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1. Introduction 

Usher syndrome (USH) is an autosomal recessive genetic disease, characterized by both 
deafness and blindness. It was first described by Albrecht von Grafe, a German 
ophthalmologist, in 1858 (von Graefe, 1858) and then named after Charles Usher, a British 
ophthalmologist, who reported the inheritance of this disease on the basis of 69 cases in 1914 
(Usher, 1914). USH is clinically heterogeneous and is categorized into three types, according 
to the severity of its hearing and vestibular symptoms (Smith et al., 1994; Petit, 2001). Type I 
(USH1) patients have congenital severe to profound deafness as well as vestibular 
dysfunction; Patients with USH2 exhibit congenital moderate degree of hearing loss and 
normal vestibular function; and those with USH3 display progressive hearing impairment 
and occasional vestibular dysfunction. The vision problem of all three types is manifested as 
retinitis pigmentosa (Hartong et al., 2006; Sadeghi et al., 2006; Fishman et al., 2007; Sandberg 
et al., 2008; Malm et al., 2011), showing early night and peripheral vision loss and eventual 
central vision loss.  

USH is the most common genetic cause of combined blindness and deafness, occurring in 
about 1 in 23,000 people worldwide (Boughman et al., 1983; Keats and Corey, 1999; Hartong 
et al., 2006). It represents 50% of the blindness-deafness cases, 5% of all congenital deafness 
and 18% of retinitis pigmentosa (Millan et al., 2011). In Europe, USH1, USH2 and USH3 
generally account for 25-44%, 56-75%, and 2% of all USH cases, respectively (Grondahl, 
1987; Hope et al., 1997; Rosenberg et al., 1997; Spandau and Rohrschneider, 2002). Due to the 
regional founder effect, USH3 is much more common in Birmingham and Finland 
(Pakarinen et al., 1995; Hope et al., 1997). To date, there is no cure for this disease. USH 
patients mainly rely on early diagnosis and early education to adapt themselves to their 
dual sensory loss.  

2. USH genes 

USH is genetically diverse besides its clinical heterogeneity. Currently, eleven loci have been 
identified (Hereditary hearing loss homepage and Hmani-Aifa et al., 2009), and nine genes 
on these loci are known. Among these genes, five are involved in USH1, three in USH2 and 
one in USH3 (Reiners et al., 2006; Williams, 2008; Millan et al., 2011). Although the functions 
of some USH genes are relatively clear now in the inner ear (see section 6), extensive work is 
still necessary to elucidate the functions of USH genes in both the inner ear and the retina. 
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2.1 USH1 genes 

In the past 20 years, seven loci have been assigned to USH1. They are USH1B-H. USH1A was 
first localized on 14a32.1 from a study in nine USH1 families in the Poitou-Charentes region of 
France, and was recently withdrawn due to the discovery that most of these families in fact 
carry mutations on the USH1B locus (Gerber et al., 2006). The genes underlying USH1B, 
USH1C, USH1D, USH1F, and USH1G have been identified as MYO7A (myosin VIIa) (Weil et 
al., 1995), USH1C (harmonin) (Bitner-Glindzicz et al., 2000; Verpy et al., 2000), CDH23 
(cadherin 23) (Bolz et al., 2001; Bork et al., 2001), PCDH15 (protocadherin 15) (Ahmed et al., 
2001; Alagramam et al., 2001b), and USH1G (SANS) (Weil et al., 2003), respectively. Among 
them, MYO7A, USH1C, CDH23 and PCDH15 are also the causative genes for nonsyndromic 
deafness, DFNB2/DFNA11 (Liu et al., 1997; Weil et al., 1997), DFNB18 (Ahmed et al., 2002), 
DFNB12 (Bork et al., 2001), and DFNB23 (Ahmed et al., 2003), respectively. The USH1E and 
USH1H loci were mapped to chromosome 21q21 and 15q22-23 (Chaib et al., 1997; Ahmed et 
al., 2009 ). However, the genes at these loci have not yet been pinpointed.  

MYO7A is the most prevalent gene causing USH1 (Astuto et al., 2000). It encodes an 
unconventional actin-based motor protein with the conserved motor domain and five IQ 
motifs (Figure 1A). These domains are responsible for binding to actin, ATP, and myosin 
light chain. Therefore, MYO7A may move its cargos along the actin filaments using the 
energy generated from the hydrolysis of ATP. However, the motor domain of MYO7A 
shows a strong affinity to ADP and, thus, stays bound to actin filament for a long time 
(Heissler and Manstein, 2011). In this case, MYO7A may be involved in generating tensions 
between two proteins or cellular structures. The tail of MYO7A has a series of protein-
protein interaction domains, including a single ┙-helix (SAH), a coiled-coil domain (CC), 
two myosin tail homology 4 domains (MyTH4), two band 4.1, ezrin, radixin, moesin 
domains (FERM), and a src homology 3 domain (SH3) (Figure 1A). These domains are 
thought to be engaged in binding to cargos and/or anchoring to proteins. 

Harmonin (also known as AIE-75 or PDZ-73) is expressed in many different tissues 
(Kobayashi et al., 1999; Scanlan et al., 1999). Nine transcripts have so far been discovered 
(Verpy et al., 2000; Reiners et al., 2003). They are categorized into three groups, isoforms a, b 
and c (Figure 1B). All these isoforms have multiple PDZ (postsynaptic density 95; discs 
large; zonula occludens-1) domains and at least one CC domain. The CC domain is reported 
to participate in harmonin dimerization (Adato et al., 2005b), and the PDZ domain is well 
known to interact with PDZ-binding motifs (PBMs) in other proteins (Sheng and Sala, 2001). 
Isoform b specifically has a proline, serine and threonine-rich (PST) domain. This domain 
has been demonstrated to bind and bundle actin filaments (Boeda et al., 2002). In summary, 
harmonin may organize a multi-protein complex and attach this complex to actin filaments. 

CDH23 and PCDH15 both have multiple transcripts and are grouped into isoforms a, b and 
c for CDH23 (Lagziel et al., 2005; Lagziel et al., 2009) and isoforms CD1, CD2, CD3 and SI for 
PCDH 15 (Ahmed et al., 2006) (Figures 1C and 1D). As the distant members of the classical 
cadherin superfamily, the proteins of these two genes have various repeats of extracellular 
cadherin (EC) domains in their extracellular regions. Accordingly, it has been proposed and 
supported by many studies in hair cells (see below) that the two proteins function in cell 
adhesion through their homophilic and heterophilic interactions. The two proteins probably 
anchor to the intracellular structures through the PBMs in their cytoplasmic regions (Figures 
1C and 1D).  
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Fig. 1. Domain structures of USH1 proteins 

Mutations in SANS are rare in USH1 patients. Some mutations, such as c.1373 A>T and 
c.163_164 + 13del15, cause the clinical symptoms close to USH2 (Kalay et al., 2005; Bashir et 
al., 2011). The protein of this gene consists of several putative protein-protein interaction 
domains, including three ankyrin –like (ANK) repeats, a central (CEN) domain, a sterile 
alpha motif (SAM) and a PBM (Figure 1E). Therefore, like harmonin, SANS is believed to be 
a putative scaffold protein. 

