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1. Introduction 

Agricultural crop, one of the biological entities, is sensitive to its environmental condition 
including various soil and crop inputs. Alteration in environmental condition causes 
reduction in crop productivity (such as crop yield and total biomass etc.). Ultra-modern 
technology such as, precision agriculture (PA) is capable to prevent crop damage and 
maintain crop productivity. PA is the technology of applying correct amount of crop input 
at the exact place and time of requirement. Application of PA technology has become 
increasingly prevalent among the farmers from developed countries as well as developing 
countries due to its capability for optimizing crop yield by facilitating sound crop status 
monitoring (Zhang and Taylor, 2001). Mostly, satellite images have been used as the 
primary source of information for analyzing crop status in precision agriculture. However, 
obtaining up-to-date aerial photography is very expensive, the quality is variable, and data 
processing is also intensive and complicated. Innovative new technologies to acquire timely 
and accurate crop information are required for the success of PA technology.  
Assessment of leaf radiation has the potential to detect nitrogen (N) deficiency and is a 
promising tool for N management and monitoring. Moreover, over-fertilization may result 
in surface runoff and pollute subsurface water (Wood et al., 1993; Auernhammer et al., 1999; 
Daughtry et al., 2000; Zaman et al., 2006). Chlorophyll is an indirect indicator of nitrogen 
status and is used in optical reflectance-based variable-rate nitrogen application technology 
(Lee and Searcy, 2000; Jones et al., 2004; Alchanatis et al., 2005; Kim and Reid, 2006; Min et 
al., 2008). Biermacher et al. (2006) used sensor-based systems to determine crop nitrogen 
requirements and estimated that the variable-rate system had the potential to achieve a net 
profit of about $22 to $31 per ha. The ability to accurately estimate plant chlorophyll 
concentration can provide growers with valuable information to estimate crop yield 
potential and to make decisions regarding N management (Kahabka et al., 2004; Reyniers 
and Vrindts, 2006; Zaman and Schumann, 2006). 
Spectroradiometry has been useful in the research environment for determining principal 
wavebands and spectral patterns that relate to nutrient stress (Noh et al., 2004; Tumbo et al. 
2001). High spectral resolution and the ability to account for temporal changes are distinct 
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advantages. Okamoto et al. (2007) used a hyperspectral line-scanning camera for weed 
detection. This system produced hyperspectral images from a Specim ImSpector V9 imaging 
spectrograph mounted on a tractor that was set to move slowly through the field. Principal 
spectral components could be extracted and analyzed using various discrimination schemes. 
However, on-the-go hyperspectral sensing is slow and impractical, since enough area must 
be covered per sweep for timely data acquisition over large field areas. 
Biomass is an important trait in functional ecology and growth analysis. The typical methods 
for measuring biomass are destructive, laborious and time consuming. Thus, they do not allow 
the development of individual plants to be followed and require many individuals to be 
cultivated for repeated measurements. Non-destructive method may be an option to overcome 
these limitations. Crop residue estimation has been accomplished using RADARSAT images 
(Jensen et al., 1990; McNairn et al., 1998), using LANDSAT images (Thoma et al., 2004), and 
using images captured by radio-controlled model aircraft (Hunt et al., 2005). 
Prediction of yield using remote sensing images has been practiced by many researchers 
(Fablo and Felix, 2001; Alvaro et al., 2007). Rice crop area has been estimated from Landsat 
images (Tennakoon et al., 1992) for wide-scale yield prediction. Canopy reflectance was 
estimated at panicle initiation stage using a portable spectroradiometer (LI-1800, LICOR) 
with a remote cosine receptor attached to a 1.5 m extension arm for smaller-scale yield 
prediction (Chang et al., 2005). Yield prediction has also been accomplished for corn (Chang 
et al., 2003; Kahabka et al., 2004), cotton (Thomasson et al., 2000) wheat (Doraiswamy et al., 
2003), citrus (Zaman et al., 2006) and wild blueberry (Zaman et al., 2010). Tea leaf yield was 
estimated using vegetation indices such as normalized difference vegetation index (NDVI) 
and triangular vegetation index (TVI) (Rama Rao et al., 2007). 
Rice (Oriza sativa L.), which is the staple food of most Asian countries, accounts for more 
than 40% of caloric consumption worldwide (IRRI, 2006). Annual rice production was 
approximately 590 million tons and yield was 4.21 ton ha-1 in Asia for 2006 (FAOSTAT, 
2007). The profit from cultivating a rice crop is derived from the crop grain yield and total 
biomass produced. Predicting rice yield at or around the panicle initiation stage would 
provide valuable information for future planning and yield expectations.  

