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1. Introduction 

The reduction of pollutants such as nitrogen, phosphorus, organic matter, and suspended 
solids discharged from non-point sources is an important aspect of improving water quality of 
downstream water areas (Reinelt et al., 1992; Gunes, 2008; Collins et al., 2010). Paddy fields, 
which produce rice as staple food in many countries, especially in the Asian monsoon region, 
and use large amounts of water during the rice growing season, are a major non-point source 
of pollution. Various environmental measures to reduce effluent load such as the reduction of 
chemical fertilizer (field-scale practices) (e.g., Choi & Nelson, 1996; Fan & Li, 2010) and reuse of 
drainage water (district-scale practices), are applied in paddy-field districts. 
Cyclic irrigation (reuse of drainage water as irrigation water) is considered an effective 
water management practice for saving irrigation water resources and reducing effluent load 
from a paddy-field district. Cyclic irrigation was originally developed as a method for 
saving water in low-lying paddy fields (Kudo et al., 1995; Takeda et al., 1997) or terraced 
paddy fields (Tabuchi, 1986; Nakamura et al., 1998), where a stable and sufficient water 
source was not available. In a cyclic irrigation system, drainage water discharged from the 
paddy field is partially reused as irrigation water, so that the actual downstream effluent 
volume is decreased. Cyclic irrigation is also expected to decrease pollutant loads both 
because less water leaves the district and because some of the pollutants in the drainage 
water will be returned to the paddy field. Kubota et al. (1979) reported that cyclic irrigation 
with a recycling ratio (the ratio of reused water to drainage water) of 34% reduced nitrogen 
loads by 29% and phosphorus loads by 37%. In addition, cyclic irrigation system may 
increase the hydraulic retention time of nutrients in the paddy field and thereby enhance the 
purity of water leaving the field (Takeda et al., 1997; Feng et al., 2004, 2005; Takeda & 
Fukushima, 2006). 
It has been also reported that the ability of cyclic irrigation to reduce loads of nutrients is 

directly proportional to the amount of reused water (Kaneki et al., 2003) and the recycling 

ratio (Hasegawa et al., 1982; Shiratani et al., 2004; Hitomi et al., 2006). However, the cyclic 

irrigation ratio, that is defined as the ratio of reused water to irrigation water, in paddy-field 

districts that have upstream areas is limited to low values due to large amount of 

uncontrollable inflow of water to the districts. Especially in paddy-field districts that 

capture industrial or domestic wastewater from upstream areas, irrigation water must have 

www.intechopen.com



 
Irrigation – Water Management, Pollution and Alternative Strategies 

 

58

a large fresh water component to reduce the risks posed by pollutants including pathogens 

and heavy metals (Kaneki, 1989; Zulu et al., 1996). 

Little is known about the ability of cyclic irrigation conducted with high recycling ratios to 
reduce loads from paddy-field districts. Furthermore, there have been few studies of this 
reduction effect as a function of the suspended solids load, even though suspended solids can 
cause various deleterious impacts (Bilotta & Brazier, 2008). In this chapter, we aimed to clarify 
the effects of cyclic irrigation with high cyclic irrigation ratio on water balance and nutrient 
and suspended solids loads in a paddy field and in the paddy-field district. We discussed the 
ability of cyclic irrigation to reduce the net exports of nutrient and suspended solids. 

2. Description of study site 

The study site was a low-lying paddy-field district located in Konohama district, on the 

southeastern edge of Lake Biwa (35°05′N, 135°56′E; Fig. 1). Lake Biwa is the largest lake 
in Japan and the most important water resource for the Kinki region, which includes Osaka 
and Kyoto. The mean annual temperature and rainfall are about 15 °C and 1550 mm (Japan 
Meteorological Agency, 2010). The district covers an area of about 1.5 km2, of which more 
than 90% is used as paddy fields. Rotation crops are grown in about one-third of the paddy 
area each year on a 3-year cycle (Fig. 1). In rotation years, two rotation crops are grown, 
wheat and soybeans. The sequence of farming activities in paddy cultivation and rotation 
crop cultivation are summarized in Table 1. The rotation cropping cycle extends for one 
year, beginning in November with the sowing of wheat, which follows the harvesting of rice 
in September. The wheat is harvested in the middle of the next June. A crop of soybeans is 
sown soon after the harvesting of wheat and harvested in late November. The area is then 
left fallow and re-planted to paddy rice the following April. Chemical fertilizer (e.g., 
ammonium sulfate and calcium superphosphate) was not applied to soybeans. Base 
fertilizer was not applied to paddy fields after crop rotation. 
The drainage and irrigation canals in the district are separated. There is no inflow of industrial 
or domestic wastewater from outside the study area into the drainage and irrigation canals. 
The drainage system contains lateral drainage canals, a main drainage canal, which passes 
through the district from north to south, and floodgates at both ends of the main drainage 
canal (Fig. 1). Rainfall runoff from the paddy fields and surplus irrigation water from the 
irrigation canals flow into the main drainage canal via the lateral drainage canals. All outflow 
of drainage water from the district is controlled by operation of the floodgates. 
Two types of irrigation are practiced in the district: lake water irrigation and cyclic 
irrigation. In lake water irrigation, water is pumped from Lake Biwa into the irrigation 
canals. Under cyclic irrigation, drainage water in the main drainage canal is pumped into 
the irrigation canals and reused as irrigation water and water flowed from the lake to the 
drainage canal through the floodgate when the water level of drainage water decreased by 
evapotranspiration. There are two pump stations, one at the northern end and one at the 
southern end of the main drainage canal. The fields are not irrigated during the growing of 
rotation crops (i.e., crops other than paddy rice). The irrigation period is about 4 months, 
including a mid-summer drainage season of about 10 days. Cyclic irrigation is used from the 
beginning of the irrigation period to the mid-summer drainage season (referred to as the 
cyclic irrigation period), then lake water irrigation is used until the end of the irrigation 
period (the lake water irrigation period). The period from the end of the irrigation period to 
the beginning of the next irrigation period is referred to as the non-irrigation period. 
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Fig. 1. (a) Location of the study site. (b) Map of land use, irrigation and drainage canals and 
of the water sampling points at the study site. 

