
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

26

Genetic Engineering
in a Computer Science Curriculum

Nevena Ackovska1, Liljana Bozinovska2 and Stevo Bozinovski2

1University Sts Cyril and Methodius, Institute of Informatics,
2South Carolina State University,

1Macedonia
2USA

1. Introduction

Traditionally genetic engineering is understood as a molecular biology discipline. The tools
used in molecular biology are specific, mostly used by people who come from biological or
medical background, which made the discipline distant from classical Computer Science. In
this paper we would like to address computer science auditorium and point out the
importance of understanding genetic engineering.

Although the term “genetic engineering” was coined 1951 in a science fiction novel by
Williamson (reprinted in (Williamson, 2002)), it was not until 1970s when the first achievements
in DNA modification showed that genetic engineering is actually happening. As in all of the
sciences, genetic engineering has its own milestones. In this introductory part we will describe
the earliest genetic engineering achievements, using computer science terminology.

Through the prism of computer science terms, the best way to look at DNA is that it
represents a string of letters, written in four letter alphabet. The string might be interpreted
as a text subject to processes such as transcription and translation (Watson & Crick, 1953), or
as database and software for processes in a cell (Bozinovski and Bozinovska, 1987;
Bozinovski et al., 2000). The first genetic engineering achievement was the cut-and-paste
operation of a DNA segment. Using two types of enzymes, restriction enzymes for cut
operation, and DNA ligase for join operation, a segment from one DNA was cut and pasted
in another DNA. Actually, the achievement was greater, since the DNA of two living forms,
the bacterial phage lambda and monkey virus SV40, were (re)combined into a new DNA
(Jackson et al., 1972). The second achievement, in 1973, was prepare-and-copy operation. A
DNA fragment was inserted in a plasmid (pSC101) and put into a bacterium (Escherichia
coli) and was replicated inside the bacterium. This experiment has another important point:
a fragment was prepared outside a cell (in vitro) and was replicated inside a cell (in vivo).
The cell machinery processed (replicated) the foreign piece of software as its own. That was
the first step or cell (re)programming. In 1974 the first transgenic animal was created, by
inserting a foreign DNA into a mouse embryo. In 1977 and 1978 the first human proteins
(somatostatin and insulin) were produced inside a bacterium. Bacteria produced human
insulin become commercially available in 1982 opening market for various types of
genetically engineered products, making genetic engineering a new industry. Important

www.intechopen.com

Applied Biological Engineering – Principles and Practice

590

achievement happened in 2010 by which a complete synthesized genome was introduced
into a bacterial cell which had no DNA (Gibson et al., 2010). Therefore, a new life form was
created with complete software prepared outside the cell. The bacterium was named
Synthia and is the first synthetic life form. All of these examples and many more, represent
the milestones that the science and technology of genetic engineering have already made
possible for humans to use.

As computer engineers, it is our view that genetic engineering is a type of (software)
engineering, and the way of doing genetic engineering is a way of programming and
reprogramming a DNA. As today many computer science curricula contain a bioinformatics
course, we argue that Computer Science curriculum should contain courses in genetic
engineering as well. Since Computer science in part is about programming, genetic
reprogramming can be viewed as important part of the Computer Science education. We
will also present our experience in teaching genetic engineering to computer science
students.

In this paper we will first describe natural way of doing genetic engineering. That is the way
the Nature was doing genetic engineering long before it became known to humans. Then,
we will describe a metaphor that can be used in education of Computer Science students.
Afterwards we will describe our approach to introducing genetic engineering into
Computer Science curriculum, including also lab exercises.

This paper addresses mainly the computer science auditorium. We present some elementary
knowledge in molecular biology, but the concepts are presented through (computer)
engineering terms. However, the notion presented here might be of interest for other
scientists coming from biological sciences background.

2. Genetic engineering before Genetic Engineering

Genetic engineering, by human definition, is a process of human produced genotypic effect in
order to obtain some phenotypic effects. Phenotypic effects can be at molecular level, such
as production of a new protein, or at higher level, producing visible effect either in the
structure or in the behavior of an organism. Usually, it is achieved by planned DNA
alternation, in order to (re)program behavior of a cell or a multicellular organism.

The nature has been doing genetic engineering for a very long time. Some of the life forms
on the Earth survive using sort of “genetic engineering”. The question we will start our
presentation here is how we can help Computer Science students to understand the concept
of Genetic Engineering? We believe that the following story of phage lambda is an
inspirational approach toward understanding genetic engineering for computer science
students and professionals alike, if we can level the terminology used in classical Genetic
engineering to Computer Science. As we have stated before, the way the story is been
transferred to Computer Science students enables them to understand the life cycle of phage
lambda. The simplicity and the clarity of the terminology seem to be of high importance in
order for these students to understand complex biological processes. Even more, the story
explains one way of genetic engineering done by the Nature itself.

“Consider a life form, a bacterium named Escherichia coli. It is a prokaryote, it does not
have a nucleus inside the cell. It is a life form that is capable of self reproduction. We call it a
single cell organism. Its chromosome is a circular one. Every twenty minutes it replicates

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

591

itself, provided there are favorable conditions in the environment. The new bacterium is
pretty much the copy of the previous one.

Now consider another life form, namely phage (lambda). It is a life form which cannot
reproduce itself. So, the phage lambda needs a host organism to reproduce and E. coli is
such a host. A phage (or bacteriophage) is a virus to a bacterium: it can replicate inside a
bacterium and eventually destroy it. It is interesting that a phage is harmless to human cells
and to all other eukaryotic cells (cell that do have a nucleus).