2.2 USH2 genes 

Four USH2 loci were originally defined, USH2A-D. The genes responsible for USH2A, 
USH2C, and USH2D are USH2A (usherin) (Eudy et al., 1998), GPR98 (G Protein-coupled 
Receptor 98) (Weston et al., 2004), and WHRN (whirlin) (Ebermann et al., 2006), respectively. 
The gene for USH2B was once considered to be NBC3 (sodium bicarbonate cotransporter) 
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(Bok et al., 2003). However, further study of the consanguineous Tunisian family carrying 
the USH2B locus demonstrates that mixed mutations in the GPR98 and PDE6B genes are 
responsible for the disease manifestation in the family and, thus, the USH2B locus was 
withdrawn (Hmani-Aifa et al., 2009). Moreover, a novel USH2 locus has recently been 
localized on the chromosome 15q, though the underlying gene has not been identified so far 
(Ben Rebeh et al., 2008). ‘ 

 

Fig. 2. Domain structures of USH2 proteins 

USH2A is the most predominant causative gene in all USHs among different human ethnic 
populations (Eudy et al., 1998; Dreyer et al., 2000; Weston et al., 2000; Aller et al., 2004; van 
Wijk et al., 2004; Adato et al., 2005a; Hartong et al., 2006; Baux et al., 2007; Kaiserman et al., 
2007; Dreyer et al., 2008; Nakanishi et al., 2009; Yan et al., 2009; McGee et al., 2010). Its 
mutations lead to a wide spectrum of vision and hearing defects in patients. Some USH2A 
mutations, such as p.C759F and p.G4674R, are known to cause only nonsyndromic retinitis 
pigmentosa (Rivolta et al., 2002; Seyedahmadi et al., 2004; Kaiserman et al., 2007). USH2A 
has 72 exons and is expressed as isoforms A and B (Figure 2A). Isoform B, the major isoform 
in the retina (Liu et al., 2007), is an extremely large transmembrane protein with 5202 amino 
acids (aa) in humans (van Wijk et al., 2004). Its long extracellular region has repeated various 
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laminin (Lam) and fibronectin III (FN3) functional domains common in cell adhesion proteins 
and extracellular matrix proteins. Its cytoplasmic region has a PBM. Isoform A is an N-
terminal 1546-aa fragment of isoform B. USH2A is thought to be involved in cell adhesion. 

The GPR98 gene, also known as VLGR1 (Very Large G protein-coupled Receptor 1) and 
MASS1 (Monogenic Audiogenic Seizure Susceptibility 1), exists only in the vertebrate 
(Gibert et al., 2005) and is one of the largest genes, with 90 exons (McMillan et al., 2002). Its 
mRNA is present mostly in the brain and spinal cord during development (McMillan et al., 
2002; Weston et al., 2004), but it can also be found in many other tissues (Nikkila et al., 2000; 
Skradski et al., 2001; McMillan et al., 2002; Weston et al., 2004). GPR98 expresses multiple 
mRNA transcripts, including isoforms a, b and c in humans and isoforms b, d, e and Mass1 
in rodents (Figure 2B) (Nikkila et al., 2000; Skradski et al., 2001; McMillan et al., 2002; Yagi et 
al., 2005). Mutations in the longest isoform, isoform b, have been identified in patients with 
USH2C (Weston et al., 2004; Ebermann et al., 2009; Hilgert et al., 2009). Additionally, 
different mutations along the murine Gpr98 gene share common phenotypes in vision and 
hearing (Skradski et al., 2001; McMillan and White, 2004; Johnson et al., 2005; Yagi et al., 
2005; McGee et al., 2006; Michalski et al., 2007; Yagi et al., 2007). These findings suggest that 
isoform b is the major isoform in both the retina and the inner ear and is essential for vision 
and hearing. This isoform is 6306 aa long in humans. It has signature domains of family B of 
G protein-coupled receptors (GPCRs), i.e., a GPCR proteolytic site (GPS) and a 7-
transmembrane domain (7TM). Therefore, GPR98 may function in signal transduction. 
GPR98 also has a PBM at its C-terminus.  Along its long extracellular region, it has a laminin 
globular-like domain (LamG_L), an epilepsy associated repeat (EAR)/epitempin (EPTP) 
domain, and multiple tandem-arranged Calx┚ domains. While the function of EAR/EPTP is 
unknown, LamG_L is a cell adhesion domain, and the Calx┚ domain is able to bind to Ca2+ 
with low affinity in vitro (Nikkila et al., 2000; McMillan and White, 2011).  

Mutations of whirlin cause either USH2D or nonsyndromic deafness, DFNB31. Interestingly, 
mutations at the N-terminal half of the gene, such as p.P246HfxX13 and compound 
heterozygosity of p.Q103X and c.837+1G>A, are manifested as USH2D (Ebermann et al., 
2006; Audo et al., 2011), while mutations at the C-terminal half, such as p.R778X and 
c.2423delG, were found in patients with DFNB31 (Mburu et al., 2003; Tlili et al., 2005).  
Whirlin has multiple mRNA transcripts in the inner ear and the retina (Mburu et al., 2003; 
Belyantseva et al., 2005; van Wijk et al., 2006; Yang et al., 2010), which can be conceptually 
translated into three groups of proteins, the long, N-terminal, and C-terminal isoforms 
(Figure 2C). The long isoform contains three PDZ domains and a proline-rich region (PR). 
Thus, whirlin is a homolog of harmonin. At the protein level, whirlin mainly expresses the 
long isoform in the retina and the long and C-terminal isoforms in the inner ear (Yang et al., 
2010). Because both the PDZ domain and PR region are protein interaction modules, whirlin 
is believed to be implicated in the assembly of multi-protein complexes at specific 
subcellular locations, similar to harmonin.  

2.3 USH3 and USH related genes 

The only gene currently identified in USH3 is clarin-1 for the USH3A locus (Joensuu et al., 
2001; Adato et al., 2002; Fields et al., 2002). Like other USH genes, clarin-1 has multiple 
transcript variants due to different splicings and usages of transcription start sites 
(Vastinsalo et al., 2010). The primary transcript encodes a protein with four predicted 
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transmembrane domains and a C-terminal potential PBM (Figure 3). Clarin-1 shows a 
sequence homologous to stargazin, an auxiliary subunit of ion channels in the synapse 
(Osten and Stern-Bach, 2006; Tomita et al., 2007). Presently, several research groups are 
intensively focusing on understanding this gene (Aarnisalo et al., 2007; Geller et al., 2009; 
Geng et al., 2009; Tian et al., 2009; Zallocchi et al., 2009). However, the biological function 
and cellular expression of clarin-1 still remain elusive.  

 

Fig. 3. Domain structure of USH3A 

Recently, PDZD7 was shown to be a modifier gene for the retinal symptom in USH2A 

patients and, together with USH2A or GPR98, to contribute to a digenic USH form 

(Ebermann et al., 2010). Interestingly, this newly identified USH modifier and contributor 

gene is also a homolog of harmonin. It has several isoforms (Schneider et al., 2009; 

Ebermann et al., 2010). The long isoform has three PDZ domains and one PR region. The 

two short isoforms are the N-terminal fragments of the long isoform with only two PDZ 

domains. However, the short isoforms have not been confirmed at the protein level. Similar 

to both harmonin and whirlin, different mutations in PDZD7 are involved in either USH or 

nonsyndromic deafness. A homozygous reciprocal translocation, 46,XY,t(10;11)(q24;q23), 

was found to disrupt the PDZD7 gene at intron 10, which causes nonsyndromic congenital 

hearing impairment (Schneider et al., 2009). A heterozygous p.R56PfsX mutation of PDZD7 

was found to exacerbate retinal degeneration in an USH2A patient, compared to her sibling 

carrying the same USH2A mutation. Additionally, the heterozygous mutations of PDZD7, 

c.1750-2A>G and p.C732LfsX, are present in USH patients with a heterozygous USH2A 

mutation, p.R1505SfsX, and with a heterozygous GPR98 mutation, p.C732LfsX, respectively 

(Ebermann et al., 2010). 

