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Wood Subjected to Hygro-Thermal  
and/or Mechanical Loads 

Izet Horman, Dunja Martinović, Izet Bijelonja and Seid Hajdarević 
Mechanical Engineering Faculty, University of Sarajevo 

Bosnia and Herzegovina 

1. Introduction  

The FV method was originally developed for fluid flow, heat and mass transfer calculations 
(Patankar, 1980), and later generalized for stress analysis in isotropic linear and non-linear 
bodies (Demirdžić & Muzaferija, 1994; Demirdžić et al., 1997; Demirdžić & Martinović, 
1993). For the purpose of the stress analysis in the wood, the method is modified to take into 
account the anisotropic nature of the wood and influence of the moisture content and the 
temperature on the deformation and stresses (Horman, 1999). Also, performance of the 
wood is found to be very sensitive to the moisture content and the temperature. Thus, it is of 
a great importance to be able to predict behavior of such materials under different hygro-
thermo-mechanical loads. In order to demonstrate the methods capabilities, a transient 
analysis of fields of temperature, moisture, and stresses and displacement in the wood 
subjected to hygro-thermal or mechanical loads is performed. 

2. Theory 

2.1 Governing equations 

The behaviour of an arbitrary part of a solid, porous body at any instant of time can be 
described by the following energy, mass and momentum balance equations which, when 
written in a Cartesian tensor notation, read: 
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,         1,2,3i   (3) 

In these equation, t  is time, ix  is the Cartesian coordinate,   is the mass density, qc  and 

mc  are the specific heat and the specific moisture, T  is the temperature, M  is the 
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moisture potential and iu  is the displacement, qs  and ms are the heat and mass source, ib  
is the body force, and jq , jm  and ij are the heat and mass flux vector, and stress tensor 
components, respectively. 

2.2 Constitutive relations 

In order to close the system of Eqs. (1)-(3) the constitutive relations for heat and mass flux 
based on the theory of Luikov (1966) which takes into account both the Soret and Duffort 
effect, together with the constitutive relation for a solid body are used: 

 for Eqs. (1) and (2) heat and mass flux vector are 

  .
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l l l
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 for an elastic, porous, orthotropic material for Eqs. (3) is 
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2
k l
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     

  
              
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 (6) 

Here q
ijk  and m

ijk  are the heat and mass conduction coefficient tensor components, 
respectively,   is the ratio of the vapour diffusion coefficient to the coefficient of total 
diffusion of moisture, r  is the heat of the phase change,   is the temperature-gradient 
coefficient, ij  are the strain tensor components, ijklC  are the elstic constant tensor 
components, ij  are the coefficients of thermal expansion, ij  are the shrinkage 
(contraction) coefficients, uT T T   , hM M M    and uT  is the temperature at an 
udeformed state and hM  is the moisture potential at the fiber saturation point. For an 
orthotropic material and the coordinate axes aligned with the symmetry axes, Eqs. (4)-(6) 
can be written in the following matrix form: 
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 (9) 

where the terms in  brackets are „active“ only for hM M , while the nine non-zero 
orthotropic elastic constants ijA  are related to the Young's moduli iE , the Poisson's 
coefficients ij  and the shear moduli ijG  by the following relations: 
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Note that the pair of constitutive Equations (4) and (5) can be extended to take into account 
the effect of the pressure gradient on the heat and mass transfer. 

 for a thermo-elasto-plastic isotropic material for Eqs (3) and (1) are 

 
2

3
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ij kl kl
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
    

  
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 (11) 

and constitutive relation (4) 0jm  . 
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Here 

 
1

3
d
ij ij ij kk      (12) 

is the stress deviator and 

 

1/2
3

2
d d
ij ij     

 
 (13) 

is the effective stress (in the case of Von Mises yield criterion), G  and   are Lame's 

constants,   is the thermal expansion coeffifient, G  is the shear modulus, H is the plastic 

modulus, and ij  is the Kronecker delta. 

Lame's constants are related to the more commonly used elastic modulus E  and Poisson's 
coefficient   by the following relationships: 

   1 1 2

E


 


 
,   

 2 1

E
G





 (14) 

In the case of elastic conditions, the expression within the brackets  vanishes, and the 
constitutive realtion (11) reduces to the Duhamel-Neumann form of Hooke's law. 

