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1. Introduction 

Video imagery provides a rich source of information for a range of applications including 
military missions, security, and law enforcement. Because video imagery captures events 
over time, it can be used to monitor or detect activities through observation by a user or 
through automated processing. Inherent in these applications is the assumption that the 
image quality of the video data will be sufficient to perform the required tasks. However, 
the large volume of data produced by video sensors often requires data reduction through 
video compression, frame rate decimation, or cropping the field-of-view as methods for 
reducing data storage and transmission requirements. This paper presents methods for 
analyzing and quantifying the information loss arising from various video compression 
techniques. The paper examines three specific issues: 

 Measurement of image quality: Building on methods employed for still imagery, we 

present a method for measuring video quality with respect to performance of relevant 

analysis tasks. We present the findings from a series of perception experiments and user 

studies which form the basis for a quantitative measure of video quality. 

 User-based assessments of quality loss: The design, analysis, and findings from a user-

based assessment of image compression are presented. The study considers several 

compression methods and compression rates for both inter- and intra-frame 

compression. 

 Objective measures of image compression: The final topic is a study of video 

compression using objective image metrics. The findings of this analysis are compared 

to the user evaluation to characterize the relationship between the two and indicate a 

method for performing future studies using the objective measures of video quality. 

1.1 Information content and analysis 

Video data provides the capability to analyze temporal events which enables far deeper 

analysis than is possible with still imagery. At the primitive level, analysis of still imagery 

depends on the static detection, recognition, and characterization of objects, such as people 

or vehicles. By adding the temporal dimension, video data reveals information about the 

movement of objects, including changes in pose and position and changes in the spatial 
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configuration of objects. This additional information can support the recognition of basic 

activities, associations among objects, and analysis of complex behavior (Fig. 1).  

Fig. 1 is a hierarchy for target recognition information complexity. Each box’s color indicates 

the ability of the developer community to assess the performance and provide confidence 

measures. The first two boxes on the left exploit information in the sensor phenomenology 

domain. The right two boxes exploit extracted features derived from the sensor data.  

To illustrate the concept, consider a security application with a surveillance camera 
overlooking a bank parking lot. If the bank is robbed, a camera that collects still images 
might acquire an image depicting the robbers exiting the building and show several cars in 
the parking lot. The perpetrators have been detected but additional information is limited. A 
video camera might collect a clip showing these people entering a specific vehicle for their 
getaway. Now both the perpetrators and the vehicle have been identified because the 
activity (a getaway) was observed. If the same vehicle is detecting on other security cameras 
throughout the city, analysis of multiple videos could reveal the pattern of movement and 
suggest the location for the robbers’ base of operations. In this way, an association is formed 
between the event and specific locations, namely the bank and the robbers’ hideout. If the 
same perpetrators were observed over several bank robberies, one could discern their 
pattern of behavior, i.e. their modus operandi. This information could enable law enforcement 
to anticipate future events and respond appropriately (Gualdi et al. 2008; Porter et al. 2010).  

 

Fig. 1. Image Exploitation and Analysis 

1.2 Image interpretability 

A fundamental premise of the preceding example is that the imagery, whether a still image 
or a video clip, is of sufficient quality that the appropriate analysis can be performed (Le 
Meur et al. 2010; Seshadrinathan et al. 2010; Xia et al. 2010). Military applications have led to 
the development of a set of standards for assessing and quantifying this aspect of the 
imagery. The National Imagery Interpretability Rating Scale (NIIRS) is a quantification of 
image interpretability that has been widely applied for intelligence, surveillance, and 
reconnaissance (ISR) missions (Irvine 2003; Leachtenauer 1996; Maver et al. 1995). Each 
NIIRS level indicates the types of exploitation tasks an image can support based on the 
expert judgments of experienced analysts. Development of a NIIRS for a specific imaging 
modality rests on a perception-based approach. Additional research has verified the 
relationship between NIIRS and performance of target detection tasks (Baily 1972; Driggers 
et al. 1997; Driggers et al. 1998; Lubin 1995). Accurate methods for predicting NIIRS from the 
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sensor parameters and image acquisition conditions have been developed empirically and 
substantially increase the utility of NIIRS (Leachtenauer et al. 1997; Leachtenauer and 
Driggers 2001).  