The phage lambda is a life form with head-and-tail appearance. The head contains the
DNA as a single chromosome. The phage DNA is double stranded. It contains the phage
genome, i.e. the set of all phage genes. The tail is used to insert the DNA into a bacterial
cell. Once inside a bacterium, the phage chromosome exhibits two possible behaviors:
lysogenic and lytic. Lysogenic behavior occurs if the phage chromosome remains its linear
form. It then integrates into the bacterial chromosome and becomes segment of that
chromosome. When bacterium replicates its chromosome, the phage segment is also
replicated. However, under some condition, such as environment stress, linear phage
chromosome leaves the bacterium chromosome, and exhibits lytic behavior. It is not
necessary that a phage has a lysogenic behavior; it might start its lytic behavior
immediately after entering a bacterial cell. The lytic behavior starts with transforming the
linear phage chromosome into a circular one. That is preprogrammed into the sticky ends
of both side of the linear chromosome. The site of sticking the both strands together is
named a cos site. Once into its circular form phage chromosome replicates inside
bacterium and creates new phage life forms. Eventually bacterium explodes releasing
phages into the environment outside the bacterium.

Since the replication inside a bacterium is lethal for the bacterium, a simple immune system
was designed in bacterial evolution: restriction enzymes. Restriction enzymes (or
endonucleases) are enzymes able to recognize a foreign DNA and cut it, rendering it non
reproducible. Restriction enzymes are probably the first form of immune system in
organisms.”

The story of phage lambda seems to be very simple. However, it explains one of the
Nature’s life cycles in a simplified manner, understandable for engineering students. From
the above example the students can learn about three mechanisms how a bacterial genome
can be modified:

1. by incorporating a linear DNA segment into the bacterial chromosome,
2. by adding a separate circular chromosome into the bacterium and creating a two-

chromosome system inside the bacterium,
3. by producing environment stress that would activate some genetic response of inserted

DNA segments.

In the following section we elaborate on other terminology modification in order to explain
processes and actors in genetic engineering to (computer) engineers.

3. Leveling the terminology: Metaphors for understanding genetics

For computer science, genetic engineering and cell (re)programming can be viewed as kind
of software engineering. A software sequence is written, and then inserted into genetic

www.intechopen.com

Applied Biological Engineering – Principles and Practice

592

machinery for compilation and execution. Now, if we “translate” the biological processes
into terminology that computer science students understand, we obtain greater results and
better understanding of these rather complicated processes. In the sequel we will consider
some metaphors that can be used in teaching computer science students concepts of genetic
engineering.

A metaphor is understood as a paradigm transformation; using knowledge from a familiar

system in order to understand the phenomena in another system. The first metaphor

explaining genetic processes was the biochemistry metaphor, which basically relied on the

fact that DNA is an acid. Obviously the acid metaphor was not good enough to explain the

life processes; the fact that the DNA is an acid cannot explain information that is stored into

a DNA. Another metaphor proposed in 1953 (Watson & Crick, 1953) stated that the DNA is

a sequence of letters, actually a text where information is stored. Today it is a dominant

metaphor. The principal processes named transcription and translation (Crick, 1958) are

linguistic, text processing terms. In 1985 the relation between genetic engineering and

robotics was pointed out (Bozinovski, 1985). An observation that DNA is actually a database

was first made in 1987 (Bozinovski, 1987; Bozinovski & Bozinovska, 1987; Demeester et al.

2004; Pirim, 2005). Afterwards, new metaphor for genetic engineering was proposed, the

robotics and flexible manufacturing metaphor, which proposed a viewpoint that the cell is a

flexible manufacturing system. According to that metaphor, some molecular structures

should be viewed as cell robots, an example being the tRNA, which is a transporting robot.

Related to the flexible manufacturing metaphor is the systems software metaphor

(Bozinovski et al. 2000; Bozinovski et al 2001; Danchin & Noria 2004, Ackovska &

Bozinovski, 2008; Ackovska et al. 2008).

The latest metaphor is very comprehendible for computer science and computer engineering

students. It uses the concept of a genetic file as a logical segment on DNA. In the cell

processes related to manufacturing (e.g. protein biosynthesis) the genetic files are

considered existing and read-only. In this paper we are focused on files that can be altered,

such as updated, created, written, inserted into another files, and otherwise manipulated.

This also happens in nature, but more importantly, it is a basis of genetic engineering. In the

following section we address the issue of writing in genetic files, and creating genetic file

systems and genetic disks.

4. Genetic files, disks, and genetic file systems

When studying genetics engineering and genetics in general, the crucial concept is the

concept of gene. Thus, a very natural question is “What is a gene?” A usual answer is that a

gene is a segment of a DNA that encodes for either protein or RNA. Also, one could

encounter slightly different definitions (Brown, 2002).

In computer science and engineering a usual reasoning on an information processing system

considers the files of that system. So, for genetic information processing we might ask the

question “what are the files of the genetic information processing system?” Is the concept of

a gene corresponding to the concept of a file? Having that as a starting point, in this section

we will present our understanding of DNA organization and DNA computing in terms of

files and related concepts.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

593

Looking for a concept of a file in DNA, we found that the transcription units (or scriptons
(Ratner, 1975)) are analogous to cell files. A transcription unit is a segment of DNA that
eventually becomes transcribed to RNA. In prokaryotes, a transcription unit often produces
a transcript with several genes (so-called polycistronic RNA). In eukaryotes it produces a
precursor RNA (pre-RNA), which contains the information about a single gene, but in order
to obtain it, additional processing needs to be performed.

The eukaryotic files are rather complex and contain segments of a gene, interleaved with
segments that do not belong to the gene. Those segments are known as introns, as opposite
to exons (gene expressing segments). To the people involved with genetics, there is a
standard question considering this phenomenon: how did it happen that eukaryotic genes
became segmented? However, for computer engineers introduced to the concept of a file,
the answer is straightforward – busy files are fragmented. Defragmentation is sometimes
needed in computer file systems. Moreover, it is expected that between two fragments of a
file an entire different file could be expected. This fact points to the concept of distributed
file systems (Nutt, 1992; Tanenbaum, 1994; Tanenbaum & Van Steen, 2007). And indeed, this
is the case in molecular genetics: After the first evidence that Tetrahymena ribozyme is
actually an intron (Kruger et al., 1982), more evidence has been found that genetic files could
be found within a complete different file (Been, 2006).