2.3 Initial and boundary conditions 

In order to complete the mathematical model, initial and boundary conditions have to be 
specified. As initial conditions, the temperature, the moisture potential, and the displacement 
and velocity components have to be specified at all points of the solution domain. 

For a wood heat treatment process, boundary conditions can be either of Dirichlet or Von 
Neuman type, i.e. temperature and/or heat flux and displacements and/or forces (surface 
tractions) have to be specified at all boundaries. 

For a convective wood drying process, the following boundary conditions are normally 
appropriate: 

      1 0q
j q a m ajl

l

T
k n h T T rh M M

x





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   0m m
jl j m a jl j

l l

M T
k n h M M k n

x x

 


 
     (15) 

 ji j sin f    

where qh  and mh  are the (convective) heat and mass transfer coefficients, respectively, sif  

is the surface traction, and all quantities are calculated at the solution domain boundary, 

except for those with subscript a  which correspond to the ambient air. 
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3. Numerical method 

3.1 Generic transport equation 

Before the construction of a numerical algorithm is started, it is important to notice that 
the governing Eqs. (1)-(3) or Eqs. (1) and (3) when combined with constitutive Eqs. (7)-(9), 
or Eqs. (4) ( 0jm  ) and (11) can be written in the form of the following generic transport 
equation: 

   0j l
j l

B S
t x x


 

 
  

 
    

 
,       0     for   j l j l    (16) 

which can be integrated over an arbitrary solution domain V  bounded by the surface A , 
with unit outer normal vector jn  to yield: 

   0jj l
lV A V

B dV n dA S dV
t x


 

 
 

      ,     0  for  jl j l    (17) 

The generic variable   stands for T , M  or iu .  

The maeaning of the coefficients B , jj
  and S  for the wood drying process is given in 

Table 1. 
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Table 1. The meaning of , j jB 
   and S  in Eqs. (16) and (17) 
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3.2 Finite volume discretisation 

As all numerical methods, the present one consists of time, space and equations 

discretisation. The time interval of interest is subdivided into a number of subintervals 

t , not necessarily of the the same length. The space is discretised by a number of 

contiguous, non-overlapping hexahedral control volumes ( CV ), with the computational 

points at their centres (Fig.1). Then the integrals in generic Equation (17) are calculated by 

employing the midpint rule, the gradients are evaluated by assuming a linear variation of 

the dependent variable   between the computational points, and a fully implicit 

temporal scheme is employed. As a result a non-linear algebraic equation of the following 

form for each CV  is obtained: 

 P P K K
K

a a b             , , , , ,K W E S N B T  (18) 

where the coefficients Ka  and b  are defined as: 

    11
1

e
E

e
e

A
a

x



   and similar expressions for other cell faces, 

 

o

o
P

P

BV
a

t


 

 
  

 
,          

o
P K P

K

a a a    ,       
o o

P P Pb S V a    (19) 

where the subscripts P  and e  denote values at the centre of the CV  and at the centre of 

the east cell-face, respectively, eA  is the area of the east cell face, V  is the volume of the 

CV , ex  is the distance between points P  and E , and all quantities refer to the current 

time level, except for those with the superscript o  which refer to the previous, „old“ time 

level. 

3.3 Solution algorithm 

After assembling Eqs. (18) for all CVs and for all transport equations, five (four in 2D case) 

sets of N mutually coupled non-linear algebraic equations are obtained, where N  is the 

number of CVs. Those equations are solved by employing the following segregated iterative 

procedure. 

First, all dependent variables are given their initial values. Then the boundary conditions 

which correspond to the first time step are applied, and the sets of equations for each 

individual dependent variable ( T , M , iu ) are linearised and temporarily decoupled by 

assuming that coefficient Ka  and source terms b  are known (calculated by using depedent 

variable values from the previous iteration or the previous time step), resulting in a system 

of linear algbraic equations of the form: 

 A ψ b  (20) 

for each dependent variable, where A  is an N x N  matrix, vector ψ  contains values of 

depedent variable   at N  nodal points and b  is the source vector. 
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 Computational points 

o Cell-face centres 

Fig. 1. A typical control volume and the compass labelling scheme 

Systems Eqs. (20) are then solved sequentially in turn until a converged solution is obtained. 
The procedure is assumed converged when the following conditions are satisfied for all five 
(four in 2D case) sets of equations: 

 
1

N

P P K K
i K

a a b pR 


     (21) 

 1 ,         1,2,....,m m m
i i iq i N      

where p  and q  are typically of the order 310 , R  is a suitable normalisation factor and 
superscripts m  and 1m   denote values at two successive iterations. 