(a) Location 

(b) Map 
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Pumps at the northern and southern ends of the main drainage canal have capacities of 

about 40 and 6 m3 min–1, respectively. The northern pump station has two water inlets that 

connect to the lake and the main drainage canal, respectively, whereas the southern pump 

station has a single water inlet that only connects to the main drainage canal. Pumped water 

is delivered to outlets (points I1 to I7 in Fig. 1) through underground pipelines, and is 

supplied to the paddy fields through the several irrigation canals. The maximum amount of 

irrigation water depends solely on the capacity of the pumps, because there is no other 

source of water to the irrigation canals. Rainfall is not included in the irrigation water. The 

pumps operate for about 12 h per day, from 6:00 am to 6:00 pm. 

 

Farming activity Timing Farming activity Timing

Base fertilization (N = 30, P = 30) late April Base fertilization (N = 60, P = 80) November

Start of irrigation late April Sowing of wheat November

Puddling, Sowing late April – May Additional fertilization (N = 30, P = 30) late December

Additional fertilizaion (N = 10, P = 0) late June Additional fertilization (N = 30, P = 30) late February

Mid-summer drainage late June – July Additional fertilization (N = 20, P = 0) late April

Additional fertilizaion (N = 50, P = 0) mid July Harvesting June

End of irrigation late August Sowing of soybeans June

Harvesting September Harvesting November

Paddy rice Rotation crops (wheat and soybeans)

a
 N, the amouts of ferilizer of nitrogen (kgN ha

-1
); P, the amouts of ferilizer of phosphorus (kgP ha

-1
).

 

Table 1. The sequence of farming activities in the paddy-field district during the cultivation 
of paddy rice and cultivation of rotation crops. 

3. Methodology 

3.1 Field investigation of the paddy field 

From 2004 to 2007, we performed weekly hydrological and water-quality measurement at 

two paddy fields in the district during the irrigation period each April to September. A 

location in the southwestern part of the district was used. The area of each paddy field is 

about 30 m × 100 m. The study fields were cultivated in normal farming methods for paddy 

rice, as other paddy fields in Japan or other countries (e.g., Liu et al., 2001; Kim et al., 2006). 

The paddy fields in the district were surrounded by earthen levees and ponded during the 

irrigation period except the mid-summer drainage season. Soil puddling is accompanied by 

tillage of the paddy fields to soften the soil before rice seedlings are transplanted at the 

beginning of the irrigation period. Nutrient and suspended solids concentration in a paddy 

field is especially high during the soil puddling season (Kaneki, 2003; Somura et al., 2009). 

Figure 2 illustrates the components of water balance in the paddy field. Hydrological 

measurement instruments for rainfall (RT-5E, Ikeda-Keiki, Tokyo, Japan), air temperature 

(CS215L, Campbell Scientific, Inc., Logan, UT USA), wind velocity (014A-L, Campbell 

Scientific, Inc.), relative humidity (CS215L, Campbell Scientific, Inc.), and solar radiation 

(LP02-L, Campbell Scientific, Inc.) were installed in an open area at the southern pump 

station. Evapotranspiration was estimated by the Penman method (Penman, 1948) using 

www.intechopen.com



Cyclic Irrigation for Reducing Nutrients and  
Suspended Solids Loadings from Paddy Fields in Japan 

 

61 

data measured at the southern pump station and crop coefficient value for rice (Sakuratani 

& Horie, 1985). We measured the irrigation and runoff water (outflow through the outlet) 

flow rates delivered to and drained from the paddy fields using a Parshall flume set at the 

inlet and a triangular weir set at the outlet. A water-level meter (WT-HR, Intech Instruments 

Ltd., Christchurch, New Zealand) was set in each paddy field to calculate the change in 

water storage. The sum of percolation water volumes, which includes leakage water (lateral 

seepage to the drainage canal through the levee), was estimated from water balance 

calculations. Water balance in the paddy field is given by the following equation: 

 S = (R + I) – (ET + D + P) (1) 

where S is the change in water storage, R is rainfall, I is irrigation water, ET is 
evapotranspiration, D is runoff water drained through the outlet, and P is percolation (all 
expressed in mm). However, percolation from the paddy field to the groundwater seems to 
be negligible because the district is low-lying and close to the lake and the groundwater 
level is high. Horizontal flow from or to the adjacent paddy fields is not considered since the 
district is located in the low-lying area.  
The sum of rainfall and irrigation water minus runoff water (R + I – D) was used to estimate 
the potential water demand of the paddy field in the district. 

 

Runoff water

Irrigation water

Rainfall Evapotranspiration

Percolation

Leakage water

drainage canal

irrigation canal

paddy field

 

Fig. 2. Schematic diagram of water balance in the paddy field. Arrows indicate flow 
direction. 

Each week, ponded water was sampled at the outlet of each paddy field and irrigation water 
was sampled at the outlet of the irrigation pipeline from the northern pump station (I1; Fig. 
1). A small plastic tank was set near the northern pump station to collect rainfall water, 
which was sampled during the weekly field investigation. The manually sampled water was 
analyzed for total nitrogen (TN), dissolved total nitrogen (DTN), total phosphorous (TP), 
ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), and 
phosphate phosphorus (PO4-P). Rainfall water sampled by the rain tank was analyzed for 
TN and TP. 
Daily inputs and exports of nutrients in water were estimated by multiplying water nutrient 
concentrations by flow volumes. Percolation (including leakage) loss of nitrogen was 
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estimated by using the TN in the ponded water as an estimate of nitrogen concentration in 
percolation or leakage water. Percolation loss of phosphorus was not estimated because it 
was thought phosphorus in the ponded water was strongly adsorbed to the paddy soil. 
Averaged data of the fields measurements in the fields were used for the estimation. 