3. Animal models  

Numerous spontaneous and transgenic USH animal models are now available. Table 1 lists 
the detailed information about the mouse models. The majority of these models show 
congenital hearing loss as expected. However, only a few of them, Ush1c knockin, Ush2a 
knockout, and whirlin knockout mice, manifest obvious widespread retinal degeneration. 
Ush1cdfcr mice on some specific genomic background and Myo7a4626SB and Cdh23V double 
mutant mice show only slight retinal degeneration (Johnson et al., 2003; Lillo et al., 2003; 
Williams et al., 2009). Among the rest of the USH mouse models, some Myo7a, Cdh23, 
Pcdh15, and Grp98 mutant strains show abnormal electroretinogram (ERG) responses but no 
retinal degeneration (Libby and Steel, 2001; Libby et al., 2003; Haywood-Watson et al., 2006; 
McGee et al., 2006), indicating that the function of photoreceptors is compromised. The 
reasons for the discrepancy between USH patient symptoms and USH mutant mouse 
phenotypes are largely unclear. Many factors could contribute to this, such as the gene 
isoform composition, mutation type and position in the genes, genomic background, 
redundant protein compensation, photoreceptor structure and physiology, influence of non-
genetic factors, sensitivity of diagnostic measures, etc. (El-Amraoui and Petit, 2005). 
Additionally, although retinitis pigmentosa in USH is characterized to have an onset before 
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or during puberty (Smith et al., 1994; Petit, 2001), more and more atypical USH patients 
have been found (Edwards et al., 1998; Sadeghi et al., 2006; Cohen et al., 2007; Fishman et al., 
2007; Sandberg et al., 2008; Malm et al, 2010.; Bashir et al., 2011). These patients have 
relatively late onset vision loss, which may explain the lack of retinal phenotype in most 
USH mutant mice, whose lifespan is only about two years. 

Zebrafish models for several USH genes have also been reported, including mariner (myo7a), 
ush1c, sputnik (cdh23), and orbiter (pcdh15) (Phillips et al., 2011; Nicolson et al., 1998; Ernest 
et al., 2000; Sollner et al., 2004; Seiler et al., 2005). Defects in hearing, balance, and vision are 
manifested during the early life in two ush1c mutants. Interestingly, zebrafish has two 
orthologs of PCDH15. Disruption of one leads to the auditory and vestibular dysfunction, 
while disturbance of the other results in defects in the photoreceptor structure and retinal 
function. Mariner exhibits similar phenotypes to Myo7a mice in hearing, balance and vision. 
Sputnik has problems with the auditory and vestibular system, but its vision phenotype has 
not been reported. Currently, studies on other USH genes in zebrafish using the morpholino 
knockdown technique are being actively pursued (Ebermann et al., 2010).  Moreover, a rat 
model with a point mutation leading to premature truncation of Myo7a was generated by N-
ethyl-N-nitrosourea mutagenesis and named Tornado (Smits et al., 2005). In this model, 
hearing but not vision defects have been characterized. Therefore, exploration of USH genes 
in more vertebrate organisms will provide additional ways to understand the biological 
functions of these genes, in particular, in the retina. 

Model name Mutations Phenotypes References 

USH1    

Myo7a    

Myo7ash1 p.R502P Circling, head tossing, hearing 
impairment 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a6J p.R241P Circling, head tossing, 
deafness 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a26SB p.F1762I Circling, head tossing, 
deafness 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a816SB p.L646_Q655del Circling, head tossing, 
deafness, reduced ERG 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a3336SB p.C2144X Circling, head tossing, 
deafness 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a4494SB p.A246fs?X5 Circling, head tossing, 
deafness 

(Mburu et al., 1997; 
Liu et al., 1999; Libby 
and Steel, 2001) 

Myo7a4626SB p.Q720X Circling, head tossing, 
deafness, reduced ERG 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 
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Model name Mutations Phenotypes References 

Myo7a7J p.A1363AfsX27 Circling, head tossing, 
deafness, reduced ERG 

(Mburu et al., 1997; 
Libby and Steel, 
2001; Yang et al., 
2011) 

Myo7aHdb p.I178F Circling, head tossing, low-
frequency hearing impairment

(Rhodes et al., 2004) 

Myo7a8J Not known Circling, head tossing, 
deafness, reduced ERG 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Myo7a9J Not known Circling?, head tossing?, 
deafness?, reduced ERG 

(Mburu et al., 1997; 
Libby and Steel, 
2001) 

Harmonin    

Ush1c knockout Replacement of 
exons 1-4 with ┚-
gal/neo cassette 

Circling, head tossing, 
deafness 

(Tian et al., 2010) 

Ush1cdfcr A deletion 
involving exons 12-
15, A-D 

Circling, head tossing, 
deafness, slight retinal 
degeneration at 9 months of 
age 

(Johnson et al., 2003) 

Ush1cdfcr-2J One bp deletion in 
exon C 

Circling, head tossing, 
deafness 

(Johnson et al., 2003) 

Ush1ctm1.1Ugds Exon 1 deletion Circling, head tossing, 
deafness 

(Lefevre et al., 2008) 

Ush1c knockin c.216G>A Circling, head tossing, 
deafness, retinal degeneration 

(Lentz et al., 2007; 
Lentz et al., 2010) 

Ush1c-PDZ2AAA Replacement of 
GLG (221-223aa) in 
PDZ2 with AAA 

Hair bundle defect (Grillet et al., 2009) 

Cdh23    

jera p.V2360E deafness (Manji et al., 2011) 
erlong p.S70P Circling, head tossing, 

deafness 
(Han et al., 2010) 

salsa p.E737V Circling, head tossing, 
deafness 

(Schwander et al., 
2009) 

Cdh23V p.N279EfsX39 Circling, head tossing, 
deafness, reduced ERG 
responses 

(Wilson et al., 2001; 
Libby et al., 2003) 

Cdh23V-J p.E1169NfsX7 Circling, head tossing, 
deafness 

(Wilson et al., 2001) 

Cdh23V-2J c.4104 + 1G>A Circling, head tossing, 
deafness, faster ERG responses

(Di Palma et al., 
2001b; Libby et al., 
2003) 
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Model name Mutations Phenotypes References 

Cdh23V-3J p.W1764X Circling, head tossing, 
deafness 

(Di Palma et al., 
2001a) 

Cdh23V4J p.N2718del3 Circling, head tossing, 
deafness 

(Di Palma et al., 
2001a) 

Cdh23V5J p.R2935X Circling, head tossing, 
deafness 

(Di Palma et al., 
2001a) 

Cdh23V-6J p.E302X Circling, head tossing, 
deafness 

(Di Palma et al., 
2001b) 