2. Low altitude remote sensing (LARS) system 

Site-specific management of inputs characteristic of PA promotes conservation of agricultural 
resources while maintaining crop viability. However, the application of satellite-based images 
still cannot fulfill the specific requirements of PA technology. Stafford (2000) observed that 
satellite images for application of PA are handicapped in terms of spectral and temporal 
resolution and can be affected by variable weather conditions. Lamb and Brown (2001) 
indicated that the low-resolution satellite images only beneficial for large-scale studies, are not 
appropriate for the small-scale farms prevalent in many areas of Asia, for example. 
Additionally, satellites providing higher-resolution images, e.g., QuickBird (DigitalGlobe, 
Longmont, Colo.) and ASTER (National Aeronautics and Space Administration, Washington, 
D.C.), have long revisit times, making them of limited utility for any application that might 
require frequent images (nutrient stress monitoring, for example). In the past, researchers had 
used manned aerial vehicles (helicopters and aero planes) to acquire surface images (Table 1). 
Though a large area can be mapped within short time, cost involved in the aerial vehicles is 
very high and also requires sophisticated system, trained operators, and professionals. 
Therefore, an unmanned helicopter is used for aerial image acquisition.  
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Systems/ 
Facilities 

Equipment Applications (size and structure) 

GPS 
/INS

Laser Camera 
Large 
Areas

Small areas 
(< 2-4 km2 ) 

Route 
mapping

Complex 
buildings/ 
structures 

Aircraft Yes Yes 
Film based 
and digital 

Yes Yes/No Yes No 

Helicopter Yes Yes Digital No Yes Yes No 

Terrestrial 
system 
(car, train) 