In the next time step the whole procedure is repeated, except that the initial values are 
replaced by the values from the previous time step. 

The present discretisation procedure ensures that the matrix A  has the folowing desirable 
properties: it is seven (five in 2D case) – diagonal, symmetric, positive definite and 
diagonally dominant, which makes Eq. (20) easily solvable by a number of iterative methods 
which retain the sparsity of the matrix A . Note that it does not make sense to solve Eq. (20) 
to a tight tolerance since its coefficients and sources are only approximate (based on the 
values from the previous iteration/time step). Normally, reduction of the absolute residuals 
for one order of magnitude suffices. 

The segregated solution strategy employed enables re-use of the same storage for the matrix 
A  and vestor b for all depedent variables , thus requiring only 8N  storage locations ( 6N  

in a 2D case). It is also important to mention that the fully implicit time differencing used, 
avoids stability-related time step restrictions. In principle, it allows any magnitude of the 
time step to be used, and in practice it is limited only by the required temporal accuracy. 

When constitutive Eqs. (11) for a thermo-elasto-plastic isotropic material are applied, an 
elastic deformation is assumed at the beginning of iterations of each (load increment) time 
step  (the expression within the brackets in Eqs. (11) is omitted).  In the next iteration 
step in CVs in which the effective stress has reached the yield stress an elasto-plastic 
deformation is assumed and the expression within the brackets in Eqs. (11) is activated. 
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After each time step (load increment) displacements and stresses are updated adding 
displacement and stress increments in the current time step to the total displacements and 
total stresses from the previous time step. This procedure is repeated until the prescribed 
number of time steps (or load increments) is completed.  

4. Application of the method 

The method described in the previous sections has been applied to a number of both linear 
and non linear solid body deformation problems, few of which will be presented. 

4.1 Numerical predictions of the wood drying process 

The wood drying process is an important step in the manufacturing of wood products. 
During that process a non-uniform distribution of moisture content and temperature 
causes deformation and stresses in the wood and may result in a deformed and/or 
cracked end-product.  

A wood drying process can be described as an unsteady process of heat, mass and 
momentum transfer in an orthotropic continuum with variable physical properties. The 
method solves a coupled set consisting of energy, moisture potential and momentum 
equations (1-3) with the constitutive relations (4-6). 

Beech-wood beams (600x50x50 mm3) are exposed to the uniform, unsteady flow of hot air in 
a laboratory dryer with an automatic control of the ambient air parameters (Horman, 1999). 

The temperature and/or moisture dependent physical properties of the wood, obtained by 
fitting available experimental data, are given in Table 2. The others are considered constant 
and are given in Table 3. The timber is known to be cylindrically orthotropic. However, the 
wood samples used in this study are taken from the outer region of a cylindrical timber log 
and the rectilinear isotropy of samples is a reasonable assumption. 

 PaE  C < 30 % C  30 % 

11E  (Pa)   
7 6 ,31,1 10 86,69 4,66 1,8 0,02 10Ce T

      82,05 1,8 0,02 10T  

22E  (Pa)   
6 5 ,752,5 10 813,22 9,3 1,8 0,02 10Ce T

      84,04 1,8 0,02 10T  

33E  (Pa)   
6 5 ,752,5 10 881,11 57,03 1,8 0,02 10Ce T

      824,79 1,8 0,02 10T  

 (kg/m3) 
559(100 )

100 0,47(30 )

C

C


 

 559 1
100

C  
 

 

qc (J/kg K)    2,0100467 TC   

qk11 (W/m K) )00181,0000709,0088,0(36,1 CT   

qk22 (W/m K) 
qk1115,1  

Table 2. Temperature and/or moisture dependent physical properties of wood ( McC m  
(%) is the moisture content) 

At the beginning of the drying process the wood samples had a uniform distribution of 
temperature, moisture, displacement and velocity: 

www.intechopen.com



 
Wood Subjected to Hygro-Thermal and/or Mechanical Loads 

 

335 

 21T  °C, 75M  M, 0i iu u   for 0t  .  