The NIIRS provides a common framework for discussing the interpretability, or information 

potential, of imagery. NIIRS serves as a standardized indicator of image interpretability within 

the community. An image quality equation (IQE) offers a method for predicting the NIIRS of 

an image based on sensor characteristics and the image acquisition conditions (Leachtenauer et 

al. 1997; Leachtenauer and Driggers 2001). Together, the NIIRS and IQE are useful for: 

 Communicating the relative usefulness of the imagery,  

 Documenting requirements for imagery, 

 Managing the tasking and collection of imagery, 

 Assisting in the design and assessment of future imaging systems, and 

 Measuring the performance of sensor systems and imagery exploitation devices. 

The foundation for the NIIRS is that trained analysts have consistent and repeatable 

perceptions about the interpretability of imagery. If more challenging tasks can be 

performed with a given image, then the image is deemed to be of higher interpretability. A 

set of standard image exploitation tasks or “criteria” defines the levels of the scale. To 

illustrate, consider Fig. 2. Several standard NIIRS tasks for visible imagery appear at the 

right. Note that the tasks for levels 5, 6, and 7 can be performed, but the level 8 task cannot. 

The grill detailing and/or license plate on the sedan are not evident. Thus, an analyst would 

assign a NIIRS level 7 to this image. 

 

Fig. 2. Illustration of NIIRS for a still image 

Recent studies have extended the NIIRS concept to motion imagery (video). In exploring 
avenues for the development of a NIIRS-like metric for motion imagery, a clearer 
understanding of the factors that affect the perceived quality of motion imagery was needed 
(Irvine et al. 2006a; Young et al. 2010b). Several studies explored specific aspects of this 
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problem, including target motion, camera motion, and frame rate, and the nature of the 
analysis tasks (Hands 2004; Huynh-Thu et al. 2011; Moorthy et al. 2010). Factors affecting 
perceived interpretability of motion imagery include the ground sample distance (GSD) of 
the imagery, motion of the targets, motion of the camera, frame rate (temporal resolution), 
viewing geometry, and scene complexity. These factors have been explored and 
characterized in a series of evaluations with experienced imagery analysts: 

 Spatial resolution: Evaluations shows that for motion imagery the interpretability of an 
video clip exhibits a linear relationship with the natural log of the ground sample 
distance (GSD), at least for clips where the GSD is fairly constant over the clip (Cermak 
et al. 2011; Irvine et al. 2004; Irvine et al. 2005; Irvine et al. 2007b) .  

 Motion and Complexity: User perception evaluations assessed the effects of target 
motion, camera motion, and scene complexity on perceived image quality (Irvine et al. 
2006b). The evaluations indicated that target motion has a significant positive effect on 
perceived image quality, whereas camera motion has a barely discernable effect.  

 Frame Rate: These evaluations assessed object detection and identification and other 
image exploitation tasks as a function of frame rate and contrast (Fenimore et al. 2006). 
The study demonstrated that an analyst’s ability to detect and recognize objects of 
interest degrades at frame rates below 15 frames per second. Furthermore, the effect of 
reduced frame rate is more pronounced with low contrast targets.  

 Task Performance: The evaluations assessed the ability of imagery analysts to perform 
various image exploitation tasks with motion imagery. The tasks included detection 
and recognition of objects, as might be done with still imagery and the detection and 
recognition of activities, which relies on the dynamic nature of motion imagery (Irvine 
et al. 2006b; Irvine et al. 2007c). Analysts exhibited good consistency in the performance 
of these tasks. In addition, dynamic exploitation tasks that require detection and 
recognition of activities are sensitive to the frame rate of the video clip.  

Building on these perceptions studies, a new Video NIIRS was developed (Petitti et al. 2009; 
Young et al. 2009). The work presented in this paper quantifies video interpretability using a 
100-point scale described in Section 3 (Irvine et al. 2007a; Irvine et al. 2007b; Irvine et al. 
2007c). The scale development methodologies imply that each scale is a linear transform of 
the other, although this relationship has not been validated (Irvine et al. 2006a; Irvine et al. 
2006b). Other methods for measuring video image quality frequently focus on objective 
functions of the imagery data, rather than perception of the potential utility of the imagery 
to support specific types of analysis (Watson et al. 2001; Watson and Kreslake 2001; Winkler 
2001; Winkler et al. 2001). 