Yes Yes Digital No Yes/No Yes No 

RC- 
Helicopter 

Yes Yes Digital No Yes Yes Yes 

Table 1. Comparative benefits of remote image acquisition platforms 

LARS is a relatively new concept of remote image acquisition currently discussed by 
agriculturists implementing precision agriculture technology. As the name suggests, it is a 
system of acquiring images of the earth surface from a lower altitude as compared to the 
commercial remote sensing satellites. In this system, the images are acquired mostly below 
cloud cover and very near field features of interest. Low-altitude remote sensing using 
unmanned aerial vehicles can be an inexpensive and practical substitute for sophisticated 
satellite and general aviation aircraft, and it is immediately accessible as a tool for the 
farmer. 
Various unmanned LARS systems have been developed and used in the remote image 
acquisition for PA applications. Some LARS platforms, kites (Aber et al., 2002), balloons 
(Amoroso and Arrowsmith, 2000; Seang and Mund, 2006), high-clearance tractors 
(Bausch and Delgado, 2005), and unmanned airplanes and helicopters (Sugiura et al., 
2002; Fukagawa et al., 2003; Eisenbiss, 2004; Herwitz et al., 2004; Sugiura et al., 2004; 
Hunt et al., 2005; MacArthur et al., 2005, 2006; Xiang and Tian, 2006, 2007a, 2007b; Huang 
et al., 2008) have been successfully using for PA applications in different cropping 
systems.  
These platforms were mounted with image acquisition devices and location measuring 
receivers, which can fly over agriculture farms and targeted areas for capturing images. As 
indicated by Sugiura et al. (2002) the major drawbacks of unmanned helicopters are limited 
payload capacity and precise control over working speed of the system. Thus, mounted 
systems operation has to be programmed properly to neutralize the effect of wind speed. 
The low payload capacity of the system was adjusted by selecting light weight mounting 
equipment and tools. Stombaugh et al. (2003) suggested replacing heavy weight 
professional digital cameras with light weight, low cost, commercial digital cameras. As the 
individual images acquired by the LARS system covers small area, geo-referenced images 
can be mosaic for mapping entire farmland and targeted areas. Global positioning system 
(GPS) was used in aerial platforms for obtaining aircraft location information (Hayward et 
al., 1998), for geo-referenced videobased remote sensing images (Thomoson et al., 2002) and 
in VRT system guidance (Fadel, 2004). Buick (2002) proposed the guidelines to select proper 
GPS receivers for specific applications. 
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Thomson and Sullivan (2006) observed that both agricultural aircraft and unmanned aerial 
vehicles (UAVs) may potentially more easily scheduled and accessible remote sensing 
platforms than the remote sensing satellites and general aviation aircraft customarily used 
in the U.S. However, use of agricultural aircraft is limited to those areas where aerial crop 
spraying is prevalent. Hunt et al. (2005) used a radio-controlled helicopter-mounted image 
acquisition system to estimate biomass and nitrogen status for corn, alfalfa, and soybean 
crops. Digital photographs have been used for site-specific weed control for grassland 
swards (Gebhardt et al., 2006; Beerwinkle, 2001), for tomato (Zhang et al., 2005) and for wild 
blueberry (Chang et al., 2011). Chen et al. (2003) using an high-elevation tractor system, 
indicated that multi-spectral images at 555, 660, and 680 nm wavelength band centers 
demonstrated good prediction ability for determining the nitrogen content of rice plants. 
This chapter is intended to focus on the effectiveness of low-altitude remote sensing (LARS) 
images obtained by a multispectral imaging platform mounted in a radio-controlled 
unmanned helicopter to estimate rice crop parameters as a function of varying nutrient 
availability. Non-destructive image analysis technique is used to estimate rice yield and 
total biomass. It also examines the effectiveness of near-real time estimation of protein 
content from nutrient availability with rice leaf. Consistent with the fact that most 
multispectral cameras small enough to be used in unmanned aerial vehicles utilize pre-
defined wavebands for feature detection, applicability of the widely used NDVI 
incorporating these wavebands is evaluated. 

2.1 System components  

A radio-controlled model helicopter (X-Cell Fury 91, Miniature Aircraft, Orlando, USA) is 
equipped with a Tetracam agricultural digital camera (ADC) (Tetracam, Inc., Chatsworth, 
Cal.), (Table 2). It is also equipped with various sensors, such as: C-100 Magnetic compass 
(to obtain platform orientation angle from North), Inertial Measurement Unit (to obtain roll 
and pitch orientation angles), Barometric sensor (to measure pressure variation for altitude 
measurement), COM-1288 GPS receiver (to provide position information: latitude and 
longitude), digital camera (to acquire multispectral (G-R-NIR) images) etc., monitored by a 
PC-104 based CPU-1232 microprocessor. A PC-104 compatible Power Supply Unit (ACS-
5150), being powered from an external 12Vdc battery, is used to supply the necessary power 
to all the sensors including microprocessor (Figures 1 and 2).  
The camera is a wideband multispectral camera utilizing a CMOS CCD (charge-coupled 
device) with a Bayer filter mask for multispectral imaging (Table 2). The unmanned 
helicopter weighed about 6 kg with a payload capacity of 5 kg. The radio console is capable 
of controlling the unmanned helicopter within a 1 km radius. The system uses a battery-
initiated glow fuel (250 mL) engine, supporting 15 min of flight at length. A 
spectroradiometer with wavelength range of 350 to 2350 nm (Spectra Co-op, Inc., Tokyo, 
Japan) can be used to estimate reflectance at ground level in the red (at 660 nm) and NIR 
bands (at 800 nm). Bandwidth at each center is 2.5 nm. 
A control program, developed in “C” programming language, was used for the DOS 
operating system based microprocessor, to coordinate, the simultaneous clicking of digital 
camera and obtaining the readings from the sensors, and to store the information as a file in 
the storing device. The program enabled the system to acquire image and sensor reading at 
minimum time interval of 12 seconds. The images and corresponding sensor readings as 
digital number (0-255) were supplied to the image processing algorithm.  
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(a) (b) 