The cell files contain genes and other important sequences. Some files are executable ones,
they will produce cell robots. Cell robots are either enzymes (protein based) or ribozymes
(RNA based enzymes). Besides genes, which contain program files, the file system contains
files that are not genes; they are data structures, some of which can be used as template for
pattern recognition.

We believe that while the genes are the proper concept when talking about heredity, the
concept of a file is very useful in describing the DNA transcription process. This makes the
first step in the analogy between the computer systems and genetic systems. The cell,
especially the eukaryotic cell, undergoes extensive file processing: from copying the pre-
RNA file until obtaining the RNA message. This process includes operations like: cut
(introns), join (exons), right append (trailer string), left append (header string), letter
replacement and so on, which are standard file processing operations in every modern
computer operating system (Bozinovski et al., 2001).

Under genetic disk (or cell disk) we understand a cell chromosome. For example, human
genome is a distributed file system that resides on 46 (or 23 pairs) disks in each cell. There
are exceptions, for example gonad cells have only 23 cell disks. In some organisms besides
main genomic system there is a satellite chromosome system. An example is the bacterium
E. coli which contains its chromosome, but it can also contain satellite chromosomes from
life forms such as phages and plasmids. So, under the concept of genetic disk we include
both main, cell-replicating chromosomes, as well as the satellite, independently replicating
chromosomes, such as plasmid chromosomes or phage chromosomes. Examples of satellite
chromosomes in eukaryotic cells are mitochondria DNA.

We define disk segment as a set of files that will be written on a genetic disk. Under the
genetic file system we understand ordered set of genetic files. Usually, genetic disks contain
files in strict order. Our approach understands genome (set of all genes in a life form) as part
of the cell file system.

www.intechopen.com

Applied Biological Engineering – Principles and Practice

594

Therefore, this approach toward genetic engineering starts with understanding that the
DNA is cell operating system which resides on cell disks (chromosomes). Set of
chromosomes can be viewed as an array of genetic disks.

In the sequel we will often use the terminology of genetic disks and disk segments to refer to
a chromosome or DNA sequence. Here we will first describe the phage lambda and its
genetic disk. The DNA of phage lambda is double stranded and circular one. A double
stranded DNA allows storing gens on both strands, so that gens can be copied and
processed by reading them on both sides, in opposite directions. Figure 1 describes
behaviour of a phage DNA in a cell of bacterium E. coli.

Fig. 1. Phage lambda DNA enters into an E. coli bacterium. The lambda DNA either
becomes a file into the bacterium system disk or becomes own system disk.

Figure 1 shows two forms of existence of phage lambda DNA in a bacterium E. coli. It may
integrate, as a disk segment (its linear form) into the E.coli DNA disk (lysogenic existence).
However, it may encircle (its circular form) and form its own system disk (lytic existence).
Once becoming a system disk, it replicates and forms new phages.

The phage lambda genetic disk is a file system that contains set of genes (genome) that can
be divided into functional groups. According to the systems software metaphor the genes
are viewed as source program files that are compiled into proteins. The phage genetic disk
also contains two data files and they are not compiled.

5. Education of computer science students in genetic engineering

Contemporary education of computer science students is often related through molecular
genetic through various forms of Bioinformatics courses. Bioinformatics is about genetic
sequences that are stored on databases, usually available on the World Wide Web. Many
institutions offer digital encyclopedias related to molecular biology. Many applications are
built for using the knowledge stored in databases, such as searching various forms of
similarities among genetic sequences and predicting genes in a genetic sequence (Xiong,
2006). The goal of post genome informatics (Kanehisa, 2000) is to understand the
information in genetic sequences, including function of all the genes and other functional
sentences. At this point, Genetic Engineering is usually not part of bioinformatics courses.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

595

We propose that genetic engineering should be included in Computer Science curriculum.
One way of doing that is through the existing bioinformatics related courses. Example is the
elective undergraduate course CS495 Biocomputing and Bioinformatics which is part of the
Computer Science curriculum of the South Carolina State University, or the courses
Intelligent Systems (Madevska-Bogdanova & Ackovska, 2009), DNA Programming and
Bioinformatics at the Institute of Informatics, University Sts Cyril and Methodius. The other
approach is introducing a separate course.

In genetic engineering related course students will be able to learn programming life forms.
So far, they are capable of programming robots through various type of robotics courses
contemporary found in Computer Science curricula. However, Genetic engineering is a way
of designing, writing, and executing programs for living beings: it is about designing new
genes and genomes and consequently, their phenotypes. Therefore it is interesting for the
students to learn how to program DNA in order to design life form robots.

The core of genetic engineering is creation of a file or set of files that will be written on a
genetic disk. There are several ways how to obtain a genetic file. Examples are: 1) cut a file
or segment from existing disk (using restriction enzymes), 2) copy a file from existing disk
(copy on mRNA and then synthesize complementary DNA, cDNA), and 3) synthesize a
human made (artificial) file or segment.

In this section we will be focused on genetic disk segments, and genetic tools as ways of
creating genetic source programs that would be executed by the cell. We shall explain the
way we represent the theoretical knowledge, including restriction enzymes, engineered
genetics disks, artificial chromosomes and the process of transferring the source genes into
host systems and creating genomic libraries.

5.1 Theoretical knowledge

When creating a curriculum it is always a question which topics should be primarily

covered. When designing an interdisciplinary course, such as Genetics Engineering for

Computer science students, it is even more difficult to make such a decision. It would

depend on how much time or space the instructor has available for the course. The course

can be separate, usually graduate course, for example on Physiology Engineering

(Bozinovski and Bozinovska, 2011), or it can a part of an undergraduate course, for example

on Bioinformatics. In any case, organization of genetic files, genetic disks, and related

operating systems and robotics metaphors for understanding genetics is a good introduction

to the subject. Other topics might include: sequencing, amplification, modifying enzymes,

cloning, screening, applications, and state of the art. A good textbook might be Nichol’s

book (Nicholl, 2008).