3.2 Field investigation of the study district 

From 2006 to 2007, we performed weekly hydrological and water-quality measurement 
for the district during the irrigation period each April to September. Figure 3 is a 
conceptual diagram for water flow in the district. The flow rates of discharged drainage 
water during lake water irrigation or on rainy days and inflowing lake water during 
cyclic irrigation were measured using flow meters (2150 Area Velocity Flow Module, 
Teledyne Isco Inc., Lincoln, NE USA) installed at both ends of the main drainage canal. 
We estimated the volume of pumped water by multiplying the operating duration of the 
pumps by their capacity. We did not measure subsurface percolation from the district and 
assumed it to be negligible because the district is adjacent to the lake and the groundwater 
level is high, as mentioned above. 
The characteristics of cyclic irrigation can be described by two different parameters (Kudo et 

al., 1995). One parameter is the ratio of reused water to pumped water (reused water plus 

lake water intake). Here, we refer to this parameter (CI) as the cyclic irrigation ratio. The 

other is the ratio of reused water to potential drainage water (reused water plus district 

drainage water discharged from the district), which is referred to as the recycling ratio and 

has often been used in previous studies (e.g., Kubota et al., 1979; Hasegawa et al., 1982; 

Hitomi et al., 2006). The recycling ratio depends more on drainage water than on reused 

water; in other words, the recycling ratio is affected more by water management in the 

paddy field and by weather conditions than is the cyclic irrigation ratio. For example, an 

increase in irrigation water into the paddy fields leads to a decrease in drainage water 

discharged from the district and results in a larger recycling ratio. Alternatively, in the case 

of cyclic irrigation after a rainfall event, increases in drainage water discharged from the 

district decrease the recycling ratio. Because of these problems with the recycling ratio, we 

have only analyzed and discussed the cyclic irrigation ratio. The mean cyclic irrigation ratio 

of the weekly measurements during the cyclic irrigation periods was 88% in 2006 and 82% 

in 2007, as described later. 

The amount of surplus irrigation water can be approximately estimated as the volume of 

pumped water minus the volume of irrigation water used in the rice paddy fields (the 

percentage of the rice paddy fields in the district was set 66% in each investigation year). We 

defined the surplus irrigation water ratio (SW) as the ratio of surplus irrigation water to 

pumped water. 

Water quality was measured within the district at weekly intervals from 2006 to 2007 by 

taking samples of drainage water at the southern end of the main drainage canal (St. 1; Fig. 

1), irrigation water at the outlet of the pump (I1), and inner lake water (St. 2). In addition, an 

automatic water sampler (3700 Full-Size Portable Sampler, Teledyne Isco Inc.) was installed 

at St. 1 and used to sample drainage water daily at noon. Turbidimeters (Compact-CLW, JFE 

Alec Co., Ltd., Kobe, Japan) were set at both ends of the main drainage canal, set to a 

measurement interval of 20 min. The manually sampled water was analyzed for suspended 

solids (SS), TN, DTN, NH4-N, NO3-N, NO2-N, TP and PO4-P. Drainage water  samples from 

the automatic sampler was analyzed for TN and TP.  
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Reused water

P

Main drainage canal
Drainage water

Lake water intake
Paddy field

Pumped water

irrigation water
Surplus

Irrigation water

Runoff water

EvapotranspirationRainfall

Percolation
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Fig. 3. Conceptual diagram of water flow in the study district. Upper-case “P” represents a 
pump and arrows indicate flow direction. 

3.3 Water quality measurement 

Nutrient concentration measurements were made using the following methods: TN and 
DTN were measured using an ultraviolet spectrophotometer (UV-1200, Shimadzu Corp., 
Kyoto, Japan) after alkaline potassium-peroxydisulfate digestion; TP by the molybdenum 
blue method after potassium-peroxydisulfate digestion; NH4-N by the indo-phenol blue 
method; nitrate nitrogen by ion chromatography (LC-10A, Shimadzu Corp.); NO2-N by the 
N-(1-naphthyl) ethylenediamine method; and PO4-P by the molybdenum blue method. For 

this study, we defined SS as suspended matter with particle sizes ranging from 1 m to 2 
mm. Particulate-state and dissolved-state nutrients were also distinguished by filtering the 

sample with a 1-m filter prior to analysis. 
We calculated total inorganic nitrogen as the sum of NH4-N, NO3-N, and NO2-N, and used 
PO4-P as an estimate of total inorganic phosphorus. We calculated the total concentration of 
organic nitrogen or organic phosphorus as the difference between the total concentration 
and the total inorganic concentration. We calculated the concentration of particulate organic 
nitrogen as the difference between total nitrogen and dissolved total nitrogen, and the 
concentration of dissolved organic nitrogen as the difference between total dissolved 
nitrogen and total inorganic nitrogen. 
Turbidimeter measurements were calibrated to convert turbidity readings to suspended 

solids content: calibration was performed by developing a relationship between field-

measured turbidity and laboratory-measured suspended solids concentration of drainage 

water samples taken concurrently with turbidimeter readings. 

3.4. Effects of cyclic irrigation on net exports of nutrients and suspended solids 

The nutrient or SS loads are the product of the concentration and the water flow volume. 

Thus, the net export of nutrients or SS, Lnet (kg ha–1 d–1), is given by the following equation: 

 Lnet = Cout Qout – Cin Qin (2) 

where C is the concentration (mg L–1), Q is the water flow volume (mm d–1), and the 

subscripts out and in refer to outflow from and inflow into the district, respectively. In this 

case, Cout is the nutrient or SS concentration in the drainage water, Qout is the amount of 

drainage water discharged from the district per day, Cin is the nutrient or SS concentration 
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in the lake water, and Qin is the amount of lake water intake per day. We estimated the 

relationship between the cyclic irrigation ratio (CI) and each variable. 

