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Motor Unit Potential Train Validation and  
Its Application in EMG Signal Decomposition 
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Canada 

1. Introduction  

Electromyographic (EMG) signal decomposition is the process of resolving an EMG signal 
into its constituent motor unit potential trains (MUPTs). The purpose of EMG signal 
decomposition is to provide an estimate of the firing pattern and motor unit potential 
(MUP) template of each active motor unit (MU) that contributed significant MUPs to the 
EMG signal.  The extracted MU firing patterns, MUP templates,  and their estimated feature 
values can assist with the diagnosis of neuromuscular disorders (Stalberg & Falck, 1997; 
Tröger & Dengler, 2000; Fuglsang-Frederiksen, 2006; Pino et al., 2008; Farkas et al., 2010), the 
understanding of motor control ( De Luca et al. 1982a, 1982b; Contessa et al.,2009), and the 
characterization of MU architecture (Lateva & McGill, 2001), but only if they are valid trains. 
Depending on the complexity of the signal being decomposed, the variability of MUP 
shapes and MU firing patterns, and the criteria and parameters used by the decomposition 
algorithm to merge or split the obtained MUPTs, several invalid MUPTs may be created.  

An extracted MUPT is considered valid when it accurately represents the activity of a single 
MU and is contaminated by low numbers of false-classification errors (FCEs). Alternatively, 
an invalid MUPT either represents the activity of more than one MU (i.e., it is a merged 
MUPT) or contains a high percentage of FCEs (i.e., it is a contaminated MUPT).  

Unfortunately, the MUP template shapes and MU firing patterns of invalid MUPTs cannot 
be easily distinguished from those of valid trains. Often, the MUP template shape of an 
invalid train looks similar to that of a valid train; nevertheless, the train does not represent 
the MUPs of a single MU. As such, the variability of MUP shapes and possibly the MU 
firing pattern are greater for invalid trains compared to valid trains. If such inaccurate 
information is not detected and excluded from further analysis, it could improperly suggest 
an abnormal muscle when interpreted clinically or it may contribute to scientific 
misstatements. Consequently, the first and most critical step in the quantitative analysis of 
MUPTs is assessing their validity. 

Detecting invalid trains during decomposition can assist with improving the performance of 
these decomposition methods in terms of estimating the correct number of MUPTs 
constituting an EMG signal as well as reducing the number of missed-classification errors 
(MCEs) and FCEs in the extracted trains. At the end of each pass of assigning MUPs to 
detected MUPTs, invalid MUPTs are detected and then either have their FCEs corrected or 
are split into valid trains. Such corrections can help find the correct number of constituent 
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MUPTs, lead to better estimates of the MUP template and MU firing pattern statistics of 
each train, and also allow more MUPs to be correctly assigned to the obtained trains (i.e., 
reduce MCEs) during the next steps of decomposition. Consequently, MUPT validation can 
improve decomposition accuracy. 

The majority of the existing MUPT validation methods are either time consuming or related 
to operator experience and skill (see Section 3). More importantly, they cannot be executed 
during automatic decomposition of EMG signals to assist with improving decomposition 
results. To overcome these issues, an automated system is presented to estimate the validity 
of MUPTs extracted from an EMG signal using a decomposition algorithm. The presented 
system to estimate the validity of a MUPT uses both its MU firing pattern information and 
its MUP shape information. MU firing pattern information is employed by a supervised 
classifier that determines MU firing pattern validity by assessing MU firing pattern 
consistency and MU firing pattern variability of the train under question. MUP shape 
information is used by a cluster validation–based algorithm that assesses the MUP shape 
consistency in the given train to determine its MUP shape validity. A train is considered 
valid based on a combination of its MU firing pattern and MUP shape validity. The MUP 
validation system can be used both during EMG signal decomposition and once the process 
is completed.  

The effectiveness of using the developed MUPT validation systems and the MUPT editing 
methods during EMG signal decomposition was investigated by integrating these 
algorithms into a certainty–based EMG signal decomposition algorithm. During 
decomposition, invalid MUPTs are detected and then either have their FCEs corrected or are 
split into valid trains before decomposition continues. The minimum assignment threshold 
for each extracted MUPT is adjusted based on the estimated validity. With these 
modifications, the decomposition accuracy on average was improved 9% on average. 

This chapter includes a brief review of the composition and decomposition of EMG signals, 
a discussion of MUPT validation concepts, a description of a system developed for 
automatic validation of MUPTs during EMG decomposition, and a discussion of a 
decomposition system that uses the proposed MUPT validation algorithm to merge or split 
MUPTs and to adjust the assignment threshold for each MUPT adaptively. Evaluation 
results using several simulated and real EMG signals and a discussion of the results will be 
presented at the last section. 

2. EMG signal composition and decomposition 

To appreciate the concepts of EMG signal decomposition, it is crucial to be familiar with the 
composition of an EMG signal. This section presents the fundamentals of EMG signal 
composition followed by a discussion of EMG signal decomposition. 

2.1 EMG signal composition 

An EMG signal is the sequence of voltages detected from a contracting muscle over time. 
The potentials are detected in the voltage field generated by the active muscle fibres of a 
contracting muscle. The muscle fibres of a muscle are organized into groups for the control 
of muscle force with each muscle fibre of a group being connected to an α-motor neuron. 

Each muscle fibre of a group is activated concurrently by the -motor neuron to which they 
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are connected. Formally, a single α-motor neuron, its axon and the set of connected muscle 
fibres are called a MU (Basmajian & De Luca, 1985). The summation of the muscle fibre 
potentials created by the spatially and temporally dispersed depolarization and 
repolarization of all of the excited fibres of a single MU is known as MUP. 

During a muscle contraction, MUs fire repetitively to maintain the force of the muscle 
contraction. Consequently, each active MU generates a train of MUPs during a muscle 
contraction known as MUPT. A MUPT is mathematically described as (De Luca, 1979; 
Basmajian & De Luca, 1985; Stashuk, 2001; Parsaei et al., 2010):  

    
M

j ji ji
i 1

MUPT t MUP t-


   (1) 

where M is the number of times that the jth motor unit fires, ji   is the ith firing time of motor 
unit j, and MUPji(t) is the ith MUP generated by motor unit j during its ith firing.  

Assuming K MUs were active during a muscle contraction, the detected EMG signal can be 
mathematically represented as (De Luca,1979;  Basmajian & De Luca, 1985; Stashuk, 2001; 
Parsaei et al., 2010): 

  
K

j
j 1

EMG(t) MUPT t n(t)


   (2) 

where MUPTj(t) is the MUPT generated by the jth motor unit, and )t(n  is background noise. 

Fig.1 shows both an anatomical and physiological model for an EMG signal. In this figure, 
hi(t) is a filter with impulse response MUPi, and the impulses represent action potentials 
emerging from an - motor neuron to innervate the connected muscle fibers. As shown, an 
EMG signal is in fact the superposition of the MUPTs created by MUs active during a 
muscle contraction and background noise.  

