraocular 
pressure and the blood flow in the optic nerve (Sugiyama, et al., 1995). Granstam et al 
demonstrated similar effects of endothelin in a cat model (Granstam, et al., 1992). Masuzawa 
et al have shown that a high dose of ET-1 when injected under the conjunctiva obstructs the 
central retinal artery without any damage to other tissues. Endothelin-1 causes retinal 
ganglion cell loss and activates glial cells (Masuzawa et al., 2006). It has also been seen that 
the intravitreal administration of ET-1 affects the retinal arteries directly. A dose of 10-7 M 
ET-1 led to decrease in the diameter by 17% (Bursell, et al., 1995). 
Endothelin-1 also causes constriction of arteries in-vitro. Yu et al showed that ET-1 dose 
causes constriction even in cryopreserved human retinal arterioles. But the relation between 
the dose and the related activity is still not known (Yu, et al., 1998).  
Thus, in this method there is no problem regarding inflammation or infection. But, like any 
other method being used, this method too is not completely free from drawbacks. The dose 
of endothelin-1 used is quite high, which may pass into the systemic circulation and exert 
some undesired effects in other tissues. 

11. Current and potential therapeutic strategies for retinal ischemia 

Many strategies have been used but have not been successful or have shown various 
limitations and are at experimental stage. Current treatments available for retinal ischemia 
include intravitreal or retinal vein administration of tissue-plasminogen activator (t-PA), 
hemodilution, pan-retinal laser photocoagulation or anti-VEGF antibodies or medication 
(Lucentis or Avastin). Occlusion of retinal vessels or retinal ischemia leads to retinal 
neovascularisation. Laser photocoagulation is used to decrease the neovascularisation in 
retina and thus, the oxygen demand. The decrease in overall oxygen requirement will stop 
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ischemia and hence, further damage to the eye. Ischemic conditions also cause up-regulation 
of expression of angiogenic factors, such as vascular endothelial growth factor or VEGF. 
VEGF is involved in angiogenesis and causes abnormal vessels growth or 
neovascularisation. To reduce the damage of ischemia, oxygen supply to retina has to be 
improved. Therefore, anti-VEGF drugs can be directly injected in the eye, e.g. the drugs that 
have been most tested in animal models include, bevacizumab, ranibizumab, pegaptanib 
sodium. Corticosteroids, such as, dexamethasone, are also under experimentation, as these 
inhibit VEGF and inflammatory factors (Lattanzio, et al., 2011). Another technique that holds 
promise is the use of anti-VEGF antibodies. Neutralising anti-VEGF monoclonal antibodies 
have been demonstrated to block neovascularisation when administered in a primate model 
of laser-induced retinal ischemia. Aiello et al showed the in-vivo inhibition of VEGF with the 
help of VEGF- neutralising proteins-containing extracellular domain of human (Flt) or 
mouse (Flk) VEGF receptors attached to IgG. These chimeric proteins showed 100% 
reduction in neovascularisation with human Flt and 95% with murine Flk domains. The 
suppression of VEGF was dose-dependent (Aeillo et al., 1995). 
There are many other drugs and chemical compounds which have been tested in animal 
models of retinal ischemia with positive results and hope for future therapeutics. Cao et al in 
1994 provided the evidence for the neuroprotective effect of NMDA antagonists in retinal 
ischemia. They showed that the NMDA receptor antagonist, dextromethorphan has a 
protective effect after retinal ischemia. However, it is not still clear whether 
dextromethorphan works via NMDA receptors.  Other NMDA antagonists, such as MK-801 
or memantine also protect from retinal ischemia (Lam et al., 1997 and Osborne, 1999). 
Blockers of voltage-gated Ca2+ channels, e.g. nifediprine and betaxolol also decrease 
neurotoxicity by reducing Ca2+ ions influx (Melena et al., 1999).  
Another approach can be the use of the free- radical scavengers. Free-radicals play an 
important role in the damage caused by retina ischemia. Free-radicals are formed when 
reduced compounds, which accumulate during ischemia, are reoxidised during reperfusion. 
This free radical burst causes oxidative stress (Gilgun Sherki, 2002). Intravenous injection of 
SOD reduces the development of edema in rat model. SOD or superoxide dismutase is a 
well-known scavenger of superoxide radicals. Another compound that can be used is 
dimethylthiourea or DMTU, which is a synthetic compound that traps OH., H2O2 and other 
free radicals. Intravitreal injections of both SOD and DMTU have been shown to lead to 
recovery in IOP-induced ischemia rat model. DMTU (75μg/eye) resulted in 40% functional 
recovery when assessed through electroretinogram. SOD, on the other hand, leads to 99% 
functional recovery on post-treatment and 81% on pre-treatment. Thus, all these chemical 
compounds and drugs that decrease or reverse the cause of ischemia can be helpful in 
reducing the damage to some extent. 
RNA interference (RNAi) is a natural phenomenon in mammals, which is involved in 
silencing of gene expression. It involves a double-stranded RNA which cleaves any RNA 
complimentary to it. RNAi has been proposed to be used in therapeutics by downregulating 
the expression of specific genes. Reich et al used the technique of RNA interference in retinal 
cells in vitro, as well as in vivo in the mouse retina. They used this technique to downregulate 
the VEGF expression, which is known to be upregulated in retinal ischemia (Reich et al., 
2003). RNAi can be further investigated and tested for other genes, e.g. cytokines that are 
upregulated in the pathophysiology of retinal ischemia. 
Stem cell therapy is a promising technique for tissue repair and regeneration. Advances in 
the field of stem cells have lead to their use in treatment of various disorders (Lenka & 