3.4.1 Relationship between the cyclic irrigation ratio and the flow volume and the 
concentrations 

The nutrient and SS concentration in the drainage water (Cout) during the normal irrigation 
periods may be proportional to the cyclic irrigation ratio because more pumping of drainage 
water leads to higher water flow and more erosion of bottom sediments in the main 
drainage canal. On the other hand, it is clear that Cin is essentially independent of the cyclic 
irrigation ratio because the impact of drainage water discharged from the district on the 
nutrients and SS concentration in the lake water would be negligible. 
Consider the water flow during the cyclic irrigation period on a sunny day. Qp represents the 

volume of pumped water and is about 20 mm d-1. On sunny days, Qp is the only driving force 

for water flow in the study district, which has a closed irrigation canal. We have assumed that 

water in the paddy field on a sunny day is mainly lost by evapotranspiration and that the 

amount of percolation or leakage water is negligible. In addition, runoff water occurs mainly 

during rainfall events. Thus, runoff and percolation (water flows from the paddy field into the 

main drainage canal via the lateral drainage canals) are not depicted in Fig. 4. 

 

Reused water

P

Main drainage canal
Drainage water

Qp

Q p

Qout

Lake water intake
CI Q p

CI

Paddy field

Pumped water

irrigation water
Q pSW

Surplus

Irrigation water

 

Fig. 4. Conceptual diagram of water flows under cyclic irrigation. Upper-case “P” represents 
a pump and arrows indicate flow direction. 

Drainage water discharged from the district may potentially equal to the surplus irrigation 

water, SW Qp. Cyclic irrigation reduces the outflow of this potential drainage water due to 

reuse, CI Qp. Therefore, Qout (actual drainage water) is written: 

 Qout = (SW – CI) Qp (3)  

The model of water flow illustrated in Fig. 4 does not consider temporary deficits of inflow 

water, which in practice are compensated for by decreases in drainage water flow in the 

main drainage canal. Equation (3) means that the upper limit of CI is SW when water flows 

out (Qout > 0). If SW < CI in Equation (3), another inflow of water from the lake must occur 

(negative Qout in Fig. 4). In that case, Lnet = – (1 – SW) Cin Qin; that is, under these conditions, 

Lnet varies with SW and is negative for any CI. 

Cyclic irrigation also reduces the inflow of water (lake water intake), Qin, due to reuse. Thus, 
Qin is written as follows: 

 Qin = (1 – CI) Qp (4) 
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These two parameters, CI and SW, can be taken as a supply- (source-) and demand- (user-) 
side water use parameter, respectively. 

3.4.2 The effect of cyclic irrigation as a function of the cyclic irrigation ratio 

Whether Lnet is greater or less than zero indicates whether the effect of cyclic irrigation as a 

function of CI represents net contamination (cyclic irrigation increases the loadings from 
the district) or net purification (cyclic irrigation decreases the loadings). The neutral effect, 
Lnet = 0, can be converted into the following equation by substituting the relationships 

between CI and Qout (Equation (3)) and Qin (Equation (4)) into Equation (2): 

 
1out CI

in SW CI

C

C

 

  

 (5) 

The effect of cyclic irrigation on Lnet for a given SW value is illustrated in Fig. 5. If we 

replace the right side of Equation (5) with , then  varies as a function of both CI and SW. 
Whether the effect of cyclic irrigation represents net contamination or net purification 
depends on whether the actual concentration ratio (Cout/Cin) for a given CI is above or 

below the curve. In addition, the effect of cyclic irrigation at any CI is net purification if 
the concentration ratio is less than 1, because the value of for any combination of CI and 
SW is greater than or equal to 1. 
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Fig. 5. The effect of cyclic irrigation on the net exports of nutrients and suspended solids 

(Lnet) as a function of the cyclic irrigation ratio (CI). 

4. Results and discussion 

4.1 Characteristics of water balance and nutrient loads in a paddy field 
4.1.1 Water balance in the paddy field 

Figure 6 shows daily variations in inflow water (rainfall and irrigation water) and outflow 
water (evapotranspiration and runoff water) in the paddy field during each irrigation 
period from 2004 through 2007.  
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Fig. 6. Daily irrigation water, rainfall, runoff water, and evapotranspiration in the paddy 
fields during the irrigation period in (a) 2004, in (b) 2005, in (c) 2006 and in (d) 2007. 

www.intechopen.com



Cyclic Irrigation for Reducing Nutrients and  
Suspended Solids Loadings from Paddy Fields in Japan 

 

67 

A complementary relationship was seen between irrigation water and rainfall because the 
pumps were not operated on rainy days. Runoff mainly occurred during and after rainfall. 
Runoff of 34 mm d-1 in early May in 2007 occurred because of artificial drainage by the 
farmer, who intended to dry the paddy fields and then transplant rice earlier. In addition, 
the large amount of runoff water during the 2007 mid-summer drainage season was due 
both to rainfall and to the temporary removal of shuttering boards at the outlets of the 
paddy fields during the irrigation season. 
Table 2 shows the water balances for the paddy field during the irrigation periods in 2004–

2007. The water level of the field at the begging and the end of each period was 0 (i.e., S = 0). 
Total amounts of rainfall during the irrigation periods ranged from 469 mm in 2005 to 779 
mm in 2006. Weather conditions in the investigation years except 2005 were considered 
normal because the amounts of rainfall during the irrigation period were within the range of 
the mean ± standard deviation (766 ± 205 mm) from three decades of data (1980–2009) in 
Otsu City, which is near the study district (Japan Meteorological Agency, 2010). 
 

Year Period
a

Rainfall Irrigation water Evapotranspiration Runoff water

2004 CI period (28 April – 20 June) 313 377 213 178

Mid-summer drainage season
b 73 0 37 8

LWI period (1 July – 21 August) 139 624 252 65

Total 525 1001 502 251

2005 CI period (25 April – 30 June) 210 563 210 71

Mid-summer drainage season 115 0 7 14

LWI period (6 July – 28 August) 139 379 179 46

Total 464 942 396 131

2006 CI period (24 April – 25 June) 277 275 212 72

Mid-summer drainage season 102 0 37 8

LWI period (8 July – 31 August) 400 500 241 213

Total 779 775 490 293

2007 CI period (25 April – 23 June) 281 356 273 138

Mid-summer drainage season 175 0 38 157

LWI period (6 July – 28 August) 319 506 261 193

Total 775 862 572 488

Inflow (mm) Outflow (mm)

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

 

Table 2. Mean water balances for the paddy fields during the irrigation period. 