2. Image compression 

A recent study of compression for motion imagery focused on objective performance of target 
detection and target tracking tasks to quantify the information loss due to compression 
(Gibson et al. 2006). Gibson et al. (2006) leverage recent work aimed at quantification of the 
interpretability of motion imagery (Irvine et al. 2007b). Using techniques developed in these 
earlier studies, this paper presents a user evaluation of the interpretability of motion 
imagery compressed under three methods and various bitrates. The interpretability of the 
native, uncompressed imagery establishes the reference for comparison (He and Xiong 2006; 
Hewage et al. 2009; Yang et al. 2010; Yasakethu et al. 2009). 
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2.1 Data compression 

The dataset for the study consisted of the original (uncompressed) motion imagery clips and 
clips compressed by three compression methods at various compression rates (Abomhara et 
al. 2010). The three compression methods were:  

 Motion JPEG 2000 – intraframe only 

 MPEG-2 – intraframe and interframe 

 H.264 – intraframe and interframe 

All three were exercised in intraframe mode. Each of the parent clips was compressed to 
three megabits per second, representing a modest level of compression. In addition, each 
parent clip was severely compressed to examine the limits of the codecs. Actual bitrates for 
these severe cases depend on the individual clip and codec. The choice of compression 
methods and levels supports two goals: comparison across codecs and comparisons of the 
same compression method at varying bitrates. Table 1 shows the combinations represented 
in the study. We recorded the actual bit rate for each product and use this as a covariate in 
the analysis. 

The study used the Kakadu implementation of JPEG2000, the Vanguard Software Solutions, 
Inc. implementation of H.264, and the Adobe Premiere’s MPEG-2 codec. In each case, the 
300 key frame interval was used for interframe compression unless otherwise noted. 
Intraframe encoding is comparable to interframe encoding with 1 key frame interval. 

The study used progressive scan motion imagery in a 848 x 480 pixel raster at 30 frames per 
second (f/s). Since most of the desirable source material was available to us in 720 P HD 
video, a conversion process was employed to generate the lower resolution/lower frame 
rate imagery. We evaluated the conversion process to assure the goals of the study could be 
met. The video clips were converted using Adobe Premiere tools. 

 

Bitrate Uncompressed H.264 (VSS) 
JPEG 
2000 

(KDU) 

MPEG 2 
(Premiere) 

  
Inter-
frame 

Intra-
frame 

Intra- 
frame 

Inter-
frame 

Intra-
frame 

Native X      

3 MB/sec  X X X X X 

Severe  X  X X  

Note: the severe bitrate represents the limit of the specific codec on a given clip. 

Table 1. Codecs and Compression Rates 

2.2 Experimental design 

The study consists of two parts. Both parts used the set of compression products described 
above. The first part was an evaluation in which trained imagery analysts viewed the 
compressed products and the original parent clip to assess the effects of compression on 
interpretability. The second part of the study implemented a set of computational image 
metrics and examined their behavior with respect to bitrate and codec. The typical duration 
of each clip is 10 seconds. Ten video clips were used for this study.  
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3. User-based evaluation of compression 

To quantify image interpretability, subjective rating scale was developed by Irvine et al. 
(2007c), based on consistent ratings by trained imagery analysts. The scale assigns the values 
0 to a video clip of no utility and 100 to clips that could support any of the analysis tasks 
under consideration (Fig. 3). Three additional clips identified in this study formed markers 
to evenly divide the subjective interpretability space. Thus, reference clips were available at 
subjective rating levels of 0, 25, 50, 75, and 100. 

 

Fig. 3. NIIRS Development Functional Decomposition 

A set of specific image exploitation tasks were reviewed by imagery analysts and rated 
relative to these marker video clips. In this way, these analysis tasks were calibrated to the 
subjective rating scale. A subset of these “calibrated” analysis tasks were used to evaluate 
the compressed video products (Table 2). Note that some of these tasks do not require 
analysis of temporal activity and could be performed with still imagery. We label these as 
“static” tasks. A second set of tasks are “dynamic” because they require direct observation 
or inference about movements of objects.  