Property Value Property Value Property Value 

r  (J/kg) 2,3  106 
12 0,36 11 (1/K) 37,6  10-6 

mc  (kgm/kgM) 0,01 21 0,71 22 (1/K) 28,4  10-6 

mk11
 (kgm/msM) 4,5  10-9 13  0,043 33  (1/K) 4,16  10-6 

mk22
 (kgm/msM) 1,15 mk11  31  0,52 11  (1/M) 36,8  10-4 

12G  (Pa) 3  108 23 0.073 22 (1/M) 18,0  10-4 

  (M/K) 2 32 0,45 33 (1/M) 1,8  10-4 

Table 3. Constant physical properties of wood 

The coefficients of convective heat and mass transfer, based on the ambient air velocity of 
2av  m/s and moisture of 10,5aM  M, were taken as: 

 40qh  W/m2K,      61,8 10mh   kg/ m2 sM,  

while the ambient air temperature and the ratio of the vapour diffusion coefficient to the 
coefficient of total diffusion of moisture were assumed to vary during the drying process 
according to the following schedules: 

 

28

0,42 23.8

49
a

C

T t

C


 
 

          for   

0 10

10 60

60

t

t

t

 
  
 

  min     10,5 %aC    

 

0,1

0,5

1,0



 



          for   

0 60

60 3660

3660

t

t

t

 
  
 

min  

Zero surface tractions are assumed and boundary conditions Eqs. (15) are applied. 

For the purpose of the numerical calculations the problem is considered to be a 2D plane 
strain problem. Due to the double symmetry, only one quarter of the cross-section is taken 
as the solution domain. For all calculations presented in this study, a uniform numerical 
mesh consisting of 20 x 20 CV was employed, while the time step was varied from 10 to 100 
min (first seven time steps of 10 min, 31 time steps of 30 min, and finally 140 time steps of 
100 min). These results are found to be grid and time independent by performing a 
systematic grid and time-step refinement (difference between the results on the 20 x 20 CV 
mesh differ from ones obtained on a 40 x 40 CV mesh for less than 1%, while the results 
obtained with 3t  h practically coincide with results obtained with 1,5t  h). 

During the initial phase of drying ( 0 2t  h) the moisture content is above the fiber 
saturation point and the deformation is a consequence of the thermal stress only. Figure 2 
shows the calculated fields at 70t  min. One can see that an increase in temperature (Fig. 2a) 
causes the expansion of wood sample (Fig. 2b) and that the outer region is subjected to 
compressive and the inner region to extensive stresses (Fig. 2c, d). 
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a)     b) 

    
c)     d) 

 

Fig. 2. Temperature (a), displacement (b), and normal stresses (c) and (d) at 70t  min 

During the period of intensive drying ( 60 190t  h) the deformation and stresses due to 

hygroscopic loads dominate. Figure 3 shows that at 108t  h the moisture content has fallen 

below the fiber saturation point (Fig. 3a) and that this causes the shrinking of the wood 

sample (Fig. 3b). Around 100t  h the stresses reach their maximum values and are 

extensive in the outer region and compressive in the interior of the sample (Fig. 3c, d). By 

comparing the values of stresses at 70t  min and 108t  h, it can be seen that the thermal 

stresses are around 200 times smaller than the stresses caused by the drop in the moisture 

content below the fiber saturation point. 

If one plots the contours of the effective stress at 108t  h, when it is at its maximum (Fig. 

4), one can see that the effective stress is greater than the yield stress ( 10y  MPa at 10% 

moisture; 6y  MPa at 30%) only in a very narrow surface region (1mm deep), which 

indicates that the plastic defomation did not take place in the interior of the sample, and that 

the drying schedule is well designed. 