The characteristics of a detected EMG signal depend on several factors such as the level of 
contraction, the shape and size of the electrode used, and the position and orientation of the 
electrode relative to the muscle fibres of the active MUs (De Luca, 1979; Basmajian & De 
Luca, 1985). In addition, the characteristics of an EMG signal detected from a contacting 
muscle are related to the anatomical and physiological features of the muscle and therefore 
to its age and state of health or fatigue(Stalberg & Falck, 1997; Tröger & Dengler, 2000; 
Fuglsang-Frederiksen, 2006; Pino et al., 2008; Farkas et al., 2010). Some parameters of EMG 
signals for normal and abnormal muscles are compared in Table 1. Consequently, analyzing 
EMG signals provides information that can be used clinically or for physiological 
investigation. The technique of detecting, evaluating, and analyzing EMG signals is known 
as electromyography. One useful technique in electromyography is EMG signal 
decomposition. 

2.2 EMG signal decomposition 

EMG signal decomposition is the process of resolving a detected EMG signal into is 
constituent MUPTs. This process that is conceptually shown in Fig.2 is implemented by 
employing digital signal processing and pattern recognition techniques in four/five steps: 
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signal preprocessing, signal segmentation and MUP detection, feature extraction,  and then 
clustering and possibly supervised classification of detected MUPs (Stashuk, 2001; Parsaei et 
al., 2010).The first step is to remove background noise and low-frequency information from 
the detected EMG signal, to shorten the duration of MUPs and decrease MUP temporal 
overlap, and to sharpen the MUPs and increase discrimination between them. The second 
step is to section the signal into segments containing possible MUPs that were generated by 
active MUs that contributed significantly to the detected EMG signal. The detected MUPs 
are represented by a feature vector in the third steps and finally are sorted into MUPTs 
using clustering and/or supervised classification technniques. If a full or complete 
decomposition is required, superimposed MUPs (SMUPs) are resolved into their constituent 
MUPs in another step. For clinical use of EMG signal decomposition results, where only 
mean MU firing rate and MU firing rate variability are to be studied, resolving SMUPs is not 
essential ( Stashuk,1999,2001) because the desired MU firing parameters can be estimated 
from incomplete discharge patterns (Stashuk & Qu, 1996b; Stashuk, 1999). However, for 
detailed studies of MU control and muscle architecture, SMUPs must be resolved. A recent 
comprehensive review of the algorithms developed for the decomposition of indwelling 
EMG signals is provided by Parsaei et al. (2010). 

 
 

 
 

Fig. 1. Anatomical and physiological model for an EMG signal (from Rasheed et al., 2010). 
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Table 1. Some parameters of EMG signals for normal and abnormal muscles. 

 

Fig. 2. A schematic representation of EMG signal decomposition (adapted from  De Luca et 
al. 2006; 1982a). 

Once the decomposition process is completed, the prototypical MUP shape (MUP template) 
and MU firing pattern statistics for each extracted MUPT are estimated for future analysis 
(especially for quantitative electromyography). This provides information, regarding the 
temporal behaviour and morphological layout of the MUs that significantly contributed to 
the detected EMG signal, which can assist with the diagnosis of various neuromuscular 
diseases and the study of MU control, and lead to a better understanding of healthy, 
pathological, ageing or fatiguing neuromuscular systems ( De Luca et al., 1982a, 1982b; 
Stalberg & Falck, 1997; Tröger & Dengler, 2000; Stashuk, 2001; Fuglsang-Frederiksen, 2006; 
Calder et al., 2008; Farkas et al., 2010). However, this is achieved only when this information 
is valid. In fact, before using decomposition results and the MUP shape and MU firing 
pattern information for either clinical or research purposes the validity of the extracted 
MUPTs needs to be confirmed. 
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3. MUPT validation 

In general, validating a MUPT is a process of determining whether a given MUPT accurately 
represents the activity of a single MU or not. The validity of a MUPT can be defined using 
two different criteria: MU firing pattern validity, and MUP shape validity. 

MU firing pattern validity of a MUPT is determined by assessing its inter–discharge interval 
(IDI) histogram (density function) and the instantaneous firing rate of the corresponding 
MU versus time. The MU discharges corresponding to a valid MUPT occur at regular 
intervals and in general, have a Gaussian-shaped IDI histogram while for invalid MUPTs 
the IDIs have large variations and will not have a Gaussian-shaped IDI histogram. Even 
though some researchers have demonstrated that the IDI distribution of a MU may not 
actually be Gaussian (De Luca & Forrest,1973; Matthews, 1996), for MUPTs of MUs that are 
consistently recruited, the Gaussian density is an appropriate approximation (Clamann, 
1969; McGill et al., 1985; McGill & Dorfman, 1985; Stashuk, 1999; Moritz et al., 2005; Rasheed 
et al., 2010;Parsaei et al.,2011). If an extracted MUPT represents the firing of a single MU and 
has suitably low percentage of FCEs (FCE rate), it has MU firing pattern validity. As an 
example, the first two MUPTs shown in Fig. 3 have MU firing pattern validity, but the third 
MUPT does not have firing pattern validity. 

To determine MUP shape validity, a given train is assessed using the shapes of its MUPs. 
Assuming the MUPs generated by a single MU are homogeneous in shape, the MUPT under 
study can be assumed to have MUP-shape validity when its MUPs have consistent shapes. 
As an example, MUPTs shown in the first and third rows of Fig. 3 have MUP-shape validity; 
however, the MUPT given in the second row does not have MUP–shape validity. 

Finally, a train can be considered valid based on a combination of its MU firing pattern and 
MUP shape validity. For example, the first MUPT shown in Fig. 3, which has both MU firing 
pattern and MUP shape validity, is considered valid, but the MUPTs shown in rows 2 and 3 
will be labelled invalid because they do not have MUP–shape or MU firing pattern validity. 

To date, MUPT validation is mainly conducted qualitatively by an expert operator. The 
MUP shape validity of a MUPT is assessed by an expert using raster/shimmer plots of its 
assigned MUPs ( Doherty & Stashuk,2003; Stashuk, 2001; Stashuk et al., 2004; Boe et al., 
2005, Calder et al., 2008; Parsaei et al., 2010). MU firing pattern validity of a MUPT is 
determined by viewing and qualitative evaluation of its IDI histogram and the plots of the 
firing rate as a function of time. The accuracy of such qualitative MUPT evaluations, as with 
other methods that need operator supervision, depends on operator experience and skill. In 
addition, such evaluations are too time consuming to be practically completed in a busy 
clinical environment. More importantly, manual MUPT validation methods cannot assist 
with improving the performance of automatic EMG signal decomposition algorithms. To 
overcome these issues, methods need to be developed to automatically estimate the validity 
of a given MUPT. 