5.1.1 A tool for genetic engineering: restriction enzymes

One of most used DNA modifying enzymes are restriction enzymes. They are tools for
cutting a DNA string. Restriction enzymes, also known as endonucleases, are DNA cutting
bionanorobots.

Restriction enzymes are naturally used by bacteria which use them as a natural defense
mechanism to cut an invading phage DNA. Many bacterial restriction enzymes have been

www.intechopen.com

Applied Biological Engineering – Principles and Practice

596

found and they are named according to the bacteria they are isolated from and the order
(first, second, third etc.) in which they are isolated. For example EcoRI means first isolated
restriction enzyme from Esherichia coli, HindIII means the third isolated restriction enzyme
from bacteria Haemophilus influenzae, and PstI means the first restriction enzyme extracted
from Providencia stuartii.

Genetic engineering relies upon ability to cleave (cut, splice) and ligate (paste) a functional
piece of DNA predictably and precisely. Example is cutting a gene from a DNA. One should
look for restriction sites on both sides of the gene and then use specific restriction enzymes
that will cut at the observed restriction sites. As a result a DNA fragment (genetic disk
segment) is obtained, which contains the gene of interest. That fragment should be inserted
into another, recipient DNA. The same restriction enzymes are also used to cut the recipient
DNA into which the fragment will be inserted. This cut-and-paste operation is one of the
ways of engineering a genetic disk.

Each restriction enzyme recognizes a specific nucleotide sequence in the DNA, called a
restriction site, and cuts the DNA molecule at only that specific sequence. Many restriction
enzymes leave a short length of unpaired bases, called a “sticky” end, at the DNA site where
they cut. Other restriction enzymes make a cut across both strands creating double-stranded
DNA fragments with “blunt” ends. In general, restriction sites are palindromic, meaning the
sequence of bases reads the same forwards as it does backwards on the opposite DNA
strand. Example of a palindromic restriction site recognized by restriction enzyme HindIII is
given in Figure 2. As Figure 2 shows, HindIII cuts the DNA at last letters of the palindrome
and leaves two one-stranded ends of DNA, named sticky ends.

Fig. 2. A two strand palindromic string in a DNA. This particular one is recognized by a
HindIII restriction enzyme. Arrows show the cut sites, leaving sticky ends at the cut.

A DNA in presence of particular restriction enzymes will be cut at all the corresponding
restriction sites. For example, HindIII restriction enzymes will cut the lambda phage
chromosome into 8 segments (or fragments).

5.1.2 Engineered source disks

A genetic program is a file written on a genetic disk that contains a code for specific function
in a cell. The program can be created and written by a human, which is essence of cell (re)
programming. The written program is called source program, and the disk the program is
written on is named source disk. A source disk is usually prepared outside a target
organism. There are basically two types of source disks: engineered genetic compact disks
and artificial chromosome disks.

A) Engineered Genetic Compact Disk. Engineered compact disk is based either on a plasmid or
a phage. Usually a natural plasmid (or phage) is loaded with an engineered DNA sequence.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

597

For computer engineers, it can be viewed as a rather small capacity disk media such as
compact disk (CD). A cell can be viewed as a computer system that also contains a separate
disk replicator, so that a particular CD can be replicated by the cell information processing
system. A plasmid and phage can be inserted in a cell using natural way: just put a cell and
plasmids into a favorable environment, and a plasmid (or phage) will enter the cell.

A typical example is the engineered plasmid pBR322, which is used for transferring a

particular disk segment into bacterium E. coli. Plasmid pBR322 was engineered out of three

natural E. coli plasmids: R1 plasmid, containing ampR gene, which provides resistance to

ampicillin, R6-5 plasmid, containing tetR gene which provides resistance to tetracycline, and

pMB1 plasmid, containing replication origin (ori) segment. There is an ori part in a genetic

disk which makes the disk replicable. There are specific spots on the pBR322 where

restriction enzymes such as EcoRI, SalI, PstI, PvuiI, and HindIII can make the disk open for

inserting a file. After insertion of the disk segment, the plasmid disk has extended its used

disk space. Plasmid pBR322 has capacity of accepting disk segments of about 10 Kbp

(Brown, 2001).

B) Artificial chromosome. Artificial chromosome is an engineered genetic disk which has

organization of a natural chromosome, but is much shorter. An example of artificial

chromosome is the Yeast artificial chromosome (YAC). Figure 3 shows a procedure of

insertion of a DNA fragment into a Yeast artificial chromosome.

Fig. 3. File insertion into a Yeast artificial chromosome

Figure 3 shows how a DNA fragment is inserted into an artificial chromosome in order to be
transferred into a cell. A chromosome of a eukaryote (yeast is a one-cell eukaryote) contains
specific DNA part such as telomeric DNA (TEL1), replication origin (ori), replication
sequences (ARS1), and centromeric DNA (CEN4). Centromeric DNA enables segregation of
the DNA at the time of cell division. Selectable markers are genes that allow distinguishing
cells that have this artificial chromosome. For example, for the pYAC2 chromosome, the
genes are: ampR, ura3, and trpI. Artificial chromosomes possess important property, they do
not transfer files into the main, cell replicating disk(s) of the cell. Instead they remain as a
separate disk, in addition to the cell chromosome disks. The inserted DNA is possibly an

www.intechopen.com

Applied Biological Engineering – Principles and Practice

598

engineered one, which acts as part of the chromosome system of the cell where the artificial
chromosome is inserted.

There are several types of artificial chromosomes. One is the Bacterial Artificial
Chromosome (BAC), which is based on plasmid F and can accept segments between 80-
300Kbp. The Yeast Artificial Chromosome (YAC) is often used for transferring files into
yeast (Burke et al, 1987). A YAC is able to accept disk segments of Mbp size. Mammalian
artificial chromosomes (MAC) (Grimes & Cooke, 1998) as well as Human Artificial
Chromosomes (HAC) (Larin & Mejia , 2002) were also engineered. Recently a plant artificial
chromosome with length of 30 Mbp was reported (Ananiev et al, 2009).

