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1. Introduction 

Agricultural runoff and similar nonpoint sources of pollution are responsible for 

widespread degradation of surface water quality in the U.S. (Hall and Killen, 2005; Hardy 

and Koontz, 2008). In almost three-quarters of the rivers studied in the National Water 

Quality Survey, nonpoint discharges were major contributors to water quality impairment 

(US EPA, 1992). Nonpoint source discharges resulting from agricultural runoff add large 

amounts of inorganic nitrogen and phosphorus to surface water (Goolsby and Battaglin, 

2001; Powers, 2007; US EPA, 1992). In the Chesapeake Bay Region (US), nonpoint source 

discharges contribute about two-thirds of the nitrogen and one-quarter of the phosphorus 

inputs (Correll et al., 1995). In the 1200 km2 Conestoga River watershed in Pennsylvania, 47.2 

kg/ha/yr total nitrogen and 44.7 kg/ha/yr nitrate-nitrogen are discharged from nonpoint 

sources adding, ultimately, to the nutrient load of the Chesapeake Bay (Woltenmade, 2005). 

The addition of excessive inorganic nutrients to surface waters leads to eutrophication, 

which, in turn, is associated with the development of hypoxic zones such as those in the 

Gulf of Mexico, the Chesapeake Bay, and similar areas (Alexander et al., 2008; Boesch et al., 

2001; Mitsch et al., 1999; Wang et al., 2001). 

Subsurface tile drainage is a common agricultural water management practice used in 

regions with a seasonally high water table. By taking advantage of this system, farmers are 

able to extend their growing season by allowing for earlier spring planting and later harvest 

dates. The use of subsurface tile drainage has been shown to significantly improve crop 

production (Kladivko et al., 2005). Skaggs et al. (1994) noted that subsurface artificial 

drainage has improved agricultural production on nearly one-fifth of U.S. soils. In the 

intensively cropped watersheds of the Midwest United States, the use of subsurface tile 

drainage has allowed one of the highest agricultural productivities in the world. 

Approximately 30% of all agricultural lands in the upper Midwest are artificially drained 

(Zucker and Brown, 1998). 

Despite all of the benefits to crop production, tile drain lines can have a negative 

environmental impact. Tile drain lines can act as conduits for contaminants, promoting the 

rapid movement of these substances to surface waters (Fleming and Ford, 2004; Gentry et al., 
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2000). A study of tile drain outlets in southwestern Ohio found an average concentration of 

nitrate-N of 17 mg L-1 was discharged to receiving waters (Fleming et al., 1998). The crop 

production system employed, the amount, rate, and timing of fertilizer application, the size 

and arrangement of drainage tiles, and the presence of cover crops are all known to 

influence nitrogen inputs to surface waters from tile drainage systems (Kaspar et al., 2007; 

Kladivko et al., 2004; Nangia et al., 2008; deVos et al., 2000; Domagalski et al., 2008; Dinnes et 

al., 2002). 

Agronomic controls such as crop and fertilizer management, however, are not usually 

sufficient to rectify nutrient pollution resulting from tile drainage systems (Jaynes et al., 

2008; Madramootro et al., 2007). Therefore, additional methods for nutrient removal and 

control are needed where subsurface tile drainage is common. 

Passive treatment systems such as vegetated riparian zones and biofilters have been shown 

to be effective in controlling nutrient inputs from surface runoff (Cors and Tychon, 2007; 

Dodds and Oakes, 2006; Mankin et al., 2007; Mayer et al., 2007; Spruill, 2004; Yamada et al., 

2007). The preponderance of water flow in tile drainage systems though, is subsurface, 

within the vadose zone. Therefore, the efficiency of surface systems for treatment may be 

reduced because substantial amounts of contaminated water may bypass the active 

treatment zone. To address this limitation, subsurface systems such as in-situ bioreactors, 

permeable reactive barriers, biofilters, and subsurface flow constructed wetlands have been 

investigated (Bezbaruh and Zhang, 2003; Darbi et al., 2003; Greenan et al., 2006; Robertson et 

al., 2007; Schipper and Vojvodic-Vakovic, 2000; Schipper and Vojvodic-Vakovic, 2001; 

Schipper et al., 2004; Su and Puls, 2007; van Driel et al., 2006). These subsurface systems 

generally depend on microbial denitrification to mineralize and remove nitrate. 