Cdh23V-7J p.Y1197MfsX47 Circling, head tossing, 
deafness 

(Di Palma et al., 
2001a) 

Cdh23V-ngt p.G49VfsX3 Circling, head tossing, 
deafness 

(Wada et al., 2001) 

Cdh23V-Alb c.1635C>Tdel119 Circling, head tossing, 
deafness, normal ERG 
responses 

(Di Palma et al., 
2001b; Libby et al., 
2003) 

Cdh23Vbus c.9633 + 1G>A Circling, head tossing, 
deafness 

(Yonezawa et al., 
2006) 

Cdh23Ahl c.753G>A Susceptibility to age-related 
hearing loss 

(Noben-Trauth et al., 
2003) 

Pcdh15    

Pcdh15av-J p.A645_K922del Circling, head tossing, 
deafness, normal retinal 
function 

(Alagramam et al., 
2001a; Ball et al., 
2003) 

Pcdh15av-2J p.D31_N57del  Circling, head tossing, 
deafness, normal retinal 
function 

(Alagramam et al., 
2001a; Ball et al., 
2003) 

Pcdh15av-3J p.E1373RfsX36 Circling, head tossing, 
deafness, normal retinal 
function 

(Alagramam et al., 
2001a; Ball et al., 
2003) 

Pcdh15av-5J IVS14-2A>G Circling, head tossing, 
deafness, reduced ERG 
responses 

(Washington et al., 
2005; Haywood-
Watson et al., 2006) 

Pcdh15av-6J p.G962_K1008del Circling, head tossing, 
deafness 

(Alagramam et al., 
2011) 

Pcdh15av-Jfb p.D701GfsX17 Circling, head tossing, 
deafness, reduced ERG 
responses 

(Hampton et al., 
2003; Haywood-
Watson et al., 2006) 

Pcdh15av-

TgN2742Rpw 

A large insertion Circling, head tossing, 
deafness, normal retinal 
function 

(Alagramam et al., 
2001a; Ball et al., 
2003) 

Sans    

Ush1gjs p.E228RfsX8 Circling, head tossing, 
deafness 

(Kikkawa et al., 2003) 
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Model name Mutations Phenotypes References 

Ush1gjs-2J p.L81GfsX103 Circling, head tossing, 
deafness 

* 

Ush1gF1 Exon 2 flanked 
with FRT sites 

Hearing defects after deletion 
of exon 2 

(Caberlotto et al., 
2011) 

USH2    

Ush2a    

Ush2a knockout replacement of 
exon 5 with a 
neomycinr cassette 

hearing impairment, retinal 
degeneration  

(Liu et al., 2007) 

Gpr98    

Gpr98 knockout replacement of 
exons 2-4 with a 
neomycinr cassette 

audiogenic seizure 
susceptibility, hearing 
impairment 

(Yagi et al., 2005; 
Michalski et al., 2007) 

Gpr98-EYFP 
knockin 

replacement of 
exons 2-4 with a 
EYFP-neomycinr 
cassette 

defects in hair cell stereocilia  (Yagi et al., 2007) 

Frings & 
BUB/BnJ 

a G deletion at 6864 
bp (NM_054053) 
causing a p.V2250X 
mutation 

audiogenic seizure 
susceptibility, hearing 
impairment  

(Skradski et al., 2001; 
Johnson et al., 2005) 

Gpr98/del7TM replacement of 
exon 82 with a HA-
neomycinr cassette 

audiogenic seizure 
susceptibility, hearing 
impairment, mildly abnormal 
ERG responses 

(McMillan and 
White, 2004; McGee 
et al., 2006) 

Whrn    

Whrn knockout partial replacement 
of exon 1 with a 
neomycinr cassette 

hearing impairment, retinal 
degeneration  

(Yang et al., 2010) 

whirler a 592-bp deletion 
causing a 
p.H433fsX58 
mutation 

hearing impairment, no retinal 
degeneration 

(Lane, 1963; Holme et 
al., 2002; Mburu et 
al., 2003; Yang et al., 
2010) 

USH3    

Ush3a    

Ush3a knockout Disruption and 
deletion of 
promoter and exon 
1  

Circling, head tossing, 
deafness 

(Geller et al., 2009) 

MYO7A: NP_032689, CDH23: NP_075859, PCDH15: NP_075604, SANS: NP_789817 
*: our unpublished data.  

Table 1. USH mutant mouse models 
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4. Cellular localization of USH proteins  

Defects in USH proteins result in Usher syndrome, nonsyndromic deafness, or retinitis 

pigmentosa, indicating that these proteins are essential in the inner ear and the retina. 

Therefore, extensive efforts have been put to investigate the cellular location of these 

proteins in these two tissues. The cellular localization of USH proteins in other tissues is 

relatively unclear, although some USH proteins are known to be present in the kidney, 

colon, brain, lung, olfactory neuron, ovary, oviduct, testes and intestine (el-Amraoui et al., 

1996; Hasson et al., 1997; Wolfrum et al., 1998; Kobayashi et al., 1999; Scanlan et al., 1999; 

Bhattacharya et al., 2002; Pearsall et al., 2002).  

 

Fig. 4. Schematic diagrams of a rod photoreceptor and a hair cell 

4.1 USH proteins in the inner ear 

The inner ear is composed of the cochlea and vestibular system for hearing and balance, 

respectively. In the vestibular system, hair cells exist in the maculae of the saccule and 

utricle and the cristae ampullares of the semicircular canals. In the cochlea, one row of inner 

hair cells and three rows of outer hair cells exist in the organ of Corti. The inner hair cells are 

responsible for mechanoelectric transduction, whereas the electromotile outer hair cells also 

perform an electromechanical transduction, thereby amplifying the sound-evoked 

vibrations of the entire sensory epithelium (Leibovici et al., 2008). All types of hair cells have 

stereocilia on their apical surfaces, which are modified microvilli filled with bundles of actin 

filaments. The stereocilia are well-organized into rows of different lengths and form a 

staircase-like hair bundle (Figure 4). Along with the hair bundle, there exists a real cilium, 

called kinocilium, which is filled with microtubules. Various links have been discovered 

along the entire length of the stereocilia and the kinocilium during development and in 
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adulthood (Goodyear and Richardson, 1999; Goodyear and Richardson, 2003; Goodyear et 

al., 2005).  

The distribution of USH proteins in hair cells vary dramatically from the emergence of 
stereocilia to their maturation. All USH1 proteins are present either at the tip, the ankle 
links, the transient lateral links, or the kinociliary links of the stereocilia during the early 
stage of development. They are then restricted to the tip link and the accessory structures of 
the tip link, the upper (UTLD) and lower (LTLD) tip link densities, in mature hair cells 
(Figure 4) (Kussel-Andermann et al., 2000; Senften et al., 2006; Lefevre et al., 2008; Grillet et 
al., 2009; Bahloul et al., 2010; Caberlotto et al., 2011; Grati and Kachar, 2011). USH2 proteins 
are localized at the ankle links of the stereocilia (McGee et al., 2006; van Wijk et al., 2006; 
Michalski et al., 2007; Yang et al., 2010), which is a transient structure existing only during 
development (Goodyear et al., 2005). Whirlin is also present at the tip of stereocilia in the 
vestibular and cochlear hair cells all the time (Belyantseva et al., 2005; Delprat et al., 2005; 
Kikkawa et al., 2005). Clarin-1 was found at the stereocilia on postnatal day 0 (Zallocchi et 
al., 2009). Besides their location at the stereocilia, some USH proteins were found at the 
synaptic region of the outer and inner hair cells (Reiners et al., 2005b; van Wijk et al., 2006; 
Zallocchi et al., 2009), the cell body of the spinal ganglia (Alagramam et al., 2001b; Adato et 
al., 2002; van Wijk et al., 2006), the supporting cells (Alagramam et al., 2001b; Adato et al., 
2005a; Adato et al., 2005b), various nervous fibers (van Wijk et al., 2006), and Reissner’s 
membrane (Wilson et al., 2001; Lagziel et al., 2005). However, these distributions of USH 
proteins need to be further verified, because the specificity of antibodies used in the studies 
were not confirmed in their corresponding mutant mice. 