Image analysts rated their confidence in performing each image exploitation task with 
respect to each compression product, including the original (uncompressed) clip. We 
calculated an overall interpretability rating from each analyst for each clip.  

3.1 Approach 

For each parent clip, three criteria (image exploitation tasks) were assigned. The 
considerations for selecting the criteria were: 

 The criteria should “bound” the interpretability of the parent clip, i.e. at least one of the 
three should be difficult to do and one should be easy 

 The criteria (or at least some of the criteria) should reference objects and activity that are 
comparable to the content of the clip 

 The criteria should have exhibited low rater variance in the previous evaluations 
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S
ta

ti
c 

C
ri

te
ri

a
 

Detect large buildings (e.g. hospitals, factories) 

Identify individual rail cars (e.g. gondola, flat, box) and locomotives by type 
(e.g. steam, diesel) 

Identify vehicles by general class (civilian, military tracked, artillery, 
construction) 

Detect presence of freight in open-bed trucks 

Detect gatherings of 5 or more people 

D
y

n
a

m
ic

 
C

ri
te

ri
a

 

Determine motion and direction of large vehicles (e.g. trains, barges, 18-
wheelers) 

Track a civilian-size moving vehicle (e.g., car, truck, SUV) 

Distinguish between an orderly assembly and a panicked crowd 

Distinguish among a person walking, a person running, and a person riding a 
small vehicle (bicycle, moped, or motorcycle) 

Determine whether a person is getting into or out of a vehicle 

Table 2. Video Analysis Tasks 

3.2 Analysis and findings 

The data analysis progresses through several stages: verification and quality control, 

exploratory analysis to uncover interesting relationships, and statistical modeling to validate 

findings and formally test hypotheses of interest. The initial analysis examined the data for 

anomalies or outliers. None were found in this case. 

Next, we calculated an overall interpretability rating from each analyst for each clip. The 

method for calculating these ratings was as follows: Each of the three criteria used to rate 

each clip was calibrated (on a 0-100 scale) in terms of interpretability, where this calibration 

was derived from an earlier evaluation (Irvine et al. 2007c). Multiplying the interpretability 

level by the IA’s confidence rating produces a score for each criterion. The final 

interpretability score (Equation 1) was the maximum of the three scores for a given clip.  

 Interpretability Score(j, k) = max {Ci,j,k Ii,k : i=1,2,3} / 100 (1) 

Where Ci,j,k is the confidence rating by the jth IA on the kth clip for the ith criterion and Ii,k is 

the calibrated interpretability level for that criterion. All subsequent analysis presented 

below is based on this final interpretability score. The remaining analysis is divided into two 

sections: interframe compression and intraframe compression. Ultimately, we compared the 
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analyst derived utility measures, as a NIIRS surrogate, to the automated computational 

values. 

All three codecs yielded products for the evaluation. However, MPEG-2 would not support 

extreme compression rates. Bitrate was the dominant factor, but pronounced differences 

among the codecs emerged too (Fig. 6 and Fig. 7). At modest compression rates, MPEG-2 

exhibited a substantial loss in interpretability compared to either H.264 or JPEG-2000. Only 

JPEG-2000 supported more extreme intraframe compression. A computational model was 

developed to characterize the significance among codec, scene, and bitrate’s effect on data 

quality. There were systematic differences across the clips, as expected, but the effects of the 

codecs and bitrates were consistent. When modeled as a covariate, the effects of bitrate 

dominate. The effect due to codec is modest, but still significant. As expected, there is a 

significant main effect due to scene, but no scene-by-codec interaction.  