Denitrification is an anaerobic process. As such, it requires anaerobic conditions in the 

subsurface as well as an adequate supply of electron donors and available carbon. Thus, an 

exogenous source of carbon such as wood chips or sawdust is usually required for these 

systems to function properly (Greenan et al., 2006; Lin et al., 2002; Vymazal, 2007).  

We recently reported on a recycling vertical-flow bioreactor (RVFB) for the treatment of 

household greywater (Gross et al., 2007). This system intercepts and re-circulates 

contaminated water to a vegetated soil biofilter for aerobic treatment. We report here on the 

potential use of this system for the removal of excess nutrients from tile water. 

2. Materials and methods 

The mesocosm scale RVFBs used in this study have been described elsewhere (Gross et al., 

2007). Briefly, each unit consisted of two tiers, each made of a 55 x 40 x 30 cm plastic 

container. The top container functioned as a soil based treatment unit, while the bottom 

container served as a reservoir from which water was recycled continuously to the 

treatment unit (Figure 1). 

The RVFB units were run with a total of 40 L of synthetic tile water (STW: [g L-1] CaCl2, 1.7; 

NaSO4, 1.8; NaHCO3, 0.1; KNO3, 0.1; K2HPO4, 0.0004; Humic acid, 0.003) in a semi-batch 

mode. After initial loading of each unit, water from the reservoir was recirculated to the 

treatment unit at a rate of 0.41 L min-1 using a 4.6 L min-1 (5 watt) submersible pump. Milk 

tubing (0.635 cm) modified into a drip line provided uniform water distribution over the 

surface of the treatment unit. The recirculation rate was set to prevent ponding of water on 

the soil surface. 
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A  
 

B  

RVFB units used in this research. A. RVFB units at initial set-up of experiment. Note, no vegetation had 
been planted at this time. B. Schematic of RVFB.  

Fig. 1. Recycling Vertical Flow Bioreactors (RVFB) 

Evaluation of the RVFB was conducted under conditions typical of a temperate climate such 
as that found in the Mid-Atlantic region of the Eastern US. Experimental systems contained 
a mixed plant community of emergent plants common to southeastern Pennsylvania. An 
initial period of 4 weeks (designated weeks -4 to 0; data not shown) was allocated for the 
establishment of the plant community before STW was added for treatment. Plants were 
excluded from the control system by weeding twice per week. In addition, plants were 
harvested from one of the experimental treatments at day 30 of the growing season to assess 
the importance of vegetation in nutrient removal. The systems were maintained in a 
greenhouse at ambient temperatures for the duration of the study, one growing season  
(May – October).  
After allowing for the initial plant establishment and system acclimation, samples were 
collected twice weekly by draining 20 L of effluent from the reservoir container of each 
RVFB and replacing it with 20 L of freshly prepared STW. An aliquot (1 L) of the drained 
effluent was transported on ice immediately to the laboratory for analysis. Samples were 
stored at 4oC and analyzed within 24 hours of collection. Nitrate-nitrogen (NO3-N), nitrite-
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nitrogen (NO2-N), and dissolved reactive (ortho) phosphate were assayed using standard 
chemical test kits (HACH Test-N-Tube Plus Methods 835/836, 839 and 834 respectively. All 
kits follow USEPA approved methods SM 4500. Hach Company, Loveland, CO.).  
Data was analyzed using the statistical program Prism 4.0 (GraphPad, Inc). Treatments were 

compared using paired T-tests at a level of significance ( = 0.05) 

3. Results 

Figure 2 summarizes the removal of nitrate in the RVFB systems. There was no noticeable 

removal of NO3-N from the influent tile water in the control system, indicating that passive 

removal via adsorption to the soil or microbial transformation was not a significant factor. 