 

 
(c) 

Fig. 1. LARS system operation: (a) R/C helicopter mounted with image acquisition system, 
(b) acquiring image in rice crop, and c) major components. 

 

Characteristics Values 

Image size (resolution) 1280  1024 (1.3 Mpixel) 

Pixel size 6.01 micron 

Ground pixel resolution 0.000707 m/pixel (estimated) 

Spectral bands 
3 (green, red, and NIR); band centers and bandwidths are 
fundamentally equivalent to Landsat bands TM2, TM3, and 
TM4 

Lens type C-mounted 

Lens 8.5 mm 

Triggering Manual/cable switch triggering 

Table 2. Specification of the Tetracam ADC Green-Red-NIR sensors 
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Fig. 2. Schematic representation of the LARS image acquisition system 

As individual images, of digital camera covers very small ground area, is mosaic with the 
algorithm to develop a single map of the study area. HIPSC software converts the digital 
numbers into relevant sensor readings and used them to carry out image processing 
operations, such as: image rotation, image mosaic and reflectance index (NDVI, Green 
NDVI etc.) estimation. The software can develop site-specific zone maps based on variation 
in reflectance index values and also provide ground control points (GCPs) for mosaic image 
geo-registration using commercial software.  

2.2 Field preparation and data acquisition 

The experimental site is located in Pathumthani Province, Thailand (14° 12' N, 100° 37' E) for 
the study. The site may be located anywhere in the world, but, the soil properties have to be 
measured accurately. The soil of the experimental site belonged to the clay textural class 
with average bulk density of 1.38 g cm-3 and pH of 4.2. Three replicates were made, and the 

treatment plots, each of size 10 m  10 m, randomly distributed within each replicate. To 
estimate the nitrogen application rate, the total nitrogen present in the soil was tested using 
standard methods (Kjeldahl apparatus). At the experimental site, the concentration of pre-
existing nitrogen was classified as low (<0.18%) level for all the plots, as per the local 
Agricultural Extension Service guidelines.  
For the underlined experiment, the plots were well-watered using flood irrigation and 
carefully maintained for pest control to ensure uniform yield potential. The rice seeds 
were broadcasted (on 14 Dec. 2006) in accordance with local practices under irrigated 
farming conditions. Nitrogen fertilizer was applied at five rates: 0%, 25%, 50%, 75%, and 
100% of recommended values, representing 0, 33, 66, 99, and 132 kg ha-1, respectively. 
Plots with different nitrogen rates were maintained to promote a wide range of rice yield 
so the effectiveness of LARS images could be evaluated for varying nutrient availability. 
This follows a similar technique by Chen et al. (2003), who used four N rates (0, 45, 90, 
and 135 kg ha-1) in field experiments with a Tainung 67 rice crop for multispectral image 
analysis. An early rice variety, Supanburi-1 (95 day period), was used in the study, as this 
is one of the most popular variety in central Thailand. Urea (46-0-0) was applied as the 
source of nitrogen for the study. Different nitrogen rates along with recommended 
phosphorous fertilizer were applied 30 days after sowing rice. Images were obtained 
twice with the LARS system just before panicle initiation stage (45 and 65 days after 
planting, Figure 1b).  
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The altitude has to be selected considering the camera's field of view to acquire a single 
image for each treatment plot. Images with effective dimensions of 18 m  14 m were 
collected from a 20 m flying height, covering a single plot. For field application the height 
can be varied as per the suitability of the researcher, to cover wider area in each image. 
Flight altitude was recorded with a height sensor (MPXAZ4115A barometric sensor, 
Freescale Semiconductor, Austin, Tex.) mounted on the LARS system. Images are obtained 
at five different heights, and the images obtained closest to the 20 m height were selected for 
analysis. Five ground-based reflectance readings were obtained for the rice canopy and 
BaSO4 standard white reference board using the Spectroradiometer in each of the 
experimental plots. The ground-based readings were obtained immediately after the LARS 
system-based image acquisition. The plot-wise ground-based reflectance value is calculated 
as the mean of the five readings. 