McGill and Marateb (2010) developed a rigorous statistical method for assessing the validity 
of MUPTs extracted by decomposing an EMG signal. The evaluation results are 
encouraging, but due to the computational complexity of the procedures used in this 
method, the algorithm is only efficient for assessing the decomposition accuracy of  
5–second–long, low-complexity signals composed of at most 6 MUPTs. In addition, full 
decomposition in required in this method. Therefore, this method cannot be used during 
decomposing or in a busy clinical environment. 
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Fig. 3. Example of valid and invalid MUPTs. Column one shows the the shimmer plot of the 
MUPs assigned to each MUPT. Column two shows the IDI histogram and corresponding 
statistics for each extracted MUPT. Column three illustractes the discharge patterns and 
instantaneous firing rates for each MU. 

Parsaei and his co-workers (Parsaei et al., 2011; Parsaei&Stashuk, 2011a) developed several 
methods for automatic validation of MUPTs extracted by a decomposition algorithm: a MU 
firing pattern based validation method, and a MUP shape based validation method.  Across 
the sets of real and simulated data used for evaluating each of these two MUPT validation 
methods, the methods performed well in categorizing a train correctly. In addition these 
methods are fast enough to be used during the decomposition process. However, the 
accuracy of the firing pattern validity system in correctly classifying invalid trains decreases 
as the MCE rate (percentage of MCEs) in the MUPTs increases such that this accuracy was 
reduced to < 60% when the MCE rate was >80%. Likewise, the accuracy of the MUP-shape 
validation methods decreases as the separability between the trains used to create an invalid 
train decreases such that the methods failed to detect the majority ( >80%) of invalid trains 
composed of MUPTs with highly similar MUP templates. In this work, using both the MU 
firing pattern and MUP shape information of a MUPT to estimate its validity was explored 
with the hope of overcoming these two issues; the achievements of these efforts are 
presented in this chapter. The objective of developing such methods was to: 1) facilitate the 
use of intramuscular EMG signal decomposition results for clinical applications of 
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quantitative electromyography by providing the overall validity of MUPTs and excluding or 
highlighting invalid MUPTs; 2) assist with improving the accuracy and completeness of 
decomposition results.  Using the characteristics of the IDI distribution, MU firing patterns, 
and within train MUP shape variability of invalid MUPTs two methods based on a 
combination of feature extraction, cluster validation techniques and supervised classification 
algorithms were developed; details are presented in the following Section.  

4. An automated system for estimating MUPT validity  

As discussed in the previous section and illustrated in Fig.3, the characteristics of IDI 
histograms, MU firing rates over time, and within-train MUP shape inconsistencies of 
invalid trains differ from those of valid trains. These facts motivate the development of an 
automated system to determine whether a given MUPT accurately represents the activity of 
a single MU (i.e., is valid) or not. With the developed MUPT validation method, a given 
train is considered valid if it has both MU firing pattern validity and MUP-shape validity; 
otherwise, the train is labelled invalid. MU firing pattern validity is estimated by a firing 
pattern validity classifier (FPVC) that uses a supervised classifier along with several features 
extracted from the IDI histo-gram and instantaneous firing rate of the MUPT. MUP–shape 
validity is determined by assessing the homogeneity of the wave shape of the MUPs of the 
given train using a MUP–shape validity system that is mainly based on a cluster validation 
technique. The overall procedure of the system is illustrated in Fig.4. Both the MU firing 
pattern system and MUP–shape validation system used are discussed below.  

 

Fig. 4. The procedure of the developed MUPT validation system that estimates the validity 
of a MUPT by combining its MU firing pattern validity and MUP shape validity estimated 
using a supervised classifier and a cluster validation technique. 

4.1 Firing pattern validity classifier 

The overall procedure of the developed FPVC is shown in Fig. 5. The goal of using the FPVC 
is to determine whether a MUPT accurately represents the firings of a single MU or not. This 
categorization is performed by a supervised classifier that uses nine features extracted from 
the IDI histograms and MU firing rates of the given MUPT.  

www.intechopen.com



 
Motor Unit Potential Train Validation and Its Application in EMG Signal Decomposition 

 

329 

The features used in this work are listed in Table 2; detailed definitions and calculation 
methods for these features are presented in (Parsaei et al., 2011; Parsaei, 2011). In short, the 
majority of these features are extracted from the IDI distribution of the given MUPT and 
target the left side of this distribution, where short IDIs (i.e., the errors of interest) are 
reflected. The identification rate targets the right side of the IDI distribution to measure the 
MCE rate in the MUPT. The firing rate mean consecutive difference measures the variation 
in the instantaneous firing rate over time. The instantaneous firing rate at each MUP 
occurrence in a MUPT is defined as the inverse of a local IDI that is obtained by applying a 
normalized Hamming filter of length 11 to the IDIs of the train. 

 

Fig. 5. The steps for the firing pattern validity classifier 

 

Feature Description 

CV Coefficient of variation 
CVL Lower coefficient of variation 
CVL/CVU The ratio of lower and upper CV 
PI Percentage of inconsistent IDIs 
LIDIR Lower IDI ratio 
1stSCorr First coefficient of serial correlation 
Skewness A measure of symmetry of the IDI histogram
ID– rate Identification rate 
FR–MCD Firing rate mean consecutive difference 
IDI–MCD IDI mean consecutive difference 

Table 2. Firing pattern features used for the firing pattern validity classifier. 

www.intechopen.com



 
Applied Biological Engineering – Principles and Practice 

 

330 

For supervised classification, a support vector machine (SVM) classifier (Vapnik, 1999), 

which uses a Gaussian radial basis function (Eq.3) as a kernel, was employed.  

 

2

2

x x'
(x,x') exp( )

2


  


 (3) 

where x  is an input data point to a SVM, 'x  is the centre of the kernel and 2  is the width of 

the kernel specified a priori by the user. In training a SVM, in addition to 2  there is another 

parameter that has to be selected by the user, the cost parameter, C. This parameter, which is 

also known as the regularization parameter, controls the trade off between allowing training 

errors and the complexity of the machine. For the objectives of this work, 2 and C were 

determined experimentally using cross-validation. 

4.2 MUP –shape validity system 

Assuming the MUPs generated by a single MU are homogeneous in shape (but with 
possibly different degrees of variability across different MUs), the MUP–shape validity of 
a MUPT can be estimated by assessing the shape consistency of its MUPs. Overall, the 
process of EMG signal decomposition can be considered a clustering problem because 
neither the number of MUPTs (i.e., clusters) nor the labels of the MUPs are known in 
advance. During EMG signal decomposition, detected MUPs are clustered into groups 
called MUPTs. Therefore, the MUP–shape validation of a MUPT extracted by a 
decomposition algorithm can be considered a cluster validity problem and the decision to 
be made is whether the extracted MUPT represents one cluster in terms of the shapes of 
the assigned MUPs or not. For this purpose, in this work the Beal method (Gordon, 1999), 
and the Duda and Hart (DH) method (Duda et al., 2000), which are presented for 
estimating the numbers of clusters in a data set, were employed to develop two 
automated MUP–shape validation systems. Although numerous methods have been 
developed to estimate the number of groups in a dataset (Milligan & Cooper, 1985; 
Gordon, 1999), the majority of these methods cannot be used for assessing MUP–shape 
validity of a MUPT because of one of these two reasons: a) they cannot be used for testing 
one cluster versus multiple clusters in a dataset; b) they are computationally too 
expensive to be used for online validation of MUPTs and especially during EMG signal 
decomposition (Parsaei, 2011; Parsaei & Stashuk, 2011a). 