Effluent nitrate concentrations in the vegetated systems were consistently below the EPA 

guidelines of 10 mg L-1. In fact, effluent concentrations of NO3-N in these systems rarely 

exceeded 2 mg L-1, corresponding to a removal of > 90% of the influent NO3-N.  Harvesting 

of the plant community (day 30) resulted in a rapid increase in the effluent NO3-N 

concentration. Within two weeks of the vegetation removal, the concentration of nitrate 

discharged by the harvested unit approached the concentration discharged in the control 

system indicating that the bulk of the nitrogen removal in the RVFB was the result of plant 

uptake and assimilation rather than of denitrification or other soil microbial processes. 

Nitrate levels in the effluent from the harvested unit remained significantly elevated, in 

excess of discharge limits, for the remainder of the study. The rapid increase in NO3-N seen 

upon the removal of vegetation indicates that possible harvesting of the plants in a 

functioning RFVB should be limited to times when tile water discharge is minimal. 

 

 

Mean +/- S.D. of effluent nitrate concentration in RVFB treating synthetic tile water (25 mgL-1 NO3-N 

initial concentration: solid line). Plants were harvested in the 30th day of the experiment (arrow). 

Fig. 2. Nitrate (NO3-N) Removal in an RVFB 
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Ammonia-N in the effluent of all of the planted systems was consistently below 0.1 mg L-1 

(data not shown). The concentration of NO2-N was significantly (p = 0.05) lower in the 

vegetated units than in the control unit. (data not shown). Removal of vegetation from one 

of the vegetated units (Harvested; day 30) did not have a clear impact on the discharge of 

nitrite by that unit. While there appeared to be a slight elevation in the concentration of 

NO2-N in the Harvested unit, this increase was transient and may not have been 

significantly different from the discharge of the remaining experimental units.  

 

 

Mean +/- S.D. of effluent nitrite-N concentration in RVFB treating synthetic tile water. Plants were 
harvested in the 30th day of the experiment (arrow). 

Fig. 3. Nitrite (NO2-N) in RVFB Effluent 

Removal of reactive phosphate from influent tile water was negligible in the RVFB without 

vegetation (Control; Figure 4). In fact, at times, the concentration of phosphate in the 

effluent was higher than that in the influent indicating that phosphate was being leached 

from the soil. In the presence of vegetation, the concentration of phosphate in the effluent 

was reduced to 20% of the control effluent. Removal of vegetation had no apparent impact 

on the concentration of PO4 in the effluent. Retention of phosphate in the remaining root 

biomass as well as uptake by plant re-growth may account for the low concentrations of PO4 

in the post-harvest effluent, however, the specific cause of this pattern was not established.  

4. Conclusions and future recommendations 

Nutrient enrichment from non-point source runoff is a major factor in the degradation of 

surface water quality (Hardy and Koontz 2008, Ribaudo et al. 2001). The sources of nutrient 

runoff vary in scale from small individual households to large regional agricultural 

activities. Similarly, the options for prevention and remediation available for this type of 

pollution vary widely. Ultimately, multiple technologies at multiple scales must be available 

to address this issue (Ribaudo et al. 2001). 
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Mean +/- S.D. of effluent phosphate (PO4) concentration in RVFB treating synthetic tile water. Plants 
were harvested in the 30th day of the experiment (arrow). 

Fig. 4. Reactive (ortho) Phosphate in RVFB Effluent 

The efficacy of management and control procedures in minimizing the runoff of nutrients 

has been documented widely (Mitsch et al., 1999). However, agronomic practices alone are 

not enough to eliminate all agriculture-related nutrient runoff. In order to adequately reduce 

the impact of non-point source runoff, a combination of agronomic practices and treatment 

techniques is required. 