The total amount of irrigation water each year was inversely proportional to rainfall, and the 

sum of rainfall and irrigation water during each irrigation period was fairly constant (about 
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1400–1600 mm each year). About 1100–1200 mm was estimated as the potential water 

demand during the irrigation period (without the mid-summer drainage season). The 

difference between total inflow and total outflow during the irrigation period, which equals 

the sum of stored water and percolation, ranged from 577 mm (in 2007) to 879 mm (in 2005). 

From these results, it was estimated that water loss from the paddy fields by percolation 

was about 7 mm d–1 (at most) during the irrigation period. The amount of water lost 

through percolation was likely more than that lost through evapotranspiration, which 

ranged from 396 mm (in 2005) to 572 mm (in 2007). 

The reason that the difference in water management practices in 2004–2007 was not reflected 

in the water balances of each irrigation period is because irrigation water was supplied only 

from the pumps, and the irrigation schedule for each field depended on the pump 

operation. In other words, supply-side water management practices seemed to have a 

greater influence on water balance in the paddy fields than did individual farmers’ 

management practices. An irrigation system with a closed irrigation canal (receiving no 

inflow of water from outside the area) that enables the paddy-field district to conduct cyclic 

irrigation with a high cyclic irrigation ratio, combined with supply-side water management 

(e.g., stopping the pumps during rainfall events), can provide efficient use of rainfall for 

crop irrigation, though such an irrigation system is less flexible for meeting the water use 

demands of individual farmers. 

Total amounts of pumped water in the irrigation periods were 1528 mm in 2004, 1720 mm in 

2005, 1737 mm in 2006 and 1681 mm in 2007, and the amounts of surplus irrigation water (= 

the volume of pumped water minus the volume of irrigation water used in the rice paddy 

fields) were therefore 867 mm (= 1528 mm – 0.66 × 1001 mm) in 2004, 1098 mm in 2005, 1226 

mm in 2006 and 1112 mm in 2007. The overall surplus irrigation water ratio in the district in 

the irrigation periods was 57% (= 867 mm / 1528 mm × 100) in 2004, 64% in2005, 71% in 

2006 and 66% in 2007. 

4.1.2 Nutrient loads in the paddy field 

Figure 7 shows the temporal variations in TN and TP of irrigation water and ponded water 

during the 2007 irrigation period. Nutrient concentrations in the ponded water were higher 

than in irrigation water during the puddling season. In contrast, nutrient concentrations in 

the ponded water were similar to those in irrigation water during the irrigation period 

following the puddling season (i.e., the normal irrigation period referred to in this paper). 

These results indicate that the quality of irrigation water has a large influence on ponded 

water during the normal irrigation period. 

Nutrient concentrations in irrigation water in 2004–2007 are shown in Table 3. The trends for 

each nutrient component in irrigation water were similar over the study years, except for 

lower nutrient concentrations of TN and TP during the puddling season in 2004, which may 

have been caused by dilution in successive rainfall events during that season. Nutrient 

concentrations in irrigation water in the study years were highest during the puddling 

season (TN = 3.26–4.07 mg L-1, TP = 0.04–0.29 mg L-1), and higher during the cyclic irrigation 

period (TN = 1.76–2.27 mg L-1, TP = 0.09–0.24 mg L-1) than during the lake water irrigation 

period (TN = 0.53–0.73 mg L-1, TP = 0.04–0.06 mg L-1). The high nutrient concentrations in 

irrigation water during the puddling season are likely due to dissolution and leaching of 

nutrients from paddy soil. 
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Fig. 7. Temporal variations of (a) total nitrogen and (b) total phosphorus in irrigation water 
and ponded water during the irrigation period in 2007. CI, cyclic irrigation; LWI, lake water 
irrigation. 

 

Year Period
a

TN DTN NH4-N NO3-N NO2-N TP PO4-P n
f

2004 Puddling season
b

3.26 －
e

0.35 1.98 0.05 0.04 0.03 4

CI period
c

1.76 － 0.26 0.44 0.02 0.09 0.05 5

LWI period 0.54 － 0.06 0.05 0.00 0.04 0.01 5

2005 Puddling season 4.07 2.35 0.43 1.03 0.00 0.24 0.04 4

CI period 2.04 1.13 0.26 0.21 0.00 0.18 0.02 6

LWI period 0.73 0.52 0.04 0.04 0.00 0.03 0.01 3

2006 Puddling season 3.91 1.92 0.15 0.72 0.00 0.26 0.04 5

CI period 1.83 0.85 0.17 0.41 0.00 0.16 0.03 4

LWI period 0.53 0.40 0.05 0.05 0.00 0.06 0.02 5

2007 Puddling season 4.00 2.81 0.46 1.77 0.00 0.29 0.03 10

CI period 2.27 1.41 0.40 0.36 0.00 0.24 0.02 8

LWI period 0.72 0.53 0.05 0.04 0.00 0.05 0.01 7

f
 The number of sapmles.

Water quality (mg L
-1

)
d

a
 CI, cyclic irrigation; LWI, lake water irrigation.

b
 From the beginning of the irrigation period to early May.

c
 Cyclic irrigation period after the puddling season.

d
 TN; total nitrogen; DTN, dissolved total nitrogen; TP, total phosphorus.

e
 No data.

 
Table 3. Mean nutrient concentrations in irrigation water in 2004–2007. 
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The mean concentration of inorganic nitrogen (= NH4-N + NO3-N + NO2-N) in cyclic 
irrigation water (irrigation water during the cyclic irrigation period) in 2004–2007 was 0.47–
0.76 mg L-1, whereas the level was constantly about 0.1 mg L-1 in lake water (irrigation water 
during the lake water irrigation period). Organic nitrogen (= total nitrogen – inorganic 
nitrogen) in cyclic irrigation water was 1.04–1.57 mg L-1, of which 60–80% was particulate 
organic nitrogen. In contrast, organic nitrogen in lake water was 0.43–0.65 mg L-1, of which 
about 70% was dissolved organic nitrogen. 
The inputs and exports of nitrogen and phosphorus are shown in Table 4 and Table 5 
respectively. 
In each of the four years of this study, the inputs of nitrogen from irrigation water were 
greater during the cyclic irrigation period than during the lake water irrigation period 
(Table 4). Exports of nitrogen during the cyclic irrigation period were also larger than that 
during the lake water irrigation period. Percolation (including leakage) loss of nitrogen was 
estimated as from 7.2 kg ha-1 (in 2006) to 12.3 kg ha-1 (in 2005). However, it seems that the 
actual percolation loss of nitrogen was less than the estimated values, which might be 
because nutrients in the ponded water were mainly in an organic state and easily adsorbed 
by the paddy soil as water flowed through. 
 