2.3 Image pre-processing 

Multispectral images acquired by the Tetracam ADC camera (.dcm format) were converted 
into .tiff format for analysis. The .tiff format reduces the storage space and also effectively 
retains the image quality for image processing. Images were uploaded to Pixelwrench 
software (Tetracam, Inc., Chatsworth, Cal.), which contains programs for deriving one of 
several vegetation indices (.hdr format) from raw image data. An NDVI image was 
produced for each test plot, and the average NDVI index was estimated using the custom-
developed program in the C programming language from images acquired by the LARS-
mounted sensors (Figure 3). Ground-based reflectance data were collected to estimate mean 
NDVI of the experimental plots (NDVISPECTRO). NDVISPECTRO was estimated using the 
software provided by the Spectroradiometer manufacturer. Linear regression models can be 
developed in SAS (ver. 9.1, SAS Institute, Inc., Cary, N.C.) or any standard software. 
 

 
(a) (b) (c) 

Fig. 3. Stages of image processing: (a) raw image with plot boundaries (as taken by the 
image acquisition system), (b) plot-scale image of the rice crop, and (c) NDVI image 

3. Validation of LARS setup 

The normalized difference vegetation index (NDVI) is the mostly adopted reflectance index 
for agricultural cropping and vegetation studies (Rouse et al., 1973) given as; 

 
NIR R

NDVI
NIR R





  (1) 

Where, NIR: Radiance value for Near-infrared band; R: Radiance value for Red band. 
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The Green Normalized Differential Vegetation Index (GNDVI) to establish the suitability of 
reflectance index for rice cropping with variable nitrogen rates (Gitelson et al., 1996) was 
also used. GNDVI, based on the greenness level, represented by the chlorophyll content 
determining the radiance level of the leaf surface, was very significant for the rice crop 
monitoring. The GNDVI was estimated as follows, 

 
NIR G

GNDVI
NIR G





  (2) 

Where, NIR: Radiance value for Near-infrared band; G: Radiance value for Green band.  
The NDVI index was also calculated from ground level Spectrophotometer radiance values 
using the Eqn. 1 for establishing suitability of LARS system. Around five readings were 
taken from each plot in order to estimate the average NDVI for each treatment plots. The 
SPAD 502 meter readings of leaf greenness can be converted into Chlorophyll content by the 
following equation for rice cropping (Markwell et al., 1995). 