3.3 Interframe compression 

Analysis of the interframe ratings shows a loss in image interpretability for both MPEG-2 

and H.264 as a function of bitrate (Fig. 4). The initial compression from the native rate to 3 

MB per second corresponds to a modest loss in interpretability. This finding is consistent 

with previous work. At extreme compression levels (below 1 MB per second), the 

interpretability loss is substantial. H.264 generally supported more extreme compression 

levels, but the interpretability degrades accordingly. Although the exact compression level  

 

Fig. 4. Summary Comparison Across Codec and Bitrate 
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varies by clip, the pattern is clear for all clips. Statistical analysis shows that bitrate, modeled 

as a covariate, is the primary factor affecting interpretability. For interframe compression, 

the differences between H.264 and MPEG-2 are small but statistically significant (Table 3). 

The pattern holds across all scenes, as indicated by the lack of a codec-by-scene interaction 

effect. 

 

Source 
Deg. Of
Freedom

F-statistic
Significance

<0.025 

Intercept 1 6.2 0.0033 

BitRate 1 59.7 0.00003 

Codec 2 5.7 0.015 

Scene 4 15.4 0.00028 

Codec * Scene 8 0.5 0.82 

Table 3. Analysis of Covariance for Interframe Comparisons 

3.4 Intraframe compression 

In the case of intraframe compression, all three codecs yielded products for the evaluation, 

although MPEG-2 would not support extreme compression rates. The findings in this case 

are slightly different than interframe compression. Bitrate remained the dominant factor, but 

more pronounced differences among the codecs emerged (Figure 4). At modest compression 

rates, MPEG-2 exhibited a substantially loss in interpretability compared to either H.264  

 

Fig. 5. Summary Comparison Across Codec and Bitrate 
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or JPEG-2000. Only JPEG-2000 supported more extreme intraframe compression and highly 

compressed renditions were produced from all of the parent clips. As with the interframe 

comparisons, there were systematic differences across the clips, as expected, but the effects 

of the codecs and bitrates were consistent. The analysis of covariance confirms these 

statistical effects (Table 4). When modeled as a covariate, effects of bitrate dominate. The 

effect due to codec is modest, but still significant. As expected, there is a significant main 

effect due to scene, but no scene-by-codec interaction. 

 

Source 
Deg. of 

Freedom
F-statistic

Significance
< 0.025 

Intercept 1 0.9 0.0038 

BitRate 1 24.4 0.0078 

Codec 3 5.6 0.001 

Scene 4 26.2 0.00001 

Codec * Scene 12 0.5 0.84 

Table 4. Analysis of Variance for Interframe Comparisons 

4. Computational measures and performance assessment 

In the previous section, analyst assessments of image quality were characterized. This 

section identifies computational attributes for image quality that can be extracted from 

video clips. Performance measures will evaluate the computational image quality metrics 

and provide an understanding of how well they compare to codec, bitrate, and scene 

parameters. 

4.1 Computational image metrics 

We reviewed a variety of image metrics to quantify image quality (Bhat et al. 2010; 

Chikkerur et al. 2011; Culibrk et al. 2011; Huang 2011; Sohn et al. 2010). Based on a review of 

the literature and assessment of the properties of these metrics, we selected four measures 

for this study: two edge-based metrics, structural similarity image metric (SSIM), and SNR. 

SSIM and edge metrics are performed at each pixel location. The resultant can be viewed as 

an image (Fig. 6). SNR metrics deal with overall information content and cannot be 

visualized as an image. These metrics were computed for the original (uncompressed) clips 

and for all of the compressed products. We will present the computation methods and the 

results.  

The color information was transposed into panchromatic (intensity) using either a HSI 

transformation or luminance. Intensity was computed using (2): 

 
3

R G B
I

 
  (2) 

Luminance was computed (3) 

 0.299 0.587 0.114Y R G B    (3)  
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                                         (a)                                                                         (b) 

 

                                         (c)                                                                         (d) 

 

                                         (e)                                                                         (f) 

 

                                                 (g) 

Fig. 6. (a) Original, (b) Compressed version, (c,d) original edge images, (e) edge images 
displayed together where Red, Blue, Magenta are from the original, the compressed, both 
edge images respectively (f) edge intensities, and (g) is the SSIM image darker areas 
represent more noticeable differences. 