www.intechopen.com



 
Animal Models of Retinal Ischemia 

 

165 

Anand, 2010, Rajarathna, 2009). Stem cells basically are unspecialised cells which are 
capable of self – renewal and under specific defined environment these cells can form 
functionally specialised cells. The stem cells can either be obtained from early embryos or 
certain tissues in adults, such as umbilical cord and peripheral blood, bone marrow. They 
work through either replacing damaged cells or through the factors released by them. Stem 
cells have been used in various vascular neurodegenerative diseases and most of the ocular 
disorders involve problem in either of the two. Eye is an accessible organ and with large 
number of animal models available, the use of stem cells poses a promise for preserving 
functionality (Cogliati & Swaroop, 2009).  
Adult bone marrow contains hematopoietic stem cells (HSCs) and hematopoietic progenitor 
cells (HPCs), which can differentiate into various cell types of myeloid and endothelial 
lineages. Bone-marrow contains stem cells which can either differentiate into Lin+ 
(hematopoietic lineage) or Lin- (non-hematopoietic lineage). Lin- population contains 
progenitor cells that differentiate into vascular endothelial cells, i.e. the endothelial 
progenitor cells (EPCs). Many preclinical and clinical studies have shown bone-marrow 
derived cells contribute to neoangiogenesis during wound healing, retinal ischemia, 
myocardial infarction, neonatal growth and tumor growth.  Lin- population have been 
shown to express neuronal markers after transplantation in brain or retina in various mouse 
models. Bone-marrow cells differentiate into neuronal cells, astrocytes in-vitro and also in-
vivo when injected intravenously into brain of mouse model (Mezey, et al., 2000). Also, it has 
been shown that BMCs can differentiate into retinal neural cells in-vivo (Woodbury, et al., 
2000). Lin- bone-marrow stem cells when injected intravitreally into photocoagulated retina 
of a mouse model, migrated to astrocytes and formed retinal vessels.  Ischemic conditions 
release cytokines that recruit EPCs to the site. Ischemia results in up-regulation of 
angiogenic factor, vascular endothelial growth factor or VEGF-A, which has its receptors 
Flk-1 and Flt-1 on EPCs, HSCs and HPCs, thus leading to their migration to the site (Kalka, 
et al., 2000). But their importance in clinics is still unknown as the success depends on their 
functional incorporation.  
Mesenchymal stem cells (MSCs) also found in bone marrow and other tissues such as cord 
blood, peripheral blood, fallopian tube, and fetal liver and lung have been used in over a 
range of different clinical trials (US NIH clinical trial database – www.clinicaltrials.gov), 
including those in fractures, diabetes, heart and liver disease and neurological disorders. 
MSCs have the potential to differentiate into neurons, especially retinal neurons. These cells 
also secrete molecules that modify the environment for the surrounding cells. MSCs for 
instance, express a number of neuroprotective factors, such as BDNF, CNTF, IGF, bFGF and 
NGF, which protect the injured retina. MSCs have another remarkable property, i.e. the 
homing potential; they can migrate to pathological areas (Prabhakar, et al., 2010). They can 
migrate from blood circulation to brain, spinal cord, and eye (Kan, et al., 2005). Thus, MSCs 
have shown neuroprotection in various neurodegenerative models, but clinical translation is 
still questionable.  
Another source of stem cell therapy is the embryonic stem cells (ESCs), obtained from the 

inner cell mass of blastocyst. ESCs can differentiate into various cell types, such as 

hematopoietic cells, astrocytes, hepatocytes, glial cells, neurons. Wei et al., 2005, showed that 

the transplantation of human embryonic cells in MCAO stroke model led to structural as 

well as functional recovery. Transplanted ESCs differentiated into neurons, astrocytes, 

oligodendrocytes and endothelial cells. These ESC – derived endothelial cells can form 

vascular-like structures in-vivo as well as in-vitro, thus induce angiogenesis (Levenberg, et 
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al., 2002). Embryonic stem cells have issue of ethical restrictions as well as immune rejection. 