For a data set consisting of N observations (patterns) each of which repented by d 

uncorrelated feature values, both the Beal and DH methods test the existence of clusters in 

the data set by comparing its within cluster dispersion (W1) to the resulting within cluster 

dispersion when it is partitioned into two clusters using a clustering algorithm (W2). The 

parameter WK (k=1,2) is usually given by 

 
i

K
T

K i i
i 1 X C

(X m )(X m )W
 

     (4) 

where X is a vector of features representing each object of the given data set, mi is the 
sample mean of the Ni objects assigned to cluster Ci. 
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For the Beal method (Gordon, 1999), the null hypothesis of a single cluster is rejected in 
favor of multiple clusters if: 

 

2 1

2

2/1
2 1

2

critical
d

W W

W
Bi F

N

N

 
 
  
    

 (5) 

where the value for Fcritical is obtained from an Fd,(N–2)d distribution at an  level of 

significance. 

For the DH method (Duda et al., 2000), the null hypothesis of one cluster is rejected if 
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where z is given by 50 1 ( )
2

z
erf    

 
. 

The effectiveness of Beal and DH methods in estimating the MUP–shape validity  

of a MUPT was investigated using some simulated MUPTs (see Section 6 for the 

description of the simulated data). For a given MUPT, each of its MUPs is represented 

using the 80 low-pass differencing (LPD) filtered data samples centred about its peak 

value (i.e., d=80) and then the MUP– shape validity of the given train was determined 

using one of these two methods. To split the given train into two clusters, the K-means 

algorithm was used. 

The LPD filtered samples were used instead of unfiltered samples because they discriminate 

between the MUPs generated by different MUs better than the raw. The 1st-order LPD filter 

(McGill et al., 1985) used is, in fact, a two-point central difference algorithm (Semmlow, 

2004) that acts as a differentiator for the lower frequencies and as a low-pass filter for higher 

frequencies. Given that x[n], n=1,2, ..,80 are the discrete time samples of a MUP, the LPD 

filtered output for these time samples, y[n], are calculated as  

 
[ ] [ ]

[ ]
2 s

x n L x n L
y n

LT

  
  (7) 

where L is the skip factor and TS is the sampling interval.  

It is worth pointing out that a 2nd-order LPD filter was also evaluated for filtering the MUPs, 

but the accuracy obtained for classifying valid MUPTs was drastically decreased compared 

to the accuracy obtained when the MUPs are filtered using a 1st-order LPD filter. Therefore, 

a 1st-order LPD filter is preferred to a 2nd-order one.  
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Preliminary tests showed that when representing MUPs using LPD filtered time samples, 

neither the Beal method (Gordon, 1999) nor the DH method (Duda et al., 2000) (each with  α =0.05) was accurate in correctly classifying valid trains. Their accuracy for classifying a 

valid train correctly was only 5% while that for an invalid train was 99%. The reason for the 

low accuracy for valid MUPTs were discovered to be: 1) the 80 LPD filtered time samples 

used as features are highly correlated; 2) the algorithms are sensitive to the inherent MUP 

shape variability in the valid MUPTs caused by jitter or jiggle (Stålberg & Sonoo, 1994); valid 

MUPTs with high jitter or jiggle are erroneously classified as invalid trains. To overcome 

these two issues, an adaptive method based on a combination of feature extraction 

techniques and the Beal orDH method was developed. An overview of the system is given 

in Fig. 6. A brief description of each step is given below, detailed discussion can be found 

elsewhere (Parsaei, 2011; Parsaei & Stashuk, 2011a). 

4.2.1 Prepossessing 

Preprocessing was completed to increase the signal-to-noise ratio (SNR) of the MUPs, 

sharpen MUPs, and ultimately enhance the discrimination between the MUPs created by 

two or more different MUs but mistakenly assigned to one MUPT. For this purposes, MUPs 

of a MUPT each of which represented using 80 time samples are filtered using a LPD filter 

(Eq. 7). Fig. 7 shows the effectiveness for a MUPT that consists of the MUPs of two MUs. As 

shown, LPD filtering increased the distinguishability of the MUPs and ultimately clarified 

that the given train is an invalid train. 

4.2.2 Feature extraction 

The feature extraction step is to extract/select effective, uncorrelated, and discriminative 

features out of the 80 LPD filtered sample points used to represent the MUPs of a MUPT. 

These features can be extracted using principal component analysis (PCA), however  

due to computational complexity of the PCA, a PCA–based MUPT validation algorithm 

will be slow and ultimately will not be efficient to be used during EMG decomposition 

(Parsaei, 2011; Parsaei &Stashuk, 2011a). In this work a gap–based feature selection 

technique which is based on the way that a human would assess the validity of a MUPT 

using its MUP shimmer plot was employed for feature extraction. A human operator 

visually assesses the consistency of the shapes of the MUPs assigned to a MUPT by 

inspecting the existence of any gap or obvious differences between specific MUP time 

sample values. With the proposed gap–based feature selection, the regions in which the 

MUPs of a MUPT are significantly different are identified first and then the m samples for 

which the MUPs are significantly differ from each other are identified and used as the 

effective features representing the MUPs of the MUPT. Such regions that are called here 

“active parts” for the MUPT under study are determined by calculating gap values (GVs) 

for the train. Let yi[n] n=1,2,…,80 represent the 80 LPD filtered time samples of the ith 

MUP in the given MUPT. At each n, the largest adjacent change in the N sorted yi[n] 

values is GV[n]. An active part is a consecutive set of GV[n] values greater than the 

baseline noise. More details for estimating gap values for a MUPT are given in (Parsaei, 

2011; Parsaei &Stashuk, 2011a). 
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Fig. 6. An overview of the MUP–shape validation system. 

 

 

(a) (b) 

Fig. 7. The effect of  preprocessing the MUPs of a MUPT. (a) raw MUPs , (b) LPD filterd 
MUPs. Such a figure previously presented by McGill et al. (1985). 