Imagery extracted from the VIVID 
Public Release Data set provided 
by Air Force Research Laboratory 
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4.1.1 SSIM 

The first metric for image quality is the Structural Similarity Image Metric (Wang et al. 2004). 
SSIM quantifies differences between two images, I1 and I2, by taking three variables into 
consideration, luminance, contrast, and spatial similarity. For grey level images, those 
variables are measured in the images as the mean, standard deviation, and Pearson’s 
correlation coefficient between the two images respectively. For our application, the RGB 
data was converted to grey level using the standard Matlab function. Let: 

1

1 1

12 1 1 2 2
.

( )

standard deviation( )

1
( ( , ) )( ( , ) ) : covariance

1 i j

mean I

I

I i j I i j
N




  




  
 

 

then  

 1 2 1 2 12
1 2 2 2 2 2 2 2

1 2 1 2 1 2

2 2
SSIM(I  , I )  * *

    
     


 

 (4) 

Equation 4 is modified to avoid singularities, e.g., when both means are 0. SSIM is computed 

locally on each corresponding MxM sub-image of I1 and I2. In practice, the sub-image 

window size is 11x11, implemented as a convolution filter. The SSIM value is the average 

across the entire image. 

4.1.2 Edge metrics 

Two edge metrics were examined. The first is denoted by CE for Common Edges and the 

second is denoted SE for strength of edges (O’Brien et al. 2007). Heuristically, CE measures 

the ratio of the number edges in a compressed image to the number of edges in the original; 

whereas SE measures a ratio of the strength of the edges in a compressed version to strength 

of the edges in the original. 

Given two images I1 and I2 CE(I1, I2 ) and SE(I1, I2 ) are computed as follows. From the grey 

level images, edge images are constructed using the Canny edge operator. The edge images 
are designated as E1 and E2. Assume that the values in E1 and E2 are 1 for an edge pixel and 
0 otherwise. Let “*” denote the pixel wise product. Let G1 and G2 denote the gradient images 

of I1 and I2 respectively. G(m,n) was approximated as the maximum of absolute value of the 
set {I(m,n) - I(m+t1,n + t2) | -6 < t1 < 6 and -6< t2 < 6}, i.e. the maximum difference between 
the center value and all values in a 5x5 neighborhood around it. With that notation,  

 1 2
1 2

1 2

2 * ( * )
( , )

E E
CE I I

E E





 
 (5) 

where the sum is taken over all the pixels within a given frame. 

 2 2
1 2

1 1

( * )
( , )

*

E G
SE I I

E G
 


 (6) 
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where the sum is taken over all the pixels within a given frame. 

An additional set of edge operators were also applied. These operators are called edge 
strength (ES) metrics. Let Y1 be the luminance component of an original frame from an clip 
and let Y2 be the corresponding frame after compression processing, also in luminance. We 
apply a Sobel filter, S, to both Y1 and Y2, where for a grayscale frame F:  

      2 2
* *S F H F V F    (7) 

The filters H and V used in the Sobel edge detector are: 

 

1 0 1

2 0 2

1 0 1

H


 


 (7.1) 

 TV H  (7.2) 

We define two metrics, one for local loss of edge energy (EL) (thus finding blurred edges 
from Y1 in Y2) and the other for the addition of edge energy (thus finding edges added to Y2 
that are weaker in Y1). Each metric examines the strongest edges in one image (either Y1 or 
Y2) and compares them to the edges at the corresponding pixels in the other (Y2 or Y1). 

For the grayscale image F, let I(F,f) be the set of image pixels, p, where F (p) is at least as 
large as f * max(F). That is: 

  ( , ) : ( ) * max( )I F f Pixels F p f F   (8) 

Using the definition of Y(F,f), the two edge metrics are: 

 2

1

( ( ))

( ( ))

mean S Y
BlurIndex

mean S Y
  (9) 

where the means are taken over the set I(S(I1), 0.99) 

 1

2

( ( ))

( ( ))

mean S Y
AddedEdgeEnergy

mean S Y
   (10) 

where the means are taken over the set I(S(Y2), 0.99). 

4.1.3 SNR 

Finally, we examined the peak signal to noise ratio (PSNR). The PSNR is defined for a pair 
of m×n luminance images, Y1 and Y2. Let MSE be defined by, 

    
21 1

1 2
0 0

1
, ,

m n

i j

MSE Y i j Y i j
mn

 

 
   (11) 

The PSNR is defined as:  
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2

10 1010log 20logI IMAX MAX
PSNR

MSE MSE
    (12) 

where MAXI is maximum pixel value of the image. In our case, MAXI is taken to be 255. 