3.1 Relationship between reflectance indices and variable N-treatments 

The graph of NDVISPECTRO and NDVILARS plotted for the different N-treatments showed 
positive response with increased recommended nitrogen rates. The NDVI index, taken 45 
days after sowing, showed weak relationship with nitrogen treatment rates, attaining 
coefficient of determination (r2) of 0.60. As, the fertilizer application, just two weeks 
before date of testing, response time may not be enough to influence plant leaf radiance 
level to greater extent (Figure 4). However, the relationship was stronger (r2 ≈ 0.85) with 
higher  NDVI values, ranging from 0.70 to 0.90, for second set of Spectrophotometer reading 
taken at booting stage (for 65 days old plants).  NDVILARS, estimated from LARS images, 
were very low, after 45 days of sowing, ranging from 0.2 to 0.6, due to the lower radiance 
value of soil, exposed in gaps between the plants’ leaves. The radiance level of the crop 
leaves, covering the whole plot area with least exposed area at booting stage, attained 
their original values (with NDVI between 0.85 to 1.0). NDVILARS at booting stage showed 
strong relationship with r2 of 0.73 for different N-treatment rates (Figure 4b). The 
greenness index (GNDVI) plotted against variable nitrogen rates showed, lower 
correlation with r2 of 0.66 and 0.7, for the images taken at 45 days and 65 days 
respectively, with slightly strong relationship for the later. The lower range of GNDVILARS 
index had values ranging from 0.5 to 0.6 at booting stage, maintained positive response 
with higher nitrogen rates (Figure 4c). 

3.2 Suitability of reflectance indices determined from LARS images  

Cross comparison analysis was carried out to testify the applicability of LARS images 
through indices such as NDVILARS and GNDVILARS with the Spectrophotometer reading index 
such as NDVISPECTRO by plotting graphs between them (Figure 5). The NDVILARS was 
proportional to that of NDVISPECTRO with r2 of 0.72 and 0.79 for 45 days and 65 days old rice 
crop, respectively. The NDVILARS ranges from 0.85 to 1.0 showing sound crop coverage 
throughout the plot at booting stage of crop. The lower range NDVILARS value (0.2~ 0.5) for 
45 days crop made the reading unsuitable to represent the crop in crop modeling and 
predictions. The higher r2 value (≈ 0.7) for indices estimated from LARS images (NDVILARS, 
GNDVILARS) with index from ground Spectrophotometer reading (NDVISPECTRO) showed the 
suitability of the proposed system for crop status studies.   
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Fig. 4. Variation of vegetation index with N-treatment rates; a) NDVISPECTRO; b) NDVILARS ; c) 
GNDVILARS 
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Fig. 5. Comparison of indices based on groundtruthing data and LARS images; NDVISPECTRO 
with; a) NDVILARS; b) GNDVILARS 

3.3 Discussions 

For the experiment, the recommended amount of fertilizer was applied to 40 days old crop 
and the first set images and groundtruthing were taken at 45 days. The leaf coverage was 
low with a major share of exposed soil resulting in lower correlation of green indices (NDVI 
and GNDVI) values. The coefficient of determination (r2) was improved visibly for 65 days 
old crop with denser crop leaving little exposed soil. As observed, 65 days old crop, LARS 
and ground measurements, was better suited, hence selected for crop status monitoring 
studies. Variation in green indices (NDVI and GNDVI) showed symmetry with the variation 
of nitrogen level for different treatments. 
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4. Estimation of crop parameters  

4.1 Estimation of total biomass 

Biomass is a plant attribute that is time consuming and difficult to measure or estimate, but 
easy to interpret. Biomass is regarded as an important indicator of ecological and 
management processes in the vegetation. Biomass estimation facilitates accurate 
management decisions regarding chemical and fertilizer applications, estimation of yield, 
and post harvest handling of stover (Pordesimo et al., 2004).Quantifying spatial variation in 
pasture and crop biomass can help to direct management practices and improve farm 
productivity, through accurate and informed movements of grazing rotations, crop and 
pasture nutrient management and also yield prediction (Trotter et al., 2008). Measurement 
of plant biomass by harvesting is destructive, expensive and time consuming (Reese et al., 
1980). de Matthaeis et al. (1995) used AIRSAR data collected over the agricultural fields to 
monitor biomass variation. They found that the L-band is more effective for crops with low 
plant density, while C-band is better for high plant density crops. 

4.1.1 Calculations 

The rice biomass (threshed rice plant without the grain) of three sampled areas, 4 m2 each, 
were collected and weighted. The moisture content (w.b.) of the threshed rice plant was 
estimated using standard method. The dry weight of the threshed rice plant was estimated 
and converted into the total biomass weight per ha i.e. (ton/ha). 