A wide variety of treatment options for nutrient runoff have been developed. These include 
riparian buffer zones, biofilters, denitrification walls and constructed wetlands (Bezbaruah 
and Zhang, 2003; Darbi et al., 2003; Jaynes et al., 2008; Kelly et al., 2007; Lin et al., 2007; Su and 
Puls, 2007; Vymazal, 2007; Yamada et al., 2007). Although each of these systems has been 
shown to reduce the NO3-N concentration in groundwater, there is no single ideal system 
appropriate for use under all circumstances. 
Our research demonstrates the potential use of a recycling vertical-flow biofilter (RVFB) as 

an alternative treatment option for the removal of nutrients from contaminated tile water. 

Using this relatively simple system we were able to achieve a > 95% removal of reactive 

phosphate and a > 90% removal of nitrate-nitrogen from STW. 

The RVFB combines characteristics of a constructed wetland, a riparian buffer zone and a 

trickling filter for aeration. Subsurface flow intercepted by the RVFB is recycled to the soil 

surface. From there, it flows through a vegetated soil bed treatment system where combined 

biotic and abiotic processes remove excess nutrients and then flows through a layer of 

hollow plastic spheres, finally trickling into a reservoir. Movement of the water through the 

hollow spheres re-aerates the water and prevents the development of anaerobic conditions. 

Thus the RVFB is a hybrid treatment system combining the advantages of several existing 

treatment processes into one system capable of treating both surface and subsurface runoff. 

www.intechopen.com



 
Recycling Vertical-Flow Biofilter: A Treatment System for Agricultural Subsurface Tile Water 105 

For example, reactive phosphate is most likely removed by a combination of plant uptake 

and soil sorption. Removal of nitrogen compounds, on the other hand, is most likely the 

result of plant uptake as well as limited nitrification and denitrification by the soil microbial 

community.  

The importance of plant uptake in the removal of nutrients is reflected in the increase in the 
concentration of both nitrate and phosphate in the harvested unit after the removal of 
vegetation from the system. No such increase in the concentration of nutrients was seen in 
units from which the vegetation was not removed. Because of the dominant role of 
vegetation in the RVFB, application of this technology to field situations must consider the 
management and ultimate use of the vegetation. 
The RVFB has several advantages over other systems for the treatment of agricultural runoff. 
Since it is based on modular components – the upper soil treatment module, functionally 
similar to a riparian buffer, the plastic spheres, functionally similar to a trickling filter and the 
lower recirculation and reservoir module – there is flexibility in the design, allowing complete 
units to be tailored to a specific site. In addition, the use of separate modules should reduce 
maintenance costs since repair to a single component can be done by simply replacing the 
module without the need to disassemble the entire system and disrupting its operation.  
In exploiting the ability of vegetated soil systems to sequester and transform inorganic 
nutrients, the RVFB reflects the advantages of a riparian buffer, a well-established treatment 
modality for the prevention of surface water pollution from agricultural runoff (Cors and 
Tychon, 2007; Mankin et al., 2007; Mayer et al., 2007; Schoonover et al., 2005; Yamada et al., 
2007). By adding a subsurface recirculating reservoir, the RVFB also is capable of 
intercepting and treating subsurface runoff, particularly tile water that normally bypasses 
riparian buffers. Unlike constructed riparian wetlands, however, the RVFB operates in a 
primarily aerobic mode:  water trickling through the soil and into the reservoir is aerated. 
Thus, the generation and release of nitrogenous greenhouse and ozone depleting gases and 
precursors of acidic deposition (e.g. N2O) associated with denitrification-based systems may 
be avoided (Magner et al., 2004; David et al., 2009) 
Our results provide a proof-of-concept only for the RVFB. Additional research is needed to 
demonstrate how well the system functions under realistic field conditions as well as the 
costs of this system compared to alternatives. We believe, however, that the RVFB has the 
potential to be a useful addition to the armamentarium in the fight against non-point source 
pollution. 

5. Abbreviation list 

RVFB: recycling vertical-flow bioreactor 
STW: synthetic tile water 
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