4.2 Metrics and performance 

The image metrics were plotted (Fig. 7). The image metrics are all highly correlated across 
both bitrate and codec, for both intraframe and interframe compression techniques. For the 
set of clips with every 300 key frame interval, the correlation was greater than 0.9. In each 

case, the lower information content is indicated by lower position on the Y axis, quality. The 
X axis is the target bitrate. Due to the high correlation a single computational metric was 
chosen for more detailed analysis to quantify the relationship between image quality and 
bitrate. SSIM was selected because it generates an image to diagnose unexpected values and 

the computation is based upon perceptual difference of spatial similarity and contrast. 

 

Fig. 7. Target Bitrate (k bps) versus Image Metric: SSIM, EL, ES, and PSNR 

Fig. 7 indicates that SSIM, CE, and SE that measures separate image quality based on bitrate. 
H.264’s asymptotic quality improvement observed in the rise in the graph from the initial 
frames (Fig. 7). This corresponds to exactly where the algorithm is increasing its fidelity of 
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the compressed frames to the original frames. Along this initial portion of the clip the 
metrics agree with human perception of the image quality increasing. 

Fig. 8 plots SSIM versus frame at differeing bitrates for the H.264 codec, which is an 
interframe codec. The saw-tooth nature of the graph is the result of the group of pictures 
(GOP) sequence. The peak and trough differences are between bilinear interpolation 
between key frames (B) and predicted (P) encoded frames. 

The observations for the metrics listed above for H.264 were also visually evident in the case 
of MPEG compression. Close inspection of the clips shows the quality to be lower in the case 
of MPEG than for H.264. The example in Fig. 9 is taken from a clip that was compressed to 2 
Mbits/second using both codecs. While discernable in both the original and the H.264 
compressed versions, some of the individuals' heads seem to be nearly totally lost in the 
MPEG version. 

 

Fig. 8. Plot of the SSIM evaluated on each frame for 11 different bit rates.  
Each clip was compressed using H.264 with the key frames 1 every 300 frames. 

5. Discussion 

These experiments demonstrate the existence of several metrics that are monotonic with 
bitrate. The metrics showed considerable sensitivity to image quality that matched the 
authors’ observations. Specifically, the MPEG quality was considerably less than H.264 at 
the same bitrate. The knee of the quality curves exist between 500k and 1000k bps. In 
addition, the metrics were sensitive to the encoded structure of the individual frames as the 
saw tooth differences between the B and P frames were readily observable.  
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                                          (a)                                                                       (b) 

 

(c) 

Fig. 9. (a) Original frame and compressed using (b) H.264 and (c) MPEG. 

A qualitative comparison of the objective metrics to the user assessment of interpretability 
shows strong consistency. Compression of these video products to bitrates below 1,000k bps 
yields discernable losses in image interpretability. The objective metrics shows a similar 
knee in the curve. These data suggest that one could estimate loss in interpretability from 
compression using the objective metrics and derive a prediction of the loss in Video NIIRS. 
Development of such a model would require conducting a second user experiment to 
establish the relationship between the subjective interpretability scale used in this study and 
the published Video NIIRS. The additional data from such an experiment would also 
support validation of a model for predicting loss due to compression.  

6. Conclusion 

The evaluations and analyses presented in this Chapter characterize the loss in perceived 
interpretability of motion imagery arising from various compression methods and 
compression rates. The findings build on previous studies (Irvine et al. 2007a; O’Brien et al. 
2007). The findings are consistent with other evaluations of video compression (Gibson et al. 
2006; Young et al. 2010a). Evaluation of image compression for motion imagery illustrates 
how interpretability-based methods can be applied to the analysis of the image chain. We 
present both objective image metrics and analysts’ assessments of various compressed 
products. The results show good agreement between the two approaches. Further research 
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is needed to validate a model-based relationship that could predict Video NIIRS loss due to 
compression using the objective image metrics presented here.  
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