 Total biomass (ton/ha) = 
10000

(100 . .) .
12 1000

M C BiomassWt  


  (3) 

Where, 
Total biomass: Weight of rice plant (without rice grain) in ton/ha 
BiomassWt: Weight of threshed rice plant (without rice grain) 
M.C.: Moisture content of weighed rice plant (w.b.) 

Total oven-dried (Abdullah et al., 1992) biomass was ranged from 3.58 to 7.36 ton ha-1 for the 
different treatments (Table 4). Total dry biomass weight between the treatments showed 
significant differences at the 0.10 level but no significant difference between replicates. 
 

N Rate 
Treatment 

Replicate 
Average 

1 2 3 

0 kg ha-1 3.58 4.25 6.30 4.710 

33 kg ha-1 5.51 5.84 5.64 5.660 

66 kg ha-1 5.57 5.97 5.77 5.771 

99 kg ha-1 6.50 7.36 5.97 6.611 

132 kg ha-1 5.57 6.63 7.30 6.501 

Table 3. Total biomass (ton ha-1) of the experimental plots 

Linear calibrations curves were developed in SAS 9.1 to estimate the biomass from NDVI 
index values calculated from LARS images. From these results, NDVILARS could explain 76% 
of the variation in biomass weight (r2 = 0.760, RMSE = 0.598 ton ha-1, Figure 6). 
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Fig. 6. Estimation of biomass with NDVILARS values 

4.2 Estimation of rice yield  

The rice crop was harvested from three sample areas of 4 m2 from each plot, 102 days after 
sowing for this experiment. The moisture content (% w.b.) at the time of weighing was 
estimated using a field moisture meter (Kett PM600, Ohta-Ku, Tokyo, Japan). The yield of 
each plot (100 m2 area) was estimated as the average of three sampled areas and converted 
to a ton-per-hectare area using the following equation. Rice yield was estimated at 14% 
moisture content (MC) for each treatment (Field crop report, 1998). 

 1 (100 ) 10000
  (  )  

86 1000

MC RW
Yield ton ha

A
   


 

  (4) 

Where, 
MC = moisture content (% wet basis) 
RW = weight of rice (kg) 
A = harvested area (m2) 

Rice yield, ranged from as low as 1.88 ton ha-1 (0 kg ha-1 N) to 3.68 ton ha-1 (132 kg ha-1 N) 
based on a 14% MC, illustrates the effectiveness of the fertilizer treatment rates on rice yield 
(Table 4). The crop yield variation was also tested for statistical significance (Johnson and 
Bhattacharyya, 2001). Yield data between the treatments showed significant differences at 
the 0.10 and 0.05 levels, whereas differences were not significant among the replicates 
 

N Rate 
Treatment 

Replicate 
Average 

1 2 3 

0 kg ha-1 1.88 1.97 1.64 1.83 

33 kg ha-1 2.13 2.87 3.28 2.76 

66 kg ha-1 2.78 2.70 3.44 2.97 

99 kg ha-1 2.37 3.85 3.52 3.25 

132 kg ha-1 3.52 3.36 3.68 3.52 

Table 4. Rice yield (ton ha-1) of the experimental plots 
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The regression model, developed for rice yield with NDVI index value in SAS 9.1, indicated 
a good fit (r2 = 0.728, RMSE = 0.458 ton ha-1, Figure 7). Variation among the replicates might 
be due to initial nutrient levels present in the soil from randomly selected plots.  
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Fig. 7. Estimation of rice yield with NDVILARS values. 

4.3 Estimation of protein content  

Protein content is one of the major food nutrients to determine quality of the food-grain. It 
could be measured as the total available nitrogen content in the food stuff (Kennedy, 1995). 
The rice was powdered and sieved before testing for total nitrogen with standard method. 
The linear model of total nitrogen against NDVILARS (with r2 = 0.591, Figure 8) showed 
positive relationships, and would be useful to the farmers, as they can get idea of quality of 
rice grain well in advance, at booting stage (from the image taken during booting stage).  