Year Period
a

Rainfall Irrigation water Runoff water Percolation Net
c

2004 CI period (28 April – 20 June) 1.8 7.2 6.7 5.3 3.0

Mid-summer drainage season
b 0.7 0.0 0.1 0.0 -0.6

LWI period (1 July – 21 August) 1.4 2.8 0.9 2.4 -0.9

2005 CI period (25 April – 30 June) 1.6 10.0 2.3 10.1 -0.8

Mid-summer drainage season 0.9 0.0 0.1 0.0 -0.8

LWI period (6 July – 28 August) 1.0 3.4 0.8 2.2 -1.4

2006 CI period (24 April – 25 June) 1.4 7.1 2.2 4.9 -1.4

Mid-summer drainage season 0.8 0.0 0.3 0.0 -0.5

LWI period (8 July – 31 August) 3.9 3.5 2.0 2.3 -3.1

2007 CI period (25 April – 23 June) 2.2 12.5 5.0 5.1 -4.6

Mid-summer drainage season 1.4 0.0 3.4 0.0 2.0

LWI period (6 July – 28 August) 2.5 4.6 2.9 2.7 -1.5

Inputs (kg ha
-1

) Exports (kg ha
-1

)

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

c 
 Runoff water + Percolation －(Rainfall + Irrigation water).

 
Table 4. Nitrogen loads in the paddy fields during the irrigation period. 

Net exports of nitrogen from a paddy field, which is estimated as exports (= runoff water 

and percolation water) minus inputs (= rainfall and irrigation water), indicates whether the 
water management practices associated with that field may increase or decrease the 
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nitrogen load. A negative value of net exports means that the paddy field decreased 
nitrogen load during the calculation period. In this study, net exports of nitrogen were 
negative during all lake water irrigation periods. A similar situation was observed for a 
paddy field adjacent to Kasumigaura Lake (the second largest lake in Japan), a region that is 
aiming to remove nitrogen from river water (Zhou & Hosomi, 2008). Our data indicate that 
lake water irrigation may remove nitrogen from the outside water area (i.e., Lake Biwa), 
whereas cyclic irrigation using a high cyclic irrigation ratio probably does not because 
almost all the nitrogen in cyclic irrigation water was originally input as fertilizer. In this 
case, the major benefit of cyclic irrigation is considered to be the return of nitrogen to the 
paddy field, which possibly leads to a reduction in fertilizer usage. From other viewpoints, 
it may be said that cyclic irrigation system realizes the smallest nitrogen cycle, with the 
paddy field acting as a means of self-purification in the district. 
 

Year Period
a

Rainfall Irrigation water Runoff water Net
c

2004 CI period (28 April – 20 June) 0.04 0.50 1.18 0.64

Mid-summer drainage season
b 0.02 0.00 0.02 0.00

LWI period (1 July – 21 August) 0.03 0.20 0.10 -0.13

2005 CI period (25 April – 30 June) 0.04 0.70 0.46 -0.28

Mid-summer drainage season 0.02 0.00 0.01 -0.01

LWI period (6 July – 28 August) 0.02 0.30 0.10 -0.22

2006 CI period (24 April – 25 June) 0.05 0.46 0.24 -0.27

Mid-summer drainage season 0.01 0.00 0.04 0.03

LWI period (8 July – 31 August) 0.07 0.32 0.33 -0.06

2007 CI period (25 April – 23 June) 0.05 0.95 1.06 0.06

Mid-summer drainage season 0.03 0.00 0.62 0.59

LWI period (6 July –  28 August) 0.06 0.30 0.61 0.25

Inputs (kg ha
-1

) Exports (kg ha
-1

)

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

c 
 Runoff water －(Rainfall + Irrigation water).

 
Table 5. Phosphorus loads in the paddy fields during the irrigation period. 

Similar to inputs of nitrogen, inputs of phosphorus from irrigation water was larger during 
the cyclic irrigation period than during the lake water irrigation period (Table 5). The export 
of phosphorus, however, was relatively large, and the net exports were positive during the 
irrigation periods in both 2004 and 2007. The large exports of phosphorus during the cyclic 
irrigation periods in 2004 and 2007 were most likely due to rainfall and artificial drainage, 
respectively. The influence of weather conditions and water management appear to have a 
greater influence on exports of phosphorus than on exports of nitrogen. Therefore, water 
management practices at the paddy-field level (e.g., drying paddy fields without artificial 
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drainage) are important for reducing the export of phosphorus, even though practices at the 
district level (e.g., conduction of cyclic irrigation throughout the entire irrigation period) can 
further reduce net export, as described next. 

4.2 Characteristics of water balance and nutrient and suspended solids loads in the 
paddy-field district 
4.2.1 Water balance in the study district 

Daily variations in rainfall and drainage water from the district through the floodgates in 

2006 and 2007 are shown in Fig. 8. Drainage water was not released during the cyclic 

irrigation periods, except during rainfall events, whereas during the lake water irrigation 

periods drainage water of more than 10 mm d-1 was released even on sunny days. The 

amount of drainage water discharged from the district on sunny days during the lake water 

irrigation periods nearly equaled the amount of surplus irrigation water, suggesting that 

cyclic irrigation reduced the outflow of surplus irrigation water from the district. 
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Fig. 8. Daily variations in the drainage water from the study district and rainfall during the 
irrigation in (a) 2006 and in (b) 2007: CI, cyclic irrigation; LWI, lake water irrigation. 
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Table 6 shows the water balances in the district during the irrigation periods.  
 