4.2 USH proteins in the retina 

In the retina, USH proteins are mainly localized in the photoreceptors (Kremer et al., 2006; 
Reiners et al., 2006; van Wijk et al., 2006; Liu et al., 2007; Maerker et al., 2008; Yang et al., 
2010). The photoreceptor is a highly polarized sensory neuron converting light signals to 
electrical impulses. It consists of the outer segment, connecting cilium, inner segment, cell 
body, and synaptic terminus (Figure 4). It contacts Muller cells at the adherens junction (the 
outer limiting membrane in the retina). Its outer segment is immediately next to the retinal 
pigment epithelium (RPE) cells. 

Compared with the studies in the inner ear, the cellular location of USH proteins is less well 
defined in the retina. All the USH proteins were once localized in the synaptic ends of 
photoreceptors (Reiners et al., 2005a; Reiners et al., 2005b; Maerker et al., 2008). However, 
these results are not conclusive (Williams, 2008; Saihan et al., 2009). They are not supported 
by the phenotypic analyses in USH mutant mice and the symptom manifestation in USH 
patients. For instance, ultrastructural abnormalities were not found at the synaptic terminus 
of photoreceptors in USH mice by electron microscopy (Self et al., 1998; Williams et al., 2009; 
Yang et al., 2010). No defective ERG waveforms typically resulting from abnormal 
photoreceptor synaptic transmission have been detected in USH mutant mice (Libby and 
Steel, 2001; Ball et al., 2003; Libby et al., 2003; Haywood-Watson et al., 2006; McGee et al., 
2006; Liu et al., 2007; Yang et al., 2010) or in USH patients.  

In addition to the synaptic distribution, MYO7A and SANS were shown to be present 
around the connecting cilium, harmonin at the outer segment, CDH23 in the inner segment, 
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and PCDH15 at the base of the outer segment by one research group (Ahmed et al., 2003; 
Reiners et al., 2005a; Maerker et al., 2008). However, other research groups did not find 
harmonin in the outer segment (Williams et al., 2009), and MYO7A was demonstrated to be 
predominantly expressed in the RPE cells (Hasson et al., 1995; el-Amraoui et al., 1996; Lopes 
et al., 2011). USH2 proteins were initially localized to the inner segment, adherens junction, 
connecting cilium, basal bodies, and synaptic terminus in photoreceptors (Figure 4) (Kremer 
et al., 2006; Reiners et al., 2006; van Wijk et al., 2006; Maerker et al., 2008; Lagziel et al., 2009). 
With the antibodies whose specificities have been confirmed in their respective mutant 
mice, the three USH2 proteins were recently localized to the periciliary membrane complex 
(PMC) around the connecting cilium (Figure 4) (Liu et al., 2007; Yang et al., 2010; Yang et al., 
2011; Zou et al., 2011). Finally, the distribution of clarin-1 in the retina is controversial. One 
report shows that it is present around the connecting cilium in photoreceptors (Zallocchi et 
al., 2009), while the other indicates that clarin-1 is restricted to the Muller cells but not 
photoreceptors (Geller et al., 2009).  

The calycal processes in photoreceptors are thought as an analogous structure to the 
stereocilia in hair cells (Goodyear and Richardson, 1999). They are well developed in 
humans, frogs and other species. In mice, only cone photoreceptors have obvious calycal 
processes (Cohen, 1965; Fetter and Corless, 1987; Rana and Taraszka, 1991). GPR98 and 
CDH23 are localized at the calycal processes in mouse cone photoreceptors, while whirlin is 
not evident at this structure in frog photoreceptors (Goodyear and Richardson, 1999; Yang et 
al., 2010). 

5. The USH protein complexes  

The indistinguishable symptoms within the same USH clinical type and the similar 
symptoms across different USH clinical types indicate that various USH proteins probably 
participate in the same cellular pathway in a broad sense. Among the USH proteins, 
harmonin, whirlin and SANS possess multiple protein-protein interaction domains and are 
proposed to be scaffold proteins in multi-protein complexes. Biochemical assays have 
indeed revealed the existence of their self-interactions and interactions with most of other 
USH proteins in vitro (Table 2). Interestingly, the in vitro interactions among different USH1 
and/or USH2 proteins exist extensively (Table 2). One USH protein is generally able to 
interact with at least three other USH proteins. In most cases, different regions of the same 
protein are involved in its binding to different USH proteins (Table 2). Although these 
interactions have not been individually confirmed in vivo, harmonin, MYO7A, and CDH23 
were recently reported to form a ternary complex in hair cells (Bahloul et al., 2010). Based on 
these findings, it has been hypothesized that USH proteins form an interacting network, an 
interactome, in both hair cells and photoreceptors (Richardson et al.; Kremer et al., 2006; 
Reiners et al., 2006; Saihan et al., 2009; Millan et al., 2011).   

The above hypothesis is supported by the facts that ablation of one USH protein in mice 
causes mislocation and/or disappearance of at least one other USH protein in hair cells 
(Table 3). This phenomenon occurs across USH1 and USH2 proteins. Normal distribution of 
the three USH2 proteins depends on MYO7A and the distribution of some CDH23 isoform 
at the tip of the stereocilia relies on GPR98 (Table 3). However, the USH1 and USH2 proteins 
are present at the different interstereociliary links in hair cells during development. 
Additionally, different USH proteins are localized at two distinct subcellular locations in 
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photoreceptors, the PMC and the synapse. Due to these different cellular locations of USH 
proteins, it is reasonable to propose that more than one USH protein complex exist and they 
play different but highly related roles in a broad cellular process (Williams, 2008; Yang et al., 
2011).  