 

Fig. 8. Estimation of protein content with NDVILARS values. 
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4.4 Discussions 

The NDVI value, calculated from the LARS images collected for 65 days old crop, was 
suitable to estimate the total biomass (r2 = 0.760) and rice crop yield (r2 = 0.728). The protein 
content estimated through NDVI value was marginally suitable, capable to provide overall 
rice crop quality before-hand. The LARS system is suitable for real and near-real time crop 
parameter estimation, monitoring and evaluations. The NIR sensors can be substituted with 
any professional camera or cheap digital camera to optimize cost involved. The overall 
efficiency of the LARS system will be dependent on the sensors mounted on the helicopter. 
A skilled labor can easily handle the whole system with least supervision. The LARS not 
only replaces the satellite based image processing system but also ground level 
spectrophotometer, chlorophyll content measuring equipments. With little time, the system 
will be ready for taking images, for instance, just after rainfall.  

5. Field application of LARS systems 

Sugiura et al. (2007) mounted a thermal band camera on unmanned helicopter platform to 
estimate soil water status in paddy fields and correlation was obtained between the thermal 
image temperature and soil moisture content. The coefficient of determination (r2) for 
moisture content and temperature model at 10.00 a.m. and 3.00 p.m. were 0·69 and 0·64 
respectively (Figure 9).  

 

Fig. 9. Soil moisture content estimation with LARS images (Sugiura et al., 2007) 

The r2 between moisture content and difference in temperature was 0·42. The development 
was intended assisting in proper irrigation scheduling and monitoring water stressed 
situations for rain-fed cropping. Ishii et al. (2005) developed a system that can generate a 
map regarding crop status obtained by mounting an imaging sensor on an unmanned 
helicopter. They achieved an accuracy of 38 cm using RTK GPS receiver and GDS unit. The 
maps are accurate enough to be used for variable rate nutrients and pesticides application 
for the farmland.  
Lenthe et al. (2007) used unmanned helicopter based IR thermography imaging system as a 
tool for monitoring the microclimatic conditions promoting incidence and severity of 
diseases within wheat fields with a high spatial resolution. Zhou et al. (2009) used R44 
helicopter for aerial electrostatic spraying system. The results of the studies showed that 
electrostatic spraying with helicopters could produce uniform and fine droplets with better 
droplet adhesion and distribution, higher depositing efficiency, lower environmental 
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contamination; lower pesticide application rate and aerial spray can improve efficiency for 
prevention and cure pests in agriculture and forestry. 

6. Conclusions  

A radio-controlled helicopter-based LARS system can be used to acquire multispectral 
images over a rice canopy to estimate rice yield. The study indicated that the LARS platform 
could substitute for satellite-based and costly airborne remote sensing system. Images are 
obtained successfully by the multispectral camera mounted on the radio-controlled 
helicopter at a height of 20 m over rice plots. Rice yield and total biomass were found to be 
significantly different at the 0.05 and 0.1 significance levels, respectively, under different N 
treatment regimes. The relationship between NDVILARS and NDVISPECTRO (r2 = 0.897, RMSE 
= 0.012) shows  the applicability of LARS sensor-based images for estimating NDVI values, 
which varied over the five levels of applied N. A linear regression model shows a good fit 
(r2 = 0.728, RMSE = 0.458 ton ha-1) for estimating total biomass for rice using LARS image-
based NDVI values. A linear model (r2 = 0.760, RMSE = 0.598 ton ha-1) indicates that rice 
yield could also be predicted with NDVI values derived from LARS images. The protein 
content can be positively estimated well in advance to actual crop harvesting. The regression 
model procedure outlined herein can be followed for larger rice fields by recording crop 
input rates and acquiring LARS images. 
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