Thus, alternate source of stem cells was identified from non-pluripotent cells. Every 

nucleated cell in an individual has identical genome, except the gametes. Different cell types 

are identified on the basis of the genes that are expressed. In 2006, four transcription factors 

– Oct 3/4, Sox-2, Klf-4 and c-myc, that are capable of reprogramming DNA were identified 

(Takahashi & Yamanaka, 2006). Forced expression of these specific genes in a non-

pluripotent cell lead to a pluripotent stem cell, known as induced pluripotent stem cell 

(iPC). Human iPCs have been derived successfully from patients with neurological 

disorders – Parkinson’s disease, muscular dystrophy, Huntington’s (Park et al., 2008). iPC 

from the skin cells of an amylotrophic lateral sclerosis (ALS) patient have been differentiated 

into motor neurons (Dimos et al., 2008). Takahashi group for the first time generated 

photoreceptor cells from the embryonic stem cells (Takahashi & Yamanaka, 2006). The same 

method has been used to create human photoreceptor and retinal pigmented epithelium 

phenotype (Hirami et al., 2009). Human neuronal cells can also be generated from iPC 

(Karumbayaram et al., 2009). Human umbilical cord blood is a well known source of 

hematopoietic stem cells and has been used in various disorders. Umbilical cord blood 

contains higher percentage of hematopoietic stem cells than the bone marrow and also poses 

a lesser risk of immune rejection. The cells from cord blood have the potential to form retinal 

neuronal cells. 

 
 
 

 
 

Fig. 3. Formation of iPC from adult somatic cell  
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Fig. 4. Different sources of neural stem cells (NSCs) in human and rat brain (Reproduced with 
permission http://pubs.niaaa.nih.gov/publications/arh27-2/197-204.htm) 

The mammalian central nervous system was considered is a non-renewable tissue. But 
studies have demonstrated that neural stem cells (NSCs) do exist not only in developing 
CNS, but also in adult nervous system of all mammals and are capable of differentiating 
into neurons, astrocytes and oligodendrocytes. Neural stem or progenitor cells can be 
isolated from various parts of CNS, such as hippocampus, subventricular zone, spinal cord 
and ependyma. Palmer et al for the first time isolated NSCs from the hippocampus of an 
adult rat. These hippocampus-derived NSCs have an ability to migrate and differentiate into 
neuronal lineage in injured retina, but are unable to form retina-specific cells (Nishida et al., 
2000). Embryonic retina derived neural progenitors can differentiate into photoreceptors in-
vitro (Ahmad et al., 2004). NSCs have an advantage over the embryonic stem cells with 
respect to their clinical translation, i.e. NSC can be expanded through numerous passages 
in-vitro and can be easily manipulated (English & Anand, 2010) . But, further studies are 
required to derive retinal neurons from the NSCs.  
But there are some limitations and barriers for stem cell transplantation in retina, as retina 
shows poor cell integration. Like any other part in the central nervous system, the retina too 
is rigid to cell migration. Thus, most of the cells that are transplanted do not reach the retina. 
It has been shown that only 1% of intraocularly transplanted cells reach the retina (Johnson, 
et al., 2010).The stem cell therapy holds a promising future in retinal disorders, but the 
problems need to be dealt with before clinical translation. 
Another therapeutic approach that shows a promising future is the concept of personalised 
therapy, where the candidate genes linked with various eye disorders can be identified and 
the genetic make-up of an individual can be used for disease prediction and treatment. 

12. Conclusion 

Retinal ischemia is a common cause for visual impairment and vision loss. It is a condition 
related with many different human disorders, such as diabetic retinopathy, glaucoma, and it 
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occurs when the blood supply is not sufficient to meet the demand. The retina and brain 
share common development pathway. Retina, like CNS, originates from ectoderm, however, 
it can be non-invasively studied. Also, as the retinal blood vessels share many features with 
the cerebral blood vessels, the investigations can be extrapolated to brain pathology. Thus, 
studying the retina, through the retinal ischemia models can help in understanding the 
mechanism and pathophysiology of stroke as well as in validating potential therapeutics. 
But all the methods discussed here have their own strengths and limitations. Out of all the 
above mentioned animal models, pressure elevation model is commonly used as it is easily 
reproducible and it mimics many human disorders – central retinal artery occlusion 
(CRAO), glaucoma, occlusion of ophthalmic artery. For example, some methods require 
penetration of a needle through the cornea, and must be fixed in the anterior chamber for 
one hour. The invasiveness can lead to inflammation and other damages. Similarly, 
unilateral and bilateral occlusion of carotid artery requires specialised skills in vascular 
surgery. It may cause incomplete ischemia and all of these procedures alter blood flow to 
the brain. Likewise, photocoagulation is simple but has many disadvantages including 
variable degrees of exposure and hence, variable damage. Besides, the ischemic damage 
caused is permanent because of which reperfusion cannot be studied. The choice of animal 
models for pre-clinical testing, therefore, depends on the research questions which have 
been raised. 
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