Proteins/domains Interacting proteins/domains References 

MYO7A   

MyTH4-FERM Harmonin/PDZ1 (Boeda et al., 2002) 

Tail CDH23/not determined (Bahloul et al., 2010) 

SH2 PCDH15 (Senften et al., 2006) 

MyTH4-FERM SANS/cen (Wu et al., 2011; Adato et al., 2005b) 

MyTH4-FERM USH2A/cytoplasmic region (Michalski et al., 2007) 

MyTH4-FERM GPR98/cytoplasmic region (Michalski et al., 2007) 

Not determined Whirlin/not determined (Delprat et al., 2005) 

Harmonin   

PDZ1 MYO7A/MyTH4-FERM (Boeda et al., 2002) 

N-terminus, 
PDZ1/2 

CDH23/PBMs 
(Boeda et al., 2002; Siemens et al., 
2002; Grillet et al., 2009; Pan et al., 
2009; Bahloul et al., 2010) 

PDZ2 PCDH15/CD1 PBM 
(Adato et al., 2005b; Reiners et al., 
2005b; Senften et al., 2006) 

PDZ1/3 SANS/SAM, PBM 
(Adato et al., 2005b; Yan et al., 
2010) 

PDZ1 USH2A/PBM (Reiners et al., 2005b) 

PDZ1 GPR98/PBM  (Reiners et al., 2005b) 

PDZ1/2, CC2 Harmonin/PBM, CC2 
(Siemens et al., 2002; Adato et al., 
2005b) 

CDH23   

not determined MYO7A/tail (Bahloul et al., 2010) 

2 PBMs 
Harmonin/N-terminus, PDZ1, 
PDZ2 

(Boeda et al., 2002; Siemens et al., 
2002; Grillet et al., 2009; Pan et al., 
2009; Bahloul et al., 2010) 

EC1-3 PCDH15/EC1 (Kazmierczak et al., 2007) 

Cytoplasmic 
region 

SANS/not determined (Caberlotto et al., 2011) 

ECs CDH23/ECs 
(Siemens et al., 2004; Kazmierczak 
et al., 2007) 

PCDH15   

Cytoplasmic 
region 

MYO7A/SH2 (Senften et al., 2006) 

CD1 PBM Harmonin/PDZ2 
(Adato et al., 2005b; Reiners et al., 
2005b; Senften et al., 2006) 

EC1 CDH23/EC1-3 (Kazmierczak et al., 2007) 

CD2/CD3 SANS/not determined (Caberlotto et al., 2011) 

ECs PCDH15/ECs (Kazmierczak et al., 2007) 
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Proteins/domains Interacting proteins/domains References 

SANS   

cen MYO7A/MyTH4-FERM (Wu et al, 2011.; Adato et al., 2005b) 

SAM, PBM Harmonin/PDZ1 (Weil et al., 2003; Yan et al., 2010) 

Not determined CDH23/cytoplasmic region (Caberlotto et al., 2011) 

Not determined PCDH15/CD2, CD3 (Caberlotto et al., 2011) 

PBM Whirlin/PDZ1-PDZ2 (Maerker et al., 2008) 

cen SANS/cen (Adato et al., 2005b) 

USH2A   

Cytoplasmic 
region 

MYO7A/MyTH4-FERM (Michalski et al., 2007) 

PBM Harmonin/PDZ1 (Reiners et al., 2005b) 

PBM Whirlin/PDZ1-PDZ2 
(Adato et al., 2005a; van Wijk et al., 
2006; Yang et al., 2010) 

GPR98   

Cytoplasmic 
region 

MYO7A/MyTH4-FERM (Michalski et al., 2007) 

PBM Harmonin/PDZ1 (Reiners et al., 2005b) 

PBM Whirlin/PDZ1-PDZ2 
(Adato et al., 2005a; van Wijk et al., 
2006; Yang et al., 2010) 

Whirlin   

Not determined MYO7A/not determined (Delprat et al., 2005) 

PDZ1-PDZ2 SANS/PBM (Maerker et al., 2008) 

PDZ1-PDZ2 USH2A/PBM 
(Adato et al., 2005a; van Wijk et al., 
2006; Yang et al., 2010) 

PDZ1-PDZ2 GPR98/PBM 
(Adato et al., 2005a; van Wijk et al., 
2006; Yang et al., 2010) 

PDZ1-PDZ2, PR-
PDZ3 

Whirlin/PDZ1-PDZ2, PR-PDZ3 
(Delprat et al., 2005; Yang et al., 
2010) 

Table 2. Interactions among USH proteins 

In hair cells, the normal cellular localization of harmonin requires the presence of all other 

USH1 proteins, and loss of harmonin seems not to affect the localization of other USH1 

proteins (Table 3), indicating that harmonin is dispensable for locating these USH1 proteins to 

their normal position in cells. In contrast, CDH23 is relatively independent on other USH1 

proteins, and its loss results in mislocalization of the two putative scaffold proteins, harmonin 

and SANS (Table 3). Therefore, CDH23 may play a crucial role in anchoring/tethering USH1 

proteins. Harmonin and SANS may help hold the USH1 proteins in the complex. 

Besides the known USH proteins, many other putative components in the USH complexes 

has been identified. These components are able to interact with at least one of the USH 

proteins as shown by biochemical assays. For the currently known USH2-interacting 

proteins, please see the review (Yang et al., 2011). However, additional experiments are 

necessary to verify the existence of these putative components in the USH complexes in vivo 

and reveal their relationship with USH. 
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 MYO7A USH1C CDH23 PCDH15 SANS USH2A 

Myo7a-/- 

 + 
(Boeda et al., 
2002; Lefevre 
et al., 2008) 

- 
(Boeda et al., 
2002; Senften 
et al., 2006) 

+ 
(Senften et 
al., 2006) 

- 
(Caberlotto 
et al., 2011) 

+ 
(Michalski et
al., 2007)

Ush1c-/- 

+/- 
(Lefevre et 
al., 2008; 
Yan et al., 
2011) 

 - 
(Lefevre et 
al., 2008) 

+/- 
(Lefevre et 
al., 2008; 
Yan et al., 
2011) 

+/- 
(Caberlotto 
et al., 2011; 
Yan et al., 
2011) 

  

Cdh23-/- 

+ 
(Bahloul et 
al., 2010) 

+ 
(Lefevre et al., 
2008; Bahloul 
et al., 2010) 

 - 
(Senften et 
al., 2006) 

+ 
(Caberlotto 
et al., 2011) 

  

Pcdh15-/- 

+ 
(Senften et 
al., 2006) 

+ 
(Lefevre et al., 
2008) 

- 
(Senften et 
al., 2006) 

 + 
(Caberlotto 
et al., 2011) 

  

Sans-/- 

 + 
(Lefevre et al., 
2008) 

    

Ush2a-/- 

      

Gpr98-/- 

  +  
(Michalski et 
al., 2007) 

  + 
(Michalski et
al., 2007)

Whrn-/- 

     + 
(Michalski et
al., 2007; 
Yang et al., 
2010) 
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6. Functions of the USH complexes  

The severe and early-onset hearing phenotypes in various USH1 and USH2 mouse models 
make it relatively easier to decipher the functions of USH complexes in the inner ear than in 
the retina. The following will focus on the three main cellular processes generally believed 
to involve the USH complexes. Disruption of these USH functions is thought to be the 
molecular mechanisms underlying USH. 

6.1 Hair bundle cohesion 

During development, at the apex of hair cells, microvilli grow into stereocilia by recruiting 

more actin filaments. These stereocilia are bundled with transient lateral links and are 

connected with the kinocilium through kinociliary links. Following the establishment of the 

planar cell polarity, the kinocilium moves from the center to the periphery of the cell, and 

the stereocilia elongate differentially. The staircase-shape hair bundle is eventually formed. 

At the same time, the transient lateral links are gradually substituted by two distinct sets of 

interstereociliary links. They are the horizontal top connectors and the ankle links, close to 

the tip and base of the hair bundle, respectively (Figure 4). The tip links emerge, which are 

fibrous connections between the tip of medium and low stereocilia and the side of the 

neighboring taller stereocilia (Figure 4). Finally, the stereocilia grow both in length and in 

width and reach their mature size. In rodent mature cochlear hair cells, the ankle links and 

the kinociliary links disappear with the regression of the kinocilium (Frolenkov et al., 2004; 

Goodyear et al., 2005; Nayak et al., 2007).  