5.1.3 Transferring source disks into cell file systems

Engineered genetic compact disks are plasmids (or phages). They are transferred into a cell

by simply mixing cells and plasmids under favorable conditions; the plasmids will enter the

cells. In genetic engineering those source disks are named vectors, pointing out their

inherent transferring ability.

There is no natural way of inserting a rather large artificial chromosome into a cell. Usual

procedure is electroporation (Rebersek & Miklavcic, 2011), by which the artificial

chromosome is forced into a cell as a high energy particle. Once inside a cell, an artificial

chromosome behaves in principle like other cell chromosomes; it just has much less files

than the natural chromosomes.

5.1.4 Arrays of genetic disks: Genomic libraries

Genetic engineering can create new life forms or modify existing life forms. Example of

modified life forms are so called transgenic organisms, which in their genome contain genes

from another organism. For example, it is possible to include a gene of a human in a

bacterium.

There are other applications that are more oriented toward file systems rather than the

primary intention of modifying an existing mechanism. One such application is creating

an array of genetic disks to store a particular genome. Figure 4 (Ackovska et al., 2010)

shows creation of a human genomic library. The human genome (all human genes) are

kept into array of transgenic disks, each disk is a bacterial genome in which a human gene

is inserted.

In humans there are 23 pairs of disks on which the cell operating system resides. They are

marked F1-F22 and M1-M22 on Figure 4, pointing out that F23 disk represents the X

chromosome and M23 disk represents the Y chromosome. The capacity of those disks is

between 50 and 230 Mbp. The density of files on disks is low, only about 5% of the entire

DNA contains genes. The other parts are control sequences, data structures, and also areas

which, by today’s knowledge, contain no meaningful information. Some of human cell

files are longer than 100 Kbp, so BAC disks are used (Osoegawa et al., 2001). In such a

case, about 30,000 disks, which means 30,000 bacteria are needed to store the human

genome.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

599

The obtained set of files contains the whole genome, but is not the true representative of the
cell file system and cell operating system, as it is in the original 23 pairs of disks. However, a
transgenic disk array allows access to a particular segment and set of files faster and in a
way more convenient for study. So called arrayed genomic libraries, arranged as a matrix,
are built for easier access of a particular segment.

Fig. 4. Creating genomic library on a transgenic disks array

5.2 A lab experience in genetic engineering for computer science students

In addition to knowledge to be conveyed to students as lectures, lab experience is important
part of every course. Working in labs with tools for genetic engineering is very different
from the everyday practice for computer science students. If one is going to expose
computer science students to work in a genetic lab, there are basically two ways of doing
that: 1) lab work is carried out in a computer science lab, or similar, in which
limited number of equipment and tools for genetic engineering can be installed; 2) lab
work is carried out in a specialized lab, for example a molecular biology lab, which
already has all the genetic engineering equipment and tools. The tools for genetic
engineering include instruments such as water baths, dry baths, centrifuges, incubation
ovens, spectrophotometers, electrophoresis chambers, polymerase chain reactors, and
electroporators, among others. The lab activities can be carried out as regular lab activities

www.intechopen.com

Applied Biological Engineering – Principles and Practice

600

inside a Computer Science course, such as Bioinformatics course. Another way of carrying
out genetic engineering labs is an extracurricular activity, for example activity funded by a
research project. In short, here we describe two lab exercises and the way to organize this
specific lab practice so it can become closer to Computer science students.

5.2.1 Lab example 1: Extracting DNA from human saliva cells

First, we will describe a lab activity that does not require many specialized devices, and as
such this activity can be carried out inside a computer lab. As introduction to this lab
activity one should mention that, DNA is most important molecule for life. It carries
hereditary information and also manages production of proteins and manages processes in a
cell. Human genome is organized in linear chromosomes, and somatic cells such a saliva
cells have 46 chromosomes. The total length of all chromosomes is about 2 m. However,
DNA is invisible, it is a nanostructure, and its total width is 2 nm.

Understanding and working with DNA is one crucial educational task in hands-on lab
experience for a Computer Science student. A DNA sample can be obtained from human
blood, such as in medicine or in forensics. In lab practices for Computer Science obtaining
DNA sample from human saliva is preferable approach. Therefore, in this lab task a
computer science student will be able to extract her/his own DNA from her/his saliva.

The important part of “hardware” needed for this exercise, not usually used by CS students,

is an incubator, for example an incubation oven, which can keep a temperature of 50C for
some time. There are devices such as water bath, that keeps water on that temperature, and
students insert their lab tubs into that water for some time. The simplest approach is to take
any heating source, take a thermometer, heat the water until thermometer shows around the
desired temperature, and put the lab tubes in such water for needed time. If conditions
allow, a water bath might be purchased. However, a lab kit that contains necessary tools,
such as enzymes, tubes etc, should be purchased. There are many vendors of these types of
kits, one example is BioRad.

The detailed explanation of the lab activity for extraction a human DNA from human saliva
cells is given in Figure 5. It shows detailed flow of the processing of the tube in which the
saliva is placed up until the DNA is visible in the same tube. It is not necessary to give the
students task in detailed terms. As the reader may notice, the explanation written for CS
students differs significantly than the explanation found in lab manuals for biology or
medical students. Computer science students are accustomed to process thinking. Given
below is a description of the task.

Step 1. Collect cells. You can collect thousand of cells from the inside of your mouth just
by gently chewing your cheeks and rinsing your mouth with water.

Step 2. Break open (lyse) the cells. Use provided lysis buffer. It will break open the cell
membrane and nucleus membrane and release DNA.

Step 3. Remove proteins. Use provided enzymes named proteases. They will remove all the
proteins in your solution along with proteins that keep DNA as a thread. Proteases

work best at 50C. So you incubate (in a water bath previously warmed up to 50C)
your solution together with enzymes to that temperature.