Year Period
a

Rainfall Lake water intake Evapotranspiration Drainage water

2006 CI period (24 April – 25 June) 277 134 186 221

Mid-summer drainage season
b 102 0 29 71

LWI period (8 July – 31 August) 400 582 237 707

Total 779 716 452 999

2007 CI period (25 April – 23 June) 281 174 248 237

Mid-summer drainage season 175 0 31 94

LWI period (6 July – 28 August) 319 669 258 768

Total 775 843 537 1099

Inflow (mm) Outflow (mm)

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

 

Table 6. Water balance in the study district during the irrigation periods in 2006 and 2007.  

Although the amounts of pumped water during the cyclic irrigation periods (1111 mm in 

2006 and 962 mm in 2007) were larger than those during the lake water irrigation periods 

(626 mm in 2006 and 719 mm in 2007), the amounts of lake water intake during the cyclic 

irrigation periods were less than those during the lake water irrigation periods, because 

pumped water was mainly supplied by the reuse of drainage water during cyclic irrigation. 

The smaller amounts of drainage water discharged from the district during the cyclic 

irrigation periods were also due to the reuse of drainage water. The amounts of reused 

water (pumped water minus lake water intake) during the cyclic irrigation periods were 977 

mm in 2006 and 788 mm in 2007. 

4.2.2 Nutrient and suspended solids concentrations in the drainage water 

Temporal variations in nutrient and suspended solids concentrations during the irrigation 

periods in 2006 and in 2007 are shown in Fig. 9. The variation trends were similar in 2006 

and 2007. The nutrient concentrations were higher during the puddling season and on days 

on which rain fell. Nutrient concentrations on fine days during the irrigation period ranged 

from 1.0 to 2.0 mg L–1 for TN and from 0.10 to 0.20 mg L–1 for TP. The nutrient 

concentrations in the drainage water were higher during the cyclic irrigation period than 

during the lake water irrigation period. The SS concentration was also high during the 

puddling season (from late April to mid-May) and during heavy rainfall events; the SS 

concentration was more than 100 mg L–1 at its peak during the puddling season. The SS 

concentration on sunny days during the cyclic irrigation periods after the puddling season 

was about 20 mg L–1 and was higher than about 10 mg L–1 on sunny days during the lake 

water irrigation periods. The nutrient and SS concentrations in irrigation water during the 

cyclic irrigation periods nearly equaled the nutrient and SS concentrations in the drainage 

water because the cyclic irrigation ratios during the cyclic irrigation periods were high and 

the dilution volumes from the lake water were small. 
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Fig. 9. Temporal variations in total nitrogen (TN), total phosphorus (TP) and suspended 
solids (SS) concentration in the drainage water in (a) 2006 and in (b) 2007. 
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4.2.3 Nutrient and suspended solids loads in the study district 

The inputs of TN and TP in rainfall and lake water and exports of TN and TP in discharged 
drainage water during the irrigation periods are shown in Table 7 and Table 8. The total 
exports of nitrogen and phosphorus were about 20 kg ha–1 and 2.0 kg ha–1, respectively. Net 
exports of nitrogen and phosphorus from the paddy field (= runoff water – rainfall – lake 
water intake) were positive during all irrigation periods. Therefore, it is suggested that the 
study district acts as source of nutrients. The export of nutrients during the cyclic irrigation 
periods was less than that during the lake water irrigation period, in line with the small 
amounts of water discharged (Table 6). Some of the nutrient exports during the lake water 
irrigation periods were caused by the discharge of surplus irrigation water on fine days (Fig. 
8), although nutrient concentrations in the drainage water were lower than during cyclic 
irrigation. 
 

Year Period
a

Rainfall Lake water intake Drainage water Net
c

2006 CI period (24 April – 25 June) 1.4 1.1 4.4 1.9

Mid-summer drainage season
b 0.8 0.0 1.1 0.3

LWI period (8 July – 31 August) 3.9 4.5 12.9 4.5

2007 CI period (25 April – 23 June) 2.2 2.8 5.2 0.2

Mid-summer drainage season 1.4 0.0 2.3 0.9

LWI period (6 July – 28 August) 2.5 4.6 13.7 6.6

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

c 
 Drainage water －(Rainfall + Lake water intake).

b 
 From the end of CI period to the beginning of LWI period.

Inputs (kg ha
–1

) Exports (kg ha
–1

)

 

Table 7. Nitrogen loads in the study district. 

 

Year Period
a

Rainfall Lake water intake Drainage water Net
c

2006 CI period (24 April – 25 June) 0.00 0.10 0.40 0.30

Mid-summer drainage season
b 0.00 0.00 0.20 0.20

LWI period (8 July – 31 August) 0.10 0.30 1.40 1.00

2007 CI period (25 April – 23 June) 0.10 0.20 0.40 0.10

Mid-summer drainage season 0.00 0.00 0.20 0.20

LWI period (6 July – 28 August) 0.10 0.40 1.40 0.90

c 
 Drainage water －(Rainfall + Lake water intake).

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

Inputs (kg ha
–1

) Exports (kg ha
–1

)

 

Table 8. Phosphorus loads in the study district. 
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Table 9 shows the SS loads in the district during the irrigation periods. The exports of SS 

during the cyclic irrigation periods were less than those during the lake water irrigation 

periods, even though the cyclic irrigation periods included the puddling seasons, when SS 

concentration in runoff water from the paddy fields was very high. Clearly, the exports of SS 

from the district were reduced during the cyclic irrigation periods. Another effect of cyclic 

irrigation is to return SS to the paddy fields along with the reused water. The return of SS to 

the paddy field during cyclic irrigation, estimated from the product of the SS concentration 

and the amount of irrigation water, was 118 kg ha–1 in 2006 and 199 kg ha–1 in 2007. 