CDH23 (Siemens et al., 2004; Lagziel et al., 2005; Michel et al., 2005; Rzadzinska et al., 2005; 
Lefevre et al., 2008) and PCDH15 (Goodyear et al., 2010; Webb et al., 2011; Lefevre et al., 
2008) are localized at the transient lateral links and kinociliary links during early 
development of hair cells. In their mutant mice, hair bundles are usually splayed into 
several clumps; kinocilium is mispositioned and disconnected with the hair bundle (Lefevre 
et al., 2008), indicating that CDH23 and PCDH15, as components of the interstereociliary 
links, are important for hair bundle cohesion and that loss of the connection between the 
stereocilia and kinocilium causes the misorientation of the hair bundle. Interestingly, the 
mutant mouse models of all five USH1 genes share such similar phenotypes.  This could be 
explained by the idea that the five USH1 proteins coordinate in this function. The PST 
domain of harmonin b binds to and bundles actin filaments (Boeda et al., 2002). MYO7A is a 
high duty ratio motor, which binds to actin filament strongly. Therefore, these two actin-
binding proteins may anchor their interacting partners, CDH23 and PCDH15, to the actin 
bundle in the stereocilia of hair cells (Table 2). In Ush1g-/- mice, cohesion of stereocilia is 
disrupted. In Ush1gfl/flMyo7a-cre+/- mice, whose expression of SANS is disturbed only after 
birth, the stereocilia stay cohesive (Caberlotto et al., 2011). Therefore, SANS plays a role in 
stereocilia cohesion during the prenatal period. It may be involved in the organization of 
other USH1 proteins through directly interacting with them (Table 2).  

All three USH2 proteins, USH2A, GPR98, and whirlin, are positioned at the ankle links of 
hair cells. Among these proteins, USH2A and GPR98 probably interact with each other or 
with some unidentified cell adhesion proteins to form the ankle links. Whirlin interacts with 
USH2A and GPR98 through the PDZ domain-mediated binding to anchor them at the base 
of the stereocilia. In the absence of GPR98, the ankle links are missing. Thus far, the 
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dependence of the ankle links on USH2A and whirlin has not been examined. In the wild-
type mouse, the stereocilia of outer hair cells are organized into a V-shaped staircase-like 
hair bundle. However, in all three Ush2 mutant mice, the outer hair cells show various 
disorganized stereocilia and abnormal U-shape hair bundles (Mburu et al., 2003; McGee et 
al., 2006; Liu et al., 2007; Michalski et al., 2007; Yang et al., 2010). Accordingly, as 
components of the ankle links, the three USH2 proteins probably contribute to hair bundle 
cohesion as well. 

6.2 Mechanotransduction 

The stereocilia of hair cells are the cellular organelle conducting mechanotransduction. The 
vibration of the basilar membrane and tectorial membrane or the motion of endolymphatic 
fluid induces the hair bundle deflection. When the deflection is toward the longest 
stereocilia (the positive or excitatory direction), the transduction channels are open. The 
influx of Ca2+ and K+ through the channels elicits changes of the membrane potential and 
glutamate release at the ribbon synapse in hair cells. When the hair bundle moves away 
from the longest stereocilia (the negative or inhibitory direction), the transduction channels 
close, and the membrane potential and transmitter release resume their resting statuses. 
Although the molecular machinery of mechanotransduction is not well understood, the 
‘gating spring’ model is popular in the field. In this model, the tip link, whose axis is parallel 
to the direction of the mechanical sensitivity of the hair bundle, is thought as a sensor to the 
stretch of the hair bundle. Alternatively, an unknown structure attached to the tip link 
fulfills this function (Vollrath et al., 2007; Gillespie and Muller, 2009). The transduction 
channel was recently localized to the plasma membrane at the lower end of the tip link in 
the stereocilia (Beurg et al., 2008).  

In mature hair cells, CDH23 (Siemens et al., 2004; Sollner et al., 2004) and PCDH15 (Ahmed 
et al., 2006) were found associated with the tip links. CDH23 is mainly at the upper part and 
PCDH15 at the lower part of the links (Kazmierczak et al., 2007; Alagramam et al., 2011). In 
Cdh23V-2J and Pcdh15aw-6J mice, the tip links are missing. Additionally, the response of the 
mechanotransduction is reduced. In the absence of stimulus, a fraction of transduction 
channels keep open in the wild-type hair cells, due to the resting tension of the tip links. 
However, the transduction channels in these two mutants do not open or take up the styryl 
dye FM1-43 at rest (Senften et al., 2006; Alagramam et al., 2011). Therefore, CDH23 and 
PCDH15 are believed to be components of the tip links and to participate in 
mechanotransduction in mature hair cells. 

At the two ends of the tip link immediately beneath the stereocilia plasma membrane, there 
are electron-dense complexes, the UTLD and LTLD (Figure 4). Harmonin and MYO7A are 
present at the UTLD (Grillet et al., 2009; Michalski et al., 2009; Caberlotto et al., 2011; Grati 
and Kachar, 2011). In Myo7a6J, Myo7a4626SB, Ush1cdfcr, and Ush1cdfcr-2J mice, the adaptation of 
mechanotransduction, a process for the hair cells to recover their sensitivity under sustained 
mechanical stimulation, was found consistently abnormal, while the amplitude of 
mechanotransduction responses is sometimes normal (Kros et al., 2002; Grillet et al., 2009; 
Michalski et al., 2009). These results suggest that harmonin and MYO7A are involved in the 
transduction adaptation. SANS may exist at both the LTLD and UTLD (Caberlotto et al., 
2011; Grati and Kachar, 2011). Its loss in hair cells (Ush1g-/-) causes elimination of the tip 
links and reduction in both the amplitude and sensitivity of the transduction currents 
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(Caberlotto et al., 2011). In Ush1gfl/fl Myo7a-cre+/- mice, whose hair bundle morphology is 
intact, only the amplitude of transduction is affected. This finding indicates that SANS is 
implicated in mechanotransduction and plays a different role from harmonin or MYO7A. 

Gpr98 knockout and Gpr98del7TM mice also show defects in mechanotransduction, though 
there are some discrepancies between them (McGee et al., 2006; Michalski et al., 2007). In 
general, the sensitivity to the stimulation direction is changed in both outer and inner hair 
cells. The amplitude and sensitivity of the transduction current decrease in the outer hair 
cells, but are normal in the inner hair cells and the utricular hair cells. It is suggested that the 
misorganization of hair bundles in Gpr98 mutant mice accounts of the abnormal sensitivity 
direction. Alternatively, GPR98 could be indirectly related with the cellular process of 
mechanotransduction. 

6.3 Protein and organelle transport 

In photoreceptors, the outer segment is a large specialized cilium filled with many flat 
membrane disks, where phototransduction occurs (Figure 4). This cellular compartment 
undergoes continuous and rapid renewal (Young, 1967; LaVail, 1976; Young, 1976; Besharse 
and Hollyfield, 1979), which requires a large amount of proteins and membrane lipids to be 
synthesized in the inner segment and to be quickly transported to the base of the outer 
segment through the connecting cilium (Figure 4). The removal of the old outer segment is 
achieved through phagocytosis by RPE cells.  In addition, in both photoreceptors and RPE 
cells, several proteins, involved in phototransduction and retinoid cycle, translocate 
between two different cellular compartments in response to light (Artemyev, 2008; Slepak 
and Hurley, 2008; Lopes et al., 2011).  