At the end of the drying process ( 246t  h), the moisture content in the sample varies 
from 11,1 to 14,4 % (Fig. 5a), while Fig. 5b and 5c illustrate the anisotropy of the wood 
sample, the contraction is 1,3 mm in the x and 0,6 mm in the y direction, or 6,5% and 
3,3% (axis x  and y ). 
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In order to confirm the validity of the FV predictions, the calculated temperature, 
moisture and displacements are compared with experimental data (Horman, 1995., 
Institut für Holzphysik und mechanische Technologie des Holzes, Hamburg) at reference 
points (Fig. 6). Figures 7 and 8 show temperature and moisture content histories at two 
reference points. It can be seen a good agreement between calculations and experiment: 
maximum difference for both temperature and moisture was 8%, and the average 
difference was less than 2% (Martinović et al., 2001). 

       
a)     b) 

     
c)     d) 

Fig. 3. Moisture (a), displacement (b), and normal stresses (c) and (d) at 108t  h 

 

Fig. 4. Effective stress at 108t  h 
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a)     b) 

 
c) 

Fig. 5. Moisture (a), displacement (b), and cross section shape of deformed wood sample 

(one quarter of the cross section) contours at the end of drying schedule ( 246t  h) 

 

Fig. 6. Solution domain and reference points  

Figure 9 shows how the displacements at two points on the surface of the sample vary 
during the drying process. One can see very little deformation during the initial phase 

( 1000t min) and a considerable shrinking of the sample afterwards, and that predictions 

closely follow experimental data (maximum difference 15%, average difference 5%). 
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Fig. 7. Temperature history at reference points A and B  
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Fig. 8. Moisture content history at reference points C and D  
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Fig. 9. u displacement at reference point E and v displacement at reference point F 
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4.2 Numerical predictions of the wood heat treatment process 

The prediction of temperature, stresses and displacements in logs during their thermal 

preparation in the veneers production (wood steaming) is an important step for designing 

satisfying heating regime of logs preparation, without damaging in wood. The equations 

governing heat and momentum balance (Eqs. (1) and (3)) with corresponding constitutive 

relations (Eq. 11) in thermo-elasto-plastic material are solved.  

For a mathematical description of a thermo-elasto-plastic deformation of the body the 

incremental plasticity theory is applied. The problem is considered to be a 2D plane strain 

problem (Horman et al., 2003). 

A beech log with a diameter of 0,42 m and length of 5,1 m was exposed to steam, which 

temperature history during the phases of heating up, through-heating and cooling down is in 

Fig. 10 depicted. For numerical calculations the heat transfer coefficient 7840qh  W/m2K, and 

thermal and mechanical properties of the wood given in Table 4 are used.  

 c k E G   σy 

kg/m3 J/kgK W/mK Pa Pa – 1/K Pa 

950 2950 0,54 4,3·108 1,6108 0,35 3,210-5 1,2106 

Table 4. Thermal and mechanical properties of wood ( %70c , CT o80 ) 

 

Fig. 10. Temperature history of the steam during the phases of heating up, through-heating 
and cooling down  

Temporal temperature, radial displacement, and stress distributions at three points of the 

log cross section which is used for veneer production ( 0,08 0,21m r m  ) are shown in Figs. 

11a-11d. In Figs. 12a and 12b effective stress distributions at three cross sections, and at four 

time values are depicted. 
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        a)                 b) 

 
  c)           d)  

Fig. 11. Temporal a) temperature, b) radial displacement, c) circular stress, d) radial stress at 
three points of the log cross section  1 0,1r  m, 0,18r  m i 0,206r  m ( const  ) which is 
used for veneer production 

 
 a)     b) 

Fig. 12. Eeffective stress distributions a) at three cross sections, and b) at four time values 
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4.3 Numerical analysis of stress and strain conditions of a three-dimensional furniture 
skeleton construction and its joints 

At the design stage of some pieces of furniture, their complex skeleton construction is 
subjected to stress and strain analysis. That allows them to satisfy all the functional 
demands (comfort), aesthetic demands, but also the strength and stiffness both by their 
shape and their dimensions. To achieve that, it is necessary to carry out a numerical 
simulation of the stress of a complex construction. 

The finite volume method is used in the calculation. Orthotropy of the wood material is 
accounted for by approximating it with an isotropic material whose elastic modulus E and 
Poisson's ratio ν are calculated by employing the least-square method. The functional Q is 
minimized by E and ν (Martinović et al., 2008) 

 

         

 

2
2 2 2 2 2

0

2
       

ort izo ort izo ort izo ort izo ort izo
xx xx yy yy zz zz xy xy xz xz

sphere

ort izo
yz yz x sphere

Q

d dA



         

  

         

  

 
 (22) 

and the obtained expressions are  

 
(1 )(1 2 )

3( ) 2( ) 4( )
15(1 )

xx yy zz xy xz yz kk ll mmE A A A A A A A A A
 


            

 (23) 

 
4( ) 2( )

2 2( ) 3( ) ( )

xx yy zz xy xz yz kk ll mm

xx yy zz xy xz yz kk ll mm

A A A A A A A A A

A A A A A A A A A


       


         
.       (24) 

The coefficients of the stiffness matrix ijA  are given in Eqs. (10). 