Given gap values and active parts are respectively estimated and identified for the MUPT 
under study, the sample corresponding to the maximum gap value in each active part is 
chosen as an effective feature. Consequently, the number of selected features will be equal to 
the number of active parts. Additional features, if required are selected based on their gap–
values and also their intervals from the previous selected features. Each feature should have 
the maximum gap value among the remaining samples and also be at least eight samples 
(i.e. 0.26 ms) before or after any selected features.  
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4.2.3 Setting the parameter  

The objective of setting the value for parameter , that is the significance level for rejecting 
the null hypothesis of valid train, is to make the algorithm less likely to reject the MUP–
shape validity of a given MUPT when its MUPs are very similar to each other, and more 
likely to reject this null hypothesis when the MUPs of a MUPT are less similar to each other. 
To achieve this, the value of parameter  is set adaptively by first splitting a considered 
MUPT into two sub-trains using the K-means algorithm. The pseudo–correlation (PsC) 
between the MUP templates of the two sub-trains is then calculated as a measure of their 
similarity. Denoting S1 and S2 as the MUP templates of the two sub-trains, the PsC value 
between these templates is defined as (Florestal et al., 2006): 
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where S1[i] and S2[i] are the samples of the two templates S1 and S2, respectively. When 
calculating PsC, t ranges from -5 to +5 (corresponding to 0.32 ms) and the maximum value is 
selected. 

Having a PsC value, the parameter α is defined as follows (Parsaei&Stashuk, 2011a): 
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 (9) 

4.2.4 Estimating MUP–shape validity 

The MUP–shape validity which in this work is “1” when the shapes of the MUPs of a train 
are consistent and “0” vice versa is estimated using either Beal criterion or DH criterion as 
follows: 

a. Using the Beal criteria: If Bi <Fd,(N–2)d at an α level of significance, MUP–shape 
validity=1; otherwise MUP–shape validity=0.  

b. Using DH method: If  J<z, MUP–shape validity=1; otherwise MUP–shape validity=0. 

In the remaining of this Chapter, the MUP–shape validation system that is based on the Beal 
criterion (Gordon,1999) is called the SVB method and the one developed using the Duda 
and Hart criterion (Duda et al., 2000) is called SVDH method. 

5. Application of MUPT validation in EMG decomposition 

The hypothesis is that if invalid trains are detected and corrected during EMG 
decomposition, especially during the classification step, the decomposition accuracy will be 
improved. The effectiveness of using the developed MUPT validation system during EMG 
signal decomposition was studied by integrating this system into a certainty–based EMG 
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signal decomposition algorithm used in the DQEMG (Stashuk, 1999). In the original 
certainty–based EMG signal decomposition, the detected MUPs are grouped into several 
MUPTs using a shape and temporal–based clustering (STBC) algorithm (Stashuk&Qu, 
1996a) and a supervised certainty-based classifier (CBC). The STBC algorithm is a 
customized K-means clustering method that uses both MUP shape and MU firing pattern 
information to cluster MUPs. In the STBC, MUPTs are split or merged based on several 
heuristic criteria. Assuming the MUPTs provided by the STBC algorithm are valid, they are 
augmented by the CBC algorithm (Stashuk&Paoli, 1998) in which a MUP is assigned to the 
MUPT that has the greatest certainty value, if this value is greater than a certainty 
assignment threshold (CAT). Otherwise, the MUP is left unassigned. In the CBC algorithm, 
two MUPTs are merged if the resulting MUPT satisfies several predefined heuristic criteria 
but the MUPTs are not split nor assessed for splitting. The new decomposition system 
presented in this chapter employs the developed MUPT validation system —instead of 
those heuristic, user defined criteria—to merge or split MUPTs. The new system also adjusts 
the CAT value for each individual MUPT adaptively based its validity. The new 
decomposition program, which is called the validity–based EMG decomposition system, 
consists of four major steps: signal preprocessing, MUP detection, and clustering and 
supervised classification of the detected MUPs.  

5.1 Signal preprocessing  

The signal preprocessing step is involved with filtering the signal to improve the SNR of the 
signal, decrease MUP temporal overlap, to accentuate the differences between MUPs created 
by different MUs, and to increase the separation between MUPs and the background noise. 
For this purpose, a 1st-order LPD filter (McGill et al., 1985) is employed. Fig.8 shows the 
effectiveness of LPD filtering an EMG signal. As shown, filtering flattens the signal baseline 
and makes the MUPs more narrow and recognizable.  

5.2 MUP detection 

MU detection identifies the position of the MUPs in a given EMG signal. The positions of 
suitable MUPs in the filtered signal are detected using a threshold crossing technique by 

which the prefilterd EMG signal is scanned and the peaks that satisfy several criteria 
(Stashuk, 1999) are detected and considered as the occurrence times of MUPs. In general, the 
amplitudes of detected MUPs are higher than the baseline noise. Fig. 8  illustrates the 
segmentation procedure for an EMG signal. 

For clustering and supervised classification, each detected MUP is represented using the 80 
filtered data samples (i.e., 2.56 ms at 31250 Hz sampling rate), centered about its peak value 
(i.e., about the position of maximum slope of the unfiltered MUP data).  

5.3 Clustering of the detected MUPs 

Detected MUPs are clustered to obtain the initial information required for supervised 
classification such as estimates of the number of MUPTs, their prototypical MUP shapes (or 
templates), and their MU firing pattern statistics. To extract such information, the MUPs 
detected in a specified portion (a 5 second interval with the highest number of detected 
MUPs) of the EMG signal are input to the STBC algorithm (Stashuk & Qu, 1996a) that 
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groups the detected MUPs into several MUPTs using both firing time and shape 
information across multiple iterations. The initial estimate of the number of clusters 
(number of active MUs) is equal to the maximum number of MUPs and the initial cluster 
centers are the actual MUPs in the 30 ms interval within the selected 5 second interval. 
Having estimates for the number of clusters and their centers, each detected MUP is 
assigned to the closest cluster, if its distance to the core of the closest cluster is smaller than 
0.25 times that of the second smallest distance from the candidate MUP and the cluster 
centers. In the STBC, a MUPT will be split into two trains if it includes a MU firing pattern 
inconsistency. Similar MUPTs are merged if their MUP templates are close and the firing 
pattern of the merged MUPT satisfies several criteria. The MUP assignment, cluster 
splitting, editing, and merging steps are repeated until the resulting MUPTs are stable. 
Details of the STBC algorithm can be found in (Stashuk & Qu, 1996a). 

 

 

Fig. 8. The effectiveness of LPD filtering and the segmentation procedure for an EMG signal. 
A portion of the signal containing ten MUPs (top row). The LPD filtering results for this 
portion. Gray region shows the estimated level of baseline noise. 

5.4 Supervised classification of detected MUPs 

Having the initial information about possible MUPTs provided by the clustering step, the 
detected MUPs are assigned to MUPTs using a supervised classifier. The objective here is to 
assign each MUP to the MUPT for which the MUP’s time of occurrence and shape are more 
consistent with respect to the MU firing times and MUP shapes of the selected MUPT, 
respectively, than to the other MUPTs. Each of the MUPTs should have low MCE and FCE rates 
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and represent the activity of a single MU that contributed detected MUPs to the given EMG 
signal. In this work, a new adaptive certainty-based classifier was developed for this purpose. 