Among USH proteins, MYO7A is an actin-based motor. In the retina, it is expressed in both 

RPE cells and photoreceptors. In RPE cells, MYO7A is essential for the transport of 

phagosomes to their degradation apparatus (Gibbs et al., 2003), tethering melanosomes 

during their movement (Gibbs et al., 2004), and the translocation of RPE65 responding to 

light exposure (Lopes et al., 2011). In photoreceptors, MYO7A is present along the 

connecting cilium. Loss of MYO7A was found to delay the transport of opsin from the inner 

to the outer segment (Liu et al., 1999) and the transducin translocation from the outer to the 

inner segment after light exposure (Peng et al., 2011). In hair cells, without MYO7A, all 

USH2 proteins are mislocalized from the ankle links (Table 3), suggesting that MYO7A may 

transport the USH2 proteins. These lines of evidence establish the notion that MYO7A may 

function in protein and organelle transport in various cells in the retina and the inner ear. 

USH2 proteins are positioned at the PMC in mammalian photoreceptors, which is an 

analogous structure to the periciliary ridge complex (PRC) in frogs (Peters et al., 1983). The 

PRC is a morphologically-specialized structure with a symmetrical array of 9 ridges and 9 

grooves. It has been proposed, based on immunocytochemistry and freeze-fracture electron 

microscopy, as the membrane fusion site for post-Golgi vesicles carrying opsin and 

docosahexaenoyl (DHA)-phospholipids before these cargos are transported from the inner 

to the outer segment (Peters et al., 1983; Papermaster et al., 1986; Rodriguez de Turco et al., 

1997; Papermaster, 2002). Additionally, Rab8, rac1, Sec8, moesin, syntaxin 3 and SNAP-25 

have been localized around the PRC in frog photoreceptors (Deretic et al., 2004; Mazelova et 

al., 2009). These proteins are proposed, though not verified using mouse genetics, to 
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participate in and/or regulate the docking and membrane fusion of post-Golgi vesicles to 

the plasma membrane at the PRC. Therefore, the USH2 complex at the PMC might play 

either a direct or indirect role in the docking between the post-Golgi vesicles and plasma 

membrane at the base of the connecting cilium (Roepman and Wolfrum, 2007; Maerker et 

al., 2008). This proposed function can also be applied in hair cells. The ankle-links exist 

when stereocilia grow and differentiate from small microvilli. At this time, many vesicles 

are at the base of stereocilia (Forge et al., 1997; Hasson et al., 1997), which could be the post-

Golgi vesicles carrying proteins and membrane lipids from the cell body to the growing 

stereocilia. Supportively, the Gpr98 knockout mouse shows delocalization of some CDH23 

long isoforms at the tip of the stereocilia and, possibly, loss of some apical links between the 

stereocilia (Michalski et al., 2007). However, solid evidence supporting this putative 

function of the USH2 complex is still scarce. For instance, obvious mislocalization of 

rhodopsin has not been observed in whirlin knockout and Ush2a knockout mice (Liu et al., 

2007; Yang et al., 2010), and vesicles fused with the plasma membrane have not been 

demonstrated at the ankle links. 

7. Therapeutic studies  

Because of the widespread clinical application of the well-developed cochlear implant for 
hearing loss (Pennings et al., 2006; Liu et al., 2008), more attention is focused on seeking 
effective treatments for retinitis pigmentosa in USH. Next, I will address the current 
progress in studies on gene therapy, drug application, cell transplantation, and nutritional 
supplements (Yang et al., 2011). 

Human neural progenitor cells from the post mortem fetal cortical brain have been tested in 
the Ush2a knockout mouse (Lu et al., 2009). The progenitor cells were transplanted between 
photoreceptors and RPE cells. There, they delayed the cellular changes in photoreceptors 
and alleviated retinal functional deterioration. However, due to the short follow-up time 
after the treatment, the study did not examine whether the treatment can rescue 
photoreceptor loss in this animal model.  

Compared to the cell-based therapy, replacement of the mutant gene in the retina is 
straightforward. The efficiency and efficacy of a lentivirus-mediated gene replacement of 
MYO7A have been studied in the Myo7a4626SB mouse (Hashimoto et al., 2007). Although the 
delivery of MYO7A into photoreceptors and RPE cells is not quite efficient, the treated 
mutant retina does show correction of the histological phenotypes in these two cells. In 
addition, our laboratory utilized a combination of AAV and a photoreceptor-specific 
promoter to efficiently target the USH2D gene, whirlin, into both rod and cone 
photoreceptors. The transgenic whirlin was found to restore the changes of USH2A and 
GPR98 expression in the whirlin knockout retina (Zou et al., 2011). These encouraging 
progresses in the USH1B and USH2D mouse models lay a solid foundation for a further and 
detailed exploration of gene therapy for these and other USH subtypes. 

Aminoglycosides and their derivatives can induce a read-through of nonsense mutations by 
inserting an amino acid at the stop codon. These drugs have been tested in vitro, in cell 
cultures and in retinal explants to suppress the nonsense mutations found in USH1F 
(PCDH15) and USH1C (harmonin) patients (Rebibo-Sabbah et al., 2007; Nudelman et al., 
2009; Goldmann et al., 2010; Nudelman et al., 2010). However, the high cellular toxicity of 
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these drugs and the low efficiency of their read-through activities set a hindrance for their 
further application to patients. A recent report has shown that PTC124, a drug unrelated to 
aminoglycosides, has a relatively low cellular toxicity and high read-through efficacy 
(Goldmann et al., 2011). 

The nutritional supplementation, daily intakes of vitamin A at a dose of 15,000 international 
units (IU) and vitamin E less than 400 IU, is thought to be a potential effective therapy for 
retinitis pigmentosa (Berson et al., 1993; Berson, 2000). Although it has already been applied 
to patients, this vitamin A supplement therapy is still under debate and its underlying 
mechanism is unknown. 

8. Summary and perspective 

The research on USH has made tremendous progress since the discovery of its first 
causative gene, MYO7A, in 1995. Currently, nine genes have been identified responsible for 
this genetic disease. From the functional domain analysis, these genes have been proposed 
to participate in trafficking, scaffolding, cell adhesion, and signaling in cells. Many 
spontaneous and transgenic mouse, rat, and zebrafish models are available now. The 
majority of these animal models reproduce the hearing and balance problems in USH 
patients. However, not many of them manifest retinal degeneration, which is one of the 
typical symptoms in USH patients. The reason for this discrepancy is not clear. But lack of 
retinal phenotypes in these animal models hinders our studies on retinitis pigmentosa in 
USH patients. A large body of evidence from biochemical and cellular localization studies 
demonstrate that USH proteins are organized into multi-component complexes mainly in 
hair cells and photoreceptors. They play a role in hair bundle cohesion, 
mechanotransduction, and, possibly, protein/organelle transport in vivo. USH is an 
incurable disease. Effective treatments using different approaches are still being sought and 
explored. 
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