The physical model is angle 3D joint and skeleton construction chair (Fig. 13.) 

      
 a)            b) 

Fig. 13. a) The angle joint, b) the model of an examined chair 
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Mechanical properties of wood, spruce, for temperature 20°C and moisture content 9,8 %, 
are given in Table 5. Mass density is 0,44 g/cm3. 

Et Er El Grt Glr Glt tr rt rl lr tl lt 

GPa GPa GPa GPa GPa GPa - - - - - - 

0,392 0,686 15,916 0,0392 0,618 0,765 0,24 0,42 0,019 0,43 0,013 0,53 

Table 5. Mechanical properties of wood, spruce 

Elastic modulus and Poisson's ratio for the simulated isotropic material for 3D model (Eqs. 
(23) and (24)) are 3,98E   GPa, and 0,192  . The following assumptions and boundary 
conditions are used: 

 angle joint is simplified; the glue line is neglected in a space, 

 the force on the angle joint is exchanged with a uniform load. 

Stress xx  and effective stress eff  contours are presented in Fig. 14. 

 
a)     b) 

Fig. 14. a) Normal stress xx contours in the angle joint, b) effective stress eff  contours in 
the angle joint 

          
a)     b) 

Fig. 15. a) Tangential stress at the plane xy , at the distance of 4,6 mm from the symmetry 
plane b) tangential stress at the plane xy and resulting stress at the planes xz (the place of 
osculation of the planes of the tenon) 
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The highest value of the compressive stress xx  is in the symmetry plane, at undermost point 
of the tenon (~15,9 MPa), and the highest value of the tensile stress is at upper point of the 
tenon (~11,9 MPa). The place of the highest value of the effective stress is at the place of the 
highest compressive stress ( max 13,5eff  MPa). Tangential stress is presented on the plane 
xy  at the distance of 4,6 mm from the symmetry plane. Figure 15a shows that the places of 
maximal stress ( max ~5 MPa) are at 35x  mm. At the same plane xy  and the plane xz , in 
the place of osculation of the planes of the tenon, tangential stress and resulting stress (normal 

yy  and tangential stress yx ) are calculated, respectively and it are presented in Figure 15b. 
The maximal stress is ~ 10 MPa and it can be seen at the under part of the tenon. 

In the end, the stress – strain analysis is done for the symmetrical half of the loaded chair 
(Horman et al., 2010). Mass load of the horizontal underframe of the whole chair is 100 kg 
and of the vertical frame is 22 kg. Effective stress contours at the elements of the chair frame 
and at the joints of the highest stresses ( maxeff ~14 MPa) are presented in Figure 16. 

        
a)     b) 

Fig. 16. a) Distribution of effective stress at the skeleton chair,  b) the joints of the highest 
stresses 

Deformation of the chair is presented in Figure 17. The highest displacement is 13,3 mm. 

                    
a)     b) 

Fig. 17. a) Distribution of displacements at the skeleton chair, b) deformed skeleton chair 
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5. Conclusion 

The presented finite volume method for solution of the problems of energy, mass and 

momentum balance in conjugation with heat and mass transfer in an anisotropic, elasto-

plastic, porous body is successful applied. Predictions of temperature, moisture content, 

strain and stress field in the wood drying as well as wood heat treatment process show high 

accurate results for course numerical grids due the second order accurate fully conservative 

spatial differencing scheme. The fully implicit unconditionally stable temporal differencing 

scheme enable large time steps during heat treatment processes. The applied finite volume 

discretisation procedure results in the diagonal dominant system of algebraic equations 

which are suitable for an iterative solution algorithm. The segregated iterative solution 

algorithm comprising the linearization and temporary decoupling of the system of 

equations for each dependent variable shows efficiency as well robustness solving highly 

nonlinear system of equations. 
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