The CCB (Stashuk & Paoli, 1998) is a supervised classifier that combines both MUP shape 
and MU firing pattern information to calculate the confidence of assigning a candidate 
MUP (let’s say MUPj) to a MUPT. The certainties for assigning MUPj are evaluated for the 
two trains that have the most and the next most similar MUP templates found by 
calculating the Euclidian distance between MUPj and the MUP template of each MUPT. 
The certainties are calculated by combining MUP shape and MU firing pattern certainties. 
MUP shape certainty includes normalized absolute shape certainty (CND) and relative 
shape certainty (CRD). The first represents the distance from MUPj to the template of a 
train, normalized by the energy of the template. The second represents the distance from 
MUPj to the most similar MUP template relative to the distance of MUPj to the next most 
similar MUP template. Firing pattern certainty, CFC, measures the consistency of the 
occurrence time of MUPj relative to the established MU firing pattern of a MUPT. Having 
the shape certainties and the firing pattern certainty, the overall certainties for assigning 
the MUPj to one of the two selected MUPTs are estimated by multiplying the shape and 
firing pattern certainties as 

 ; 1,2j j j j
i ND i RD i FC i iC C C C     (10) 

where C
j
i is the overall certainty of assigning MUPj to MUPTi which is one of the two closest 

MUPT to MUPj. HavingC
j
i ,  MUPj is assigned to the MUPT that has the greatest certainty 

value, if this value is greater than a CAT. Otherwise, the MUP is left unassigned.  

In order to accommodate non-stationarity in MUP shapes, the algorithm updates the MUP 

templates with each MUP assignment. The MUP templates are calculated using a moving 

average for which the weights are the certainties with which MUPs are assigned to the 

MUPTs. If  MUPj is assigned to MUPTi with certainty C
j
i  higher than the updating 

threshold (0.6 in this work) the template of MUPTi (Si) is updated as (Stashuk & Paoli, 1998): 
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where aj is the feature vector of MUPj .  

Once each classification pass through the set of detected MUPs is completed and before 
decomposition (the next pass) continues, the validity of each extracted MUPT is assessed 
using the system discussed in Section 4. Invalid trains are detected, corrected and have their 
CAT values adjusted. Merged MUPTs are split into valid trains using the K–means clustering 
algorithm; contaminated MUPTs have their FCEs corrected using an automated MUPT 
editing algorithm (Parsaei&Stashuk, 2011b). 

To decrease the number of MCEs and FCEs in the MUPTs, the CAT value for each MUPT is 
adjusted based on its validity (i.e., an adaptive adjustment of the assignment threshold). For 
invalid MUPTs (either merged or contaminated), the CAT is increased by a step of 0.005 
while the CAT of valid trains is decreased by 0.005. The CAT value of a MUPT is not 
decreased or increased below 0.005 or above 0.990, respectively.  
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In addition to splitting or editing invalid MUPTs, the chance of merging single MUPTs is 
evaluated. Pairs of MUPTs that have similar MUP templates (PsC ≥ 0.4) are merged if the 
resulting train is valid. 

The MU firing pattern statistics of each MUPT are estimated using an error–filtered 
estimation algorithm that provides accurate estimates of these IDI statistics of a MUPT even 
when contaminated by a high MCE rate (Stashuk&Qu, 1996b). The MUP assignment and 
MUPT splitting, editing, and merging steps are repeated until either, the maximum number 
of iterations is exceeded or the MUPTs are stable. If trains are merged or split at least one 
more supervised classification pass will be completed. 

6. Evaluation  

The performance of both the MUPT validation system and the new decomposition 
algorithm was evaluated using both simulated and real data. For this purpose, the 
simulated and real reference data described in (Parsaei&Stashuk, 2011a) were used.  

The simulated data was generated using a physiologically–based EMG signal simulation 
algorithm [54]. Two hundred and sixty one, 30–second–long, EMG signals with different 
levels of intensity, ranging from 24 to 193 pulses per second (pps), with MUP jitter values 
ranging from 50 to 150µs, with IDI variability (i.e., IDI–CV) ranging from 0.10 to 0.45, and 
with various myopathic or neurogenic degrees of involvement ranging from 0 to 50% 
were created. 

The real data was comprised of three sets of EMG signals: single–channel EMG signals 
provided by Nikolic (2001); single–channel EMG signals provided by McGill (n.d.); and 
multi-channel (6 to 8) EMG signals provided by Florestal et al. (2009). In using the multi–
channel EMG signals, the signals detected by each electrode were considered as single-
channel EMG signals. These three data sets allowed us to study the performance of the 
developed methods across signals detected using different electrodes and instruments. 

6.1 Evaluating MUPT validation system 

For evaluting MUPT validation system, the simulated EMG signals were decomposed using 
the DQEMG algorithms (Hamilton-Wright  & Stashuk, 2005). The resulting MUPTs were 
assessed visually and classified as valid or invalid. Additional valid trains were generated 
by selecting valid MUPTs with greater than 100 MUPs and randomly splitting them into 
sub–trains of at least 50 MUPs. Additional invalid trains that are representative of invalid 
trains likely to be produced by a decomposition algorithm were generated by merging valid 
trains having similar MUP templates (PsC ≥ 0.5). In total 20,386 MUPTs (18,000 valid and 
2386 invalid trains) were generated.  

The same analysis as with the simulated data was completed using these signals. 
However, in analyzing the EMG signals provided by Florestal et al. (2009) and McGill 
(n.d.), the results of manual decomposition completed by an expert investigator were 
used. As with the simulated data, the valid trains in these three data sets were split into 
sub–trains of at least 50 MUPs and those valid trains having similar MUP templates were 
merged to generate invalid trains. Consequently, 14,632 MUPTs (13,024 valid and 1,608 
invalid trains) were generated.  
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Considering the reference MUPTs as the gold standard, the performance of the developed 
MUPT validation systems was evaluated in terms of correctly classifying valid and invalid 
trains. Three accuracy indices were defined for this purpose: accuracy for valid trains (AV), 
accuracy for invalid train (AIV), and total accuracy (AT). These three indices are given by: 

 V

Number of valid MUPTs correctly classified
A % 100

Total number of valid MUPTs 
   (12) 

 IV

Number of invalid MUPTs correctly classified
A % 100

Total number of Invalid MUPTs 
   (13) 

 T

Number of MUPTs correctly classified
A % 100

Total number of  MUPTs 
   (14) 

6.2 Evaluating decomposition system 

For evaluating the performance of the developed MUPT validity–based EMG 

decomposition system, parts of the simulated and real EMG signals discussed in above were 

used. For each EMG signal used for this evaluation, the MU discharge patterns provided 

either by the EMG signal simulator used or by a human expert operator were used as 

reference.  

For real data, the real EMG signals provided by Nikolic (2001) were not considered in this 
evaluation because the true decomposition results for this data were not known. A group of 

the real EMG signals provided in (Florestal et al., 2009; McGill, n.d.) were employed for this 
evaluation. Of the MUs contributed to each EMG signal used only the discharge patterns of 
those MUs that were selected by the expert as accurately identified patterns and the 
amplitude of the slope of their MUP templates  were >0.01V/S were considered as reference 

and used for evaluation.   