Step 4. Condense DNA, make it visible. Use salt and cold alcohol. It will precipate DNA
out of the solution, and you can see it as a mass of white threads.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

601

Fig. 5. Lab procedure for extracting DNA from human saliva cells

www.intechopen.com

Applied Biological Engineering – Principles and Practice

602

5.2.2 Organization of a lab for computer science students

Organization of the laboratory is important for any lab activity. It is especially important for
computer science students working with tools such as lab tubes and pipets, which are not
part of their regular computer science lab activity.

A workstation should be prepared, which can be for one student or shared by more than
one student. Each student has her/his processing tube, in which she/he puts the saliva and
then processes it using the provided tools such as lysis buffer and protease enzymes. The
equipment, such as Water Bath, is shared by all the students. All the processing tubes are
put in a rack and then placed in the Water Bath for incubation. Some tools needed for
processing are kept in the refrigerator, such as alcohol. This part is very different form
everything the Computer Science students are accustomed to.

5.2.3 Lab example 2: Finding shortest file segment obtained by a restriction enzyme

Here we describe a lab that introduces hands-on experience with restriction enzymes to
computer science students. For Computer Science students the easiest way to understand
restriction enzymes is that they are type of cell robots that are able to cut DNA at a
particular point. In this lab exercise the fragments are obtained from a DNA and their length
is estimated. This exercise uses a classical lab technique named agarose gel electrophoresis
to estimate length of a particular DNA fragment. Since specialized equipment,
electrophoresis chamber, is used, this activity might be easier if carried out in a biology lab.

The task description is as follows: DNA of a phage lambda is given. Also, given are three
restriction enzymes: EcoRI, PsfI, and HindIII. Cut the lambda DNA with each enzyme.
Determine which restriction enzyme will obtain DNA fragments with minimum length.

The lab procedure is performed in parallel on four processing tubes. One tube is lambda
DNA, the second is lambda+EcoRI, the third is lambda+HindIII, the forth is lambda+PstI.
They are centrifuged and then put into an incubator with temperature that is best for
enzymes. The enzymes cut the DNA into number of fragments.

The following is more elaborated description of the lab procedure for obtaining fragments of
the phage lambda genome processed by various restriction enzymes:

Step 1. Obtain DNA fragments

Put restriction enzymes into three tubes with DNA, the fourth is just DNA. Mix the tubes,
possibly in a centrifuge, heat the tubes at 37C for 30 min, possibly in a water bath. Result:
each tube contains fragmented DNA.

Step 2. Distinguish fragments by their lengths

Put marker dye into tubes, mix, possibly with centrifuge, prepare agarose gel wells, put the
tube content into the gel wells, and perform electrophoresis at 100V for 30 min. Result: The
resulting gel contains information how far in the electrical field the fragments travelled.
However, the result is not visible for human eyes.

Step 3. Visualize DNA fragments

Put colouring marker on the gel, wait, then wash the gel. Result: Visible lanes of DNA
fragments with different travelling paths.

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

603

If the exercise is done correctly there is a visible result of the procedure, which can be
analyzed and/or photographed. On a solid rectangle piece of gel, there are 4 visible vertical
lanes. Each lane has horizontal bars, each bar representing DNA fragments with various
lengths. The first lane contains uncut DNA (single fragment), the second lane contains
fragments cut by PstI, the third and the fourth lanes contain fragments cut by EcoRI and
HindIII respectively. It can be observed that the horizontal bar at longest distance is in the
lane where fragments cut by PstI are positioned. Therefore, the answer to this lab task is: If a
lambda DNA is processed with three restriction enzymes, EcoRI, PstI, and HindIII, the
shortest DNA fragment will be obtained by PstI restriction enzyme.

The lab exercise is carried out in groups, each group having own lab workstation with all
the tubes and materials necessary. The devices like electrophoresis chamber and water bath
might be common for the groups.

6. Implementation

This approach has been successfully implemented to at least two Universities: South
Carolina State University in Orangeburg, SC, USA and St. Cyril and Methodius University
in Skopje, Macedonia. It is applied in the courses CS495 Biocomputing and Bioinformatics
(South Carolina state University), and partly in the course DNA Programming, Intelligent
Systems and Bioinformatics (Sts Cyril and Methodius University). During lab activities part
of which are described here, computer science students are given opportunity to obtain
hands on experience with bionanorobots and other nano structures used in genetic
engineering. Each lab has a lab quiz that asks students to relate the observed knowledge
with their background knowledge in robotics, flexible manufacturing, and operating
systems. Students show enthusiastic interest in learning steps toward genetic engineering.

7. Conclusion

The paper describes an innovative approach toward education of Computer Science
students and specialists in genetic engineering. We argue that genetic engineering is good
way of evolution for classical engineering and that it should be part of computer science
education. Computer science is about programming and reprogramming, and cell
(re)programming is essence of genetic engineering and of creating new organisms.

For a long time computer science is involved in creating artificial creatures such as robots.
However, biological robots, such as bionanorobots, were not part of computer science
education. We argue that the students should be familiarized with possibility of
programming DNA that will compile into a bionanorobot.

Appropriate language should be used in explaining molecular genetics to computer science
students. This paper proposes use of the computer science related metaphors, such as
robotics and flexible manufacturing metaphor as well as operating systems and systems
software metaphor.