 
 
 

Year Period
a

Inputs (kg ha
–1

) Exports (kg ha
–1

)

Rainfall Lake water intake Drainage water Net
c

2006 CI period (24 April – 25 June) 0 7 90 83

Mid-summer drainage season
b 0 0 35 35

LWI period (8 July – 31 August) 0 26 152 126

2007 CI period (25 April – 23 June) 0 28 80 52

Mid-summer drainage season 0 0 39 39

LWI period (6 July – 28 August) 0 30 183 153

a 
 CI, cyclic irrigation; LWI, lake water irrigation.

b 
 From the end of CI period to the beginning of LWI period.

c 
 Drainage water －(Rainfall + Lake water intake).

 
 

Table 9. Suspended solids loads in the study district. 

4.3 Effects of cyclic irrigation on net exports of nutrients and suspended solids 

In this section, we discuss the effect of cyclic irrigation on reducing the net exports of 

nutrients and SS (Equation (2)) from the district on a sunny day during the normal irrigation 

period, which represents the irrigation period after the puddling season. 

We plotted the relationship between the cyclic irrigation ratio (CI) and the nutrient and SS 

concentration in the drainage water (Cout) during the normal irrigation periods (Fig. 10).  

Cout may be proportional to CI. The distribution of the fields under rotation crops (i.e., crops 

other than paddy rice) may also influence Cout. The fields were distributed around the 

northern and southern of the district in 2006 and around the center of the district in 2007. 

We hypothesize that more of the SS in rainfall runoff from the field under crop rotation 

settled out in the main drainage canal in 2007 than in 2006 because the distance from the 

rotation crop areas to the floodgates was shorter in 2006. Accordingly, the cyclic irrigation 

may have led to higher Cout on a sunny day in 2007 than in 2006. The mean TN 

concentrations (Cin for nitrogen) were 0.78 mg L-1 in 2006 and 0.68 mg L-1 in 2007. The mean 

TP concentrations (Cin for phosphorus) were 0.06 mg L-1 in 2006 and 2007. The mean SS 

concentrations (Cin for SS) were 4.5 mg L–1 in 2006 and 2007. 
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Fig. 10. Relationship between the cyclic irrigation ratio (CI) and (a) total nitrogen,  
(b) total phosphorus and (c) suspended solid concentration in the drainage water: 
CI, cyclic irrigation; LWI, lake water irrigation. 
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Whether the effect of cyclic irrigation represents net contamination or net purification 

depends on whether the actual concentration ratio (Cout/Cin) for a given CI and SW (the 

surplus irrigation water ratio) is above or below the curve (Fig. 5). The is calculated from 
Equation (5). Figure 11 shows the measured concentration ratios during the normal 
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Fig. 11. Measured concentration ratios of total nitrogen (TN), total phosphorus (TP) and 

suspended solids (SS) in (a) 2006 and in (b) 2007. The subscript for each  value 

(= [1 – CI] / [SW – CI]) represents the value of the surplus irrigation ratio (SW) used to calculate 

the curve. 
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irrigation periods, as well as five curves for various values of SW (=0.2, 0.4, 0.6, 0.8, and 

1.0). It is clearly that the effect of cyclic irrigation at high CI will be net purification even if 

SW is high, whereas at low CI the effect of cyclic irrigation may be net contamination when 

SW is greater than 0.6. Though intermediate values of the cyclic irrigation ratio were not 

used in the district, Fig. 11 indicates that conducting cyclic irrigation with a moderate value 

of CI will not necessarily cause net purification if increasing CI increases the concentration 

ratio. The possibility that increasing CI increases Cout is shown in Fig. 10. 

SW is another important parameter to consider when predicting the effect of cyclic 

irrigation. When the value of SW is high, the effect of cyclic irrigation is net contamination 

for almost all values of CI. In contrast, the effect of cyclic irrigation is net purification for 

almost all value of CI when SW has a low value. SW is strongly influenced by weather 

conditions, especially evapotranspirational demand and rainfall, and by water management 

practices in the paddy fields. In fact, daily SW ranged from 0.3 to 0.9 and was high in the 

spring and low in the summer in the study district. 

Based on these results, two approaches can be used to produce net purification through 

cyclic irrigation; increasing CI and decreasing SW. Both parameters interact to determine 

the net effect of cyclic irrigation. Fig. 11 suggests that improving both parameters 

simultaneously will reduce net exports of nutrients and SS more effectively than improving 

either parameter alone. 

Reduction of effluent loads in the drainage canals is also important, because the canals 

connect the fields with the downstream water bodies and function as a sink or source of 

nutrients and SS. However, there is little research on the dynamics of nutrients and SS in 

agricultural drainage canals: It is essential for the appropriate management of drainage 

canals to understand the deposition and resuspension of SS and the adsorption and 

dissolution of nutrients on sediment. 

5. Conclusions 

It is suggested that a cyclic irrigation system that enables the paddy-field district to use a 

high cyclic irrigation ratio may lead to more efficient use of rainfall for crop irrigation 

because there was a clear inverse relationship between amount of irrigation water applied 

and amount of rainfall each year. Drainage water discharged from the district may 

potentially equal to the surplus irrigation water on a sunny day during the normal irrigation 

period. Cyclic irrigation reduces the outflow of this potential drainage water due to reuse. 

The export of nutrients from the district during the cyclic irrigation periods was less than 

that during the lake water irrigation period. It is also confirmed that cyclic irrigation can 

effectively reduce the suspended solids load during the puddling season when the 

suspended solids concentration in drainage water is high. The influence of weather 

conditions and water management appear to have a greater influence on exports of 

phosphorus than on that of nitrogen.  

The effect of cyclic irrigation on the net nutrient and suspended solids exports can be 

represented by three ratios: the concentration ratio, which represents the ratio of the 

nutrient and suspended solids concentrations in drainage water to that in lake water; the 

cyclic irrigation ratio, which represents the ratio of the volume of reused water to that of 

pumped water in cyclic irrigation; and the surplus irrigation water ratio, which represents 
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the ratio of the volume of surplus irrigation water to that of pumped water. Both the latter 

parameters interact to determine the net effect of cyclic irrigation. Simultaneously increasing 

the cyclic irrigation ratio and decreasing the surplus irrigation water ratio is important to 

maximize purification effect. 
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