Four indices as defined below were used for evaluation: assignment rate (Ar), accuracy (Ac), 
correct classification rate (CCr ), and error in finding the correct number of MUPTs (ENMUPTs).  

 r

Numberof MUPs assigned
A % 100

Numberof MUPs detected
   (15) 

    c

Numberof MUPs correctlyclassified
A %= ×100

Total numberof MUPsclassified
 (16) 

           r

Numberof MUPs correctlyclassified
CC % 100

Total numberof MUPs detected
   (17) 

 ENMUPTs= Number of extracted MUPTs - Number of expected MUPTs (18) 

where the number of expected MUPTs equals to the number of MUPTs identified by the 
human expert or identified by the simulator as significant. 
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7. Results and discussions 

7.1 MUPT validation system 

The calculated means and standard deviations for the three accuracy indices used to 
evaluate the developed MUPT validation methods are summarized in Table 3. The numbers 
were obtained by testing each method using both simulated and real data sets when each set 
is split into the ten different data subsets. In this table VB stands for the MUP validation 
system developed by combing the FPVC and SVB outputs using AND logic.  Likewise, VDH 
stands for the MUP validation system developed by combing the FPVC and SVDH outputs 
using AND logic. 

As shown in Table 3, the accuracy in detecting invalid trains (i.e., in terms of AIV) 
significantly improved when both MU firing pattern and MUP–shape information is 
employed for estimating the validity of a MUPT. However, the accuracy of both VB and 
VDH in correctly classifying valid MUPTs decreased compared to that of the FPVC, which 
only assesses the firing patterns of the MUPTs. 

Figures 10 and 11 illustrate the advantage of using both MU firing pattern and MUP shape 
information for MUPT validation compared to using just MU firing pattern or MUP shape 
information.  

 

 
Simulated data  Real data 

Method 
AV  

(%) 
AIV  

(%) 
AT  

(%) 
 

AV  

(%) 
AIV  

(%) 
AT  

(%) 

FPVC 99.8±0.1* 95.9±0.7 99.4±0.1  98.2±0.6* 96.2±1.4 98.0±0.5* 

SVB 92.2±0.3 66.5±0.8 89.2±0.3  95.0±0.6 74.5±1.7 92.8±0.5 

SVDH 93.8±0.3 73.9±1.0 91.5±0.3  96.7±0.3 80.4±1.2 94.9±0.5 

VB 98.2±0.2 98.6±0.3* 98.4±0.2  98.0±0.6* 99.1±0.3* 98.3±0.3* 

VDH 93.7±0.7 99.1±0.2* 96.4±0.5  95.2±0.7 99.7±0.2* 94.4±0.3 

Table 3. Mean and standard deviations for the accuracy of the different MUPT validation 
methods applied to both simulated and real data. In each column of the table, individual or 
groups of methods  bolded and indicated by an '*' had significantly better performance than 
the others as determined using analysis of variance, at a 5% significance level and the Tukey-
Kramer honestly significant difference test for pair-wise comparison of the mean values.  

Fig.10 presents AIV values versus the PsC between the templates of the two MUPTs selected 

for generating an invalid train for the methods studied. The PsC value represents a measure 
of the average similarity of the MUPs of the two trains selected to create an invalid train; 
high values of PsC indicate highly similar MUP templates. As shown, AIV values of the two 

MUP-shape validation methods (SVB and SVDH) decreases drastically as the PsC between 
the MUP templates of the constituent MUPTs increases; the methods failed to detect > 80% 
of invalid trains composed of two MUPTs with PsC > 0.8. On the other hand, the AIV values 
of both the VB and VDH methods were > 90% for most cases. For the worst case (high PsC), 

the accuracy of these two methods were > 80%, which is 57.6% higher than that of the SVB 
and SVDH methods. On average, the AIV was improved by a factor of 1.3. 
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Fig. 9. AIV values for the studied MUPT validation methods versus the pseudo-correlation 
(PsC) between the templates of two valid MUPTs merged to generate an invalid train. 

 

Fig. 10. AIV values for the studied MUPT validation algorithms versus the MCE rate in the 
invalid trains. The MCE rate represents the sparsity of the MUPT. 
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Fig.11 demonstrates the advantages of using the VB and VDH algorithms (especially the VDH 
algorithm), which uses both MU firing pattern and MUP shape information in assessing the 
validity of a MUPT, over the FPVC that uses just MU firing pattern information. As shown, AIV 
for the FPVC decreases as the MCE rate in the trains increases such that the algorithm 
misclassified around 60% of the invalid trains having a MCE rate > 80%. One reason for the 
drop in AIV is that the accuracy with which the MU firing pattern statistics can be estimated and 
consequently the accuracy of the MU firing pattern features used decreases as a train becomes 
sparse (Parsaei et al. 2011). The VBDH method performed significantly better than the FPVC for 
invalid trains with MCE rate > 80%. The AIV values of the VBDH method for such invalid trains 
was 31% higher than the AIV of the FPVC, which is a significant improvement in detecting 
invalid trains especially during the early stages of an EMG signal decomposition. 

Based on the results presented in Table 3 and Fig.11, the VDH method can be used in early 

stage of the decomposition when MCE rate >55%, as it is most accurate method in detecting 

highly–sparse invalid MUPTs.  In the latter stage of the decomposition or for the MUPTs 

with MCE rate <55%, to avoid duplication of valid MUPT the other methods (VB or FPVC) 

that had higher AV values than the VDH can be used to assess the validity of the extracted 

MUPTs. Overall, it is recommended to use only the FPVC at the final stage of the 

decomposition or for trains with MCE rate <30%, because VB misclassified valid trains with 

high MUP shape variability and ultimately cause duplication of such trains (Parsaei; 2011).  

7.2 EMG decomposition system 

Performance results for the validity–based decomposition system and that of the original 
decomposition algorithms of DQEMG for both simulated and real data are summarized in 
Tables 4 and 5, respectively. For each data set, the performance for each signal used along 
with the mean and standard deviation (STD) for the performance indices over all signals 
used is reported. Statistical comparison of the average values was conducted using paired  
t-tests (α= 0.05), while comparison of the STD values was conducted using F-tests (α= 0.05). 