This approach has been successfully implemented to at least two Universities: South
Carolina State University (SCSU) in Orangeburg, SC, USA and Sts. Cyril and Methodius
University in Skopje, Macedonia. It is applied in the course CS495 Biocomputing and
bioinformatics in SCSU, and the course Bioinformatics, Intelligent Systems, and DNA

www.intechopen.com

Applied Biological Engineering – Principles and Practice

604

Programming at the Faculty of Natural Sciences and Mathematics at Sts. Cyril and
Methodius University. The terminology used in these courses is adapted toward computer
engineering way of thinking. The addressed issues are strongly connected to the terms of
files, disks, operating systems, file processing, robots etc. This enables the computer science
students better understanding of some of the most complicated processes known to man,
the processes of life. Students are given opportunity to obtain hands on experience with
bionanorobots, such as restriction enzymes. Computer Science student have shown interest
toward understanding and reprogramming DNA. In addition to theoretical lectures, the
students participate in extracurricular activities which give them hands on-experience with
DNA manipulation. It seems that this way of reasoning makes students curious for
additional knowledge in Genetic Engineering. Many of these students have expressed
interest for the upcoming master’s degree program related to biorobotics at SCSU. Some of
the students, who graduated at the University St. Cyril and Methodius, and have taken
classes that support Genetic Engineering education, are already students in some of the
Europe’s Genetics Engineering masters programmes.

We believe that we should continue towards further research for appropriate metaphors in
relation between computer science and genetic engineering. We also believe that we should
enrich the student work with more practical implementation of the concepts presented in
this paper.

8. Acknowledgment

This work was supported in part by the NSF grant EPS-0903795-2010-702 awarded to South
Carolina State University in 2009.

9. References

Ackovska N., Bozinovska L. & Bozinovski S (2010) Artificial chromosomes as genetic disks:
A systems software metaphor for genetic engineering, Proceedings of IEEE
SouthestCon 2010, pp. 324-327, 978-1-4244-5853-0, Charlotte, NC, March 18-21, 2010

Ackovska N. & Bozinovski S. (2008), Next Generation Operating Systems: A Biologically
Inspired Future, Proceedings of 2nd Annual IEEE Systems Conference, pp. 1-7,978-1-
4244-2150-3, Montreal, Canada, April 7-10, 2008

Ackovska N., Bozinovski S. & Jovancevski G. (2008a). Real-Time Systems – Biologically
Inspired Future, Journal of Computers, Vol. 3, No.3, (March 2008), pp. 56-63, 1796-
203X, 2008.

Ackovska N., Bozinovski S. & Jovancevski G. (2008b). File system organization in minimal
biological system, Proceedings of the 6th International Conference on Informatics and
Information Technology, pp. 44-47, 978-9989-668-78-4, Bitola, Macedonia, February
10-14, 2008

Ackovska N., Bozinovski S. & Jovancevski G. (2007). A New Frontier for Real – Time
systems – Lessons from Molecular Biology, Proceedings of IEEE SoutheastCon
2007, pp.224-228, 1-4244-1029-0, Richmond, VA, March 22-25, (2007)

Ananiev E., Wu C., Chamberlin M., Switashev S., Schwartz C., Gordon-Kamm W. & Tingey
S. (1985). Artificial chromosome formation in maize, Chromosoma, Vol. 118, No. 2,
pp. 157-177, ISSN : 0009-9515, 1985

www.intechopen.com

Genetic Engineering in a Computer Science Curriculum

605

Been M. (2006). Versatility of Self-Cleaving Ribozymes, Science, Vol. 313, pp. 1745-1747,
ISSN: 0036-8075, 2006

Bozinovski S. (1985) Guest Editor’s Introduction, Automatika, Vol. 26 (3-4), Special Issue on
Biocybernetics, pp. 128, Zagreb, ISSN: 0005-1144, 1985

Bozinovski S. (1987) Flexible manufacturing systems: Biocybernetics approach (In Russian),
Problems in Manufacturing and Control, Vol. 16, pp. 31-34, ISSN: 0234- 6206, 1987

Bozinovski S. & Bozinovska L. (1987), Flexible production lines in genetics: a model of
protein biosynthesis process, Proceedings of International Conference on Robotics, pp.1-
4, Dubrovnik, Yugoslavia, 1987

Bozinovski S., Mueller B. & diPrimio F. (2000). Biomimetic autonomous factories:
Autonomous manufacturing systems and systems software, GMD Report, No. 115,
German National Research Center for Information Technology, Bonn, ISSN: 1435-
2702, 2000

Bozinovski S. & Bozinovska L. (2001), Manufacturing science and protein biosynthesis, In
N. Calaos, W. Badawy, S. Bozinovski (eds.) Proceedings of SCI Conference 2001, Vol.
XV, pp. 59-64, ISBN : 980-07-7555-2, Orlando, FL, 2001

Bozinovski S., Jovancevski G. & Bozinovska N. (2001). DNA as a real time, database
operating system, In N. Calaos, W. Badawy, S. Bozinovski (eds.) Proceedings of SCI
Conference 2001, VOL XV : pp. 65-70, ISBN: 980-07-7555-2, Orlando, FL, 2001

Bozinovski S. & Bozinovska L. (2011). Human Body Parts Making: Educational Challenges
for Engineered Physiology, Biorobotics, and Biofabrication, Proceedings of IEEE
SoutheastCon 2011, pp. 307-308, ISBN: 978-1-61284-737-5 , Nashville, TN, 2011

Brown T. A. (2001). Genetics, A Molecular Approach, Nelson Thomas, ISBN 0-7487-4370-7,
2001

Brown T.A. (2002), Genomes, 2-nd Ed., Willey-Liss, ISBN: 0-471-31681-0, 2002
Burke D., Carle M. & Olson M. (1987). Cloning of large segments of exogenous DNA into

yeast by means of artificial chromosome vectors, Science, No. 236, pp. 806-812,
ISSN : 0036-8075, 1987

Crick F. (1958). On protein synthesis, Proceedings of Symposium on Society for Experimental
Biology, No.12, pp. 138-163, ISSN: 0081-1386, 1958

Demeester L. ; Eichler K & Loch C. H. (2004). Organic Production Systems: What the
Biological Cell Can Teach Us About Manufacturing, Manufacturing and Service
Operation Management, Vol. 6, No. 2, INFORMS, pp. 115-132, ISSN: 1523-4814, 2004

Danchin A. & Noria S. (2004). Genome structure, operating systems and the image of the
machine in Molecules in Time and Scpace: Bacterial Shape, Division, and Phylogeny,
Vicente M., Tamames J., Valencia A., Mingorance J. (eds.), pp. 195-208, Kluwer,
ISBN: 0-306-4857-8, 2004

Gibson D., Glass J., Lartigue C., Noskov V., Chuang R., Algire M., Benders G., Montague M.,
Ma L., Moodie M., Merryman C., Vashee S., Krishnakumar R., Assad-Garcia N.,
Andrews-Pfannkoch C., Denisova E., Young L., Oi Z-O., Segall-Shapiro T., Calvey
C., Parmar P., Hutchison C., Smith H. & Venter C. (2010). Creation of a bacterial cell
controlled by a chemically synthesized genome, Science, Vol. 329 (5987): 52–56. 2010

Grimes B. & Cooke H. (1998) Engineering mammalian chromosomes, Human Molecular
Genetics, Vol. 7, No.10, pp. 1635-1640, ISSN: 0964-6906, 1998

Jackson D., Symons R. & Berg P. (1972) Biochemical method for inserting new genetic
information into DNA of Simian Virus 40: Circular SV40 DNA molecules

www.intechopen.com

Applied Biological Engineering – Principles and Practice

606

containing lambda phage genes and the galactose operon of Escherichia coli.
Proceedings of National Academy of Sciences, 69 (10): 2904–2909, 1972.

Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E. & Cech T. R. (1982). Self-
splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening
sequence of tetrahymena, Cell, Vol.31, pp. 147-157 , ISSN: 0092-8674, 1982

Kanehisa M. (2000). Post-genome Informatics, Oxford University Press, ISBN: 0-19-850326-1,
2000

Larin Z. & Mejia . (2002). Advances in human artificial chromosome technology, Trends in
Genetics, Vol. 18, No.6, pp. 313-319, ISSN: 0168-9525, 2002

Madevska-Bogdanova A. & Ackovska N. (2009), Different Approach to Information
Technology – Teaching the Intelligent Systems Course in Technology, Education
and Development, Lazinica A. & Calafate C. (eds), pp. 357-366, 978-953-307-007-0,
In-Teh, Vukovar, Croatia, 2009

Nicholl D. (2008). An Introduction to Genetic Engineering, Cambridge University Press, ISBN:
051-80867-7, 2008

Nutt G. (1992). Centralized and Distributed Operating Systems, Prentice Hall, ISBN 0-13-122326-
7, 1992

Osoegawa K., Mammoser A., Wu C., Frengen E., Zeng C., Catanese J., & de Jong P. (2001). A
Bacterial Artificial Chromosome Library for Sequencing the Complete Human
Genome, Genome Research, No. 11, pp.483–96, ISSN: 1088-9051, 2001

Pirim H. (2005). Biological Cell’s production system, Proceedings of 35th International
Conference on Computers and Industrial Engineering, pp. 1571-1575, Istabul, Turkey,
2005

Ratner V. (1975). Control Systems in Molecular Genetics, (In Russian) Nauka, Novosibirsk,
1975

Rebersek M. & Miklavcic D. (2011) Advantages and disadvantages of different concepts of
electroporation pulse generation. Automatika 42(1):, Special Issue on Recent Advances
in Biomedical Engineering, pp. 12-19, ISSN 0005-1114, 2011

Ren X., Tihimic C., Katoh M., Kurimasa A., Inoue T. & Oshimura M. (2006). Human artificial
chromosome vectors meet stem cells, Stem Cells Reviews and Reports, Vol. 2, No.1,
pp. 43-50, ISSN: 1558-6804, 2006

Tanenbaum A. (1995). Distributed Operating Systems, Prentice Hall, ISBN 10: 0321-99084, 1994
Tanenbaum A. & Van Steen M. (2007). Distributed Systems; Principles and Paradigms. ISBN 0-

13-239227-5, Prentice Hall, 2007
Watson J. & Crick F. (1953). Molecular structure of nucleic acids: a structure of deoxyribose

nucleic acid, Nature, No. 171, pp. 737-738, ISSN: 0028-0836, 1953
Williamson J. (2002) Dragon’s island and other stories. Five Star, ISBN-10: 0786243147
Xiong J.(2006). Essential Bioinformatics, Cambridge University Press, ISBN-10 0-521-60082-0,

2006
Zaibak F., Kozlovski J., Vadolas J., Sarsero J., Williamson R. & Howden S. (2009). Integration

of functional bacterial artificial chromosomes into human cord blood-derived
multipotent stem cells, Gene Therapy, Vol. 16, No.3, pp. 404-414, ISSN: 0969-7128,
2009

www.intechopen.com

Applied Biological Engineering - Principles and Practice

Edited by Dr. Ganesh R. Naik

ISBN 978-953-51-0412-4

Hard cover, 662 pages

Publisher InTech

Published online 23, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Biological engineering is a field of engineering in which the emphasis is on life and life-sustaining systems.

Biological engineering is an emerging discipline that encompasses engineering theory and practice connected

to and derived from the science of biology. The most important trend in biological engineering is the dynamic

range of scales at which biotechnology is now able to integrate with biological processes. An explosion in

micro/nanoscale technology is allowing the manufacture of nanoparticles for drug delivery into cells,

miniaturized implantable microsensors for medical diagnostics, and micro-engineered robots for on-board

tissue repairs. This book aims to provide an updated overview of the recent developments in biological

engineering from diverse aspects and various applications in clinical and experimental research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nevena Ackovska, Liljana Bozinovska and Stevo Bozinovski (2012). Genetic Engineering in a Computer

Science Curriculum, Applied Biological Engineering - Principles and Practice, Dr. Ganesh R. Naik (Ed.), ISBN:

978-953-51-0412-4, InTech, Available from: http://www.intechopen.com/books/applied-biological-engineering-

principles-and-practice/genetic-engineering-in-a-computer-science-curriculum

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