 

   
Original DQEMG 

 
Validity–based system 

Signal 
Intensity 

(pps) 
No. of 

MUPTs 
Ar  

(%) 
Ac  
(%) 

CCr 

(%) 
ENMUPTs  

Ar 
(%) 

Ac 
(%) 

CCr 

(%) 
ENMUPTs 

1 54.0 6 92.6 98.0 90.7 0  95.4 99.1 94.5 0 
2 59.4 7 90.7 95.9 87.0 0  93.8 98.5 92.4 0 
3 61.4 6 78.0 96.4 75.2 2  90.5 98 88.7 0 
4 68.2 7 90.2 96.4 86.9 0  94.6 97.4 92.1 0 
5 70.7 7 73.3 96.9 71.0 3  90.3 96.5 87.1 0 
6 79.3 8 91.0 82.3 74.9 0  93.6 95.1 89.0 0 
7 82.5 8 83.5 89.8 75.0 2  89.2 96.3 85.9 1 
8 85.2 9 92.3 80.3 74.1 -1  93.2 96.9 90.3 0 
9 91.7 7 80.5 85.8 69.0 1  85.8 96.2 82.5 1 

10 97.5 10 87.6 84.8 74.3 1  91.8 95.8 87.9 0 

 Mean  86.0 90.7 77.8 1.0  91.8 97.0 89.1 0.2 
 STD  6.8 6.9 7.5 1.1  2.9 1.3 3.5 0.4 

Table 4. The performnace of the validity-based decomposition system compared to that of 
the original decomposition algorithms of the DQEMG applied to the simulated data. 
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Overall, the validity–based decomposition system has significantly improved 
decomposition results in terms of all four performance indices (p<0.03); except for the real 
data that AC for both decomposition system was statistically equal. In addition, the validity-
based system has lower STD for all performance measures (p<0.02), which shows that the 
system has better overall and less variable performance. The improvement in decomposition 
results (especially for CCr) increases as the complexity of the signal increases, such that for 
the last two signals in Table 4, the CCr values are improved by at least 13.4 %. 

 

   
Original DQEMG 

 
Validity–based system 

Signal 
Intensity 

(pps) 
No. of 

MUPTs 
Ar 

(%) 
Ac 
(%) 

CCr 

(%) 
ENMUPTs  

Ar 
(%) 

Ac (%) 
CCr 

(%) 
ENMUPTs 

1 48.9 5 93.0 99.9 92.9 0  96.9 100.0 97.9 0 
2 63.9 6 99.3 99.8 99.1 0  99.8 100.0 99.8 0 
3 71.7 7 84.7 99.8 84.4 1  98.2 98.7 97.3 1 
4 79.4 8 91.7 99.4 91.2 0  95.7 99.2 97.0 0 
5 80.2 8 95.1 97.8 93.1 0  96.3 98.5 94.9 0 
6 115.8 9 94.6 98.9 93.5 0  97.2 98.2 96.3 1 
7 105.0 10 95.7 99.9 95.6 0  97.9 98.7 98.6 0 
8 116.2 10 96.4 72.3 69.7 -3  98.8 96.4 97.2 0 
9 112.4 11 82.7 97.0 80.2 4  92.0 96.4 86.7 1 

10 114.3 11 86.6 98.8 85.6 1  93.8 97.2 93.1 0 

 Mean  92.0 96.4 88.5 0.9  96.7 98.3 95.0 0.3 
 STD  5.5 8.5 7.8 1.4  2.4 1.3 3.1 0.5 

Table 5. The performnace of the validity-based decomposition system compared to that of 
the original decomposition algorithms of the DQEMG applied to the 10 real EMG signals. 

Increases in MU firing pattern or MUP shape variability can decrease the performance of a 
decomposition system. Nonetheless, for the EMG signals with relatively high jitter or IDI–
CV values studied (e.g., simulated EMG signal #10 which jitter value 100µs), the 
improvement gained using the validity-based system was significant. 

Both DQEMG and the validity–based system are for decomposing intramuscular EMG 
signals mainly for clinical application; therefore, low amplitude MUPs, which are composed 
of low frequency components and created by MUs with no muscle fibers close to the 
electrode detection surface, are neither detected nor considered for clustering and 
supervised classification. If such MUPs were detected and then considered for clustering 
and  supervised classification, the accuracies of both systems may not be as high as those 
presented in Tables 4 and 5. Finally, the accuracies of both DQEMG and the validity–based 
system for EMG signals contaminated by high levels of noise may be lower than the values 
reported for the simulated and real EMG signals used in this work. 

Finally, both DQEMG and the validity–based system assume the mean and standard 
deviation of the IDIs of the MUs that contributed to the signal being decomposed did not 
change during signal detection. Such assumptions are valid for EMG signals detected 
during short–term isometric contraction; however, these assumptions may not be realistic 
for signals detected during either force-varying or long contractions. Such limitations 
restrict the use of both DQEMG and the validity-based system for research applications 
where the decomposition of signals detected during non–isometric or long–term 
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contractions are required. Nevertheless, DQEMG has been useful for the decomposition of 
intramuscular EMG signals acquired for clinical applications (Stashuk,1999; Doherty & 
Stashuk, 2003; Boe et al., 2005; Pino et al.,2008; Calder at al.,2008) 

8. Conclusions and future work  

Decomposition of an EMG signal may result in several invalid MUPTs that do not accurately 
represent the activity of a signal MU; such invalid MUPTs must be identified and then either 
corrected or excluded before extracted MUPTs are quantitatively analyzed. Characteristics of 
IDI histograms, MU firing rates over time and within-train MUP shape inconsistencies of 
MUPTs extracted during EMG decomposition can be used to estimate their validity. The 
existing qualitative MUPT validation methods, which typically need human operator 
supervision, are time consuming, related to operator experience and skill, and cannot assist 
with improving the performance of automatic EMG decomposition systems. To overcome these 
issues, in this chapter an automated MUPT validation system that estimate the validity of a 
MUPT is estimated using both its MU firing pattern and MUP shape information is presented.  

Based on the results obtained, the developed methods with overall AT >91.5% performed 
well in classifying MUPTs extracted by a decomposition system. Nevertheless, the methods 
that use only shape or only firing pattern information did not perform as well as the ones 
that used both types of information, especially for invalid trains. Of the method studied, the 
VDH method is the most accurate method in classifying sparse invalid trains, but the FPVC 
and VB are more accurate than the VDH in classifying valid MUPTs. Therefore, using VDH 
when MCE rate of the train >55% and VB or FPVC when MCE rate < 55% and even FPVC 
when MCE rate < 30% in the optimum scheme of using the proposed validation methods.  

Finally, it was revealed that using the proposed MUPT validation system during 
decomposition will improve the results in terms of finding the correct numbers of MUPTs 
that constitute a given signal as well as decreasing the MCE and FCE rates in the extracted 
trains. Overall, the decomposition accuracy for 20 EMG signals (10 simulated and 10 real) 
was improved by 9.0%.  For these 20 signals, the validity–based decomposition system with 
average ENMUPTs 0.3 was better able to estimate the number of constituent MUPTs than the 
previous system, with average ENMUPTs of 0.9. The improvement gained using the validity-
based system for dificult– to– decompose EMG signals was even higher. Such 
improvements, especially in ENMUPTs, along with the confidence that the extracted MUPTs 
will be valid encourage using the validity–based decomposition system for decomposing 
intramuscular EMG signals for clinical application. 

Future work will address: a) further analysis of the developed decomposition system, 
especially using clinical EMG signals acquired from myopathic and neurogenic muscles; b) 
improving the performance of the developed MUPT validation system in terms of both 
accuracy and